Advertisement

Mutagenesis – the Key to Genetic Analysis

  • M. G. Neuffer
  • Guri Johal
  • M. T. Chang
  • Sarah Hake

Mutagenesis is a major key to understanding gene function. Most chapters in this book take advantage of mutant alleles to advance the knowledge of maize traits. The chemical mutagen, EMS, has been particularly important because it has a very high efficiency and can be used in any genetic background. EMS also generates half-plant chimeras, which have interesting consequences for lethal dominant mutations. Although dominant mutants are often considered gain-of-function abnormalities, from analysis of thousands of mutants, it appears that most dominants mimic a set of recessive mutants. Examples in which the genes have been cloned demonstrate that a gene defined by a dominant mutation often functions in the same pathway as the gene defined by a recessive mutation with similar phenotype. We present an historical perspective of EMS mutagenesis and discuss frequencies of different types of mutations. Two types of dominant mutants that appear frequently and have recessive counterparts are described in more detail.

Keywords

Quantitative Trait Locus Recessive Mutation Dominant Mutant Seedling Mutant Knox Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, D.L., Mellor, E.A., and Langdale, J.A. (2005). CORKSCREW1 defines a novel mechanism of domain specification in the maize shoot. Plant Physiol 138, 1396–1408.PubMedCrossRefGoogle Scholar
  2. Bauer, P., Lubkowitz, M., Tyers, R., Nemoto, K., Meeley, R.B., Goff, S.A., and Freeling, M. (2004). Regulation and a conserved intron sequence of liguleless3/4 knox class-I homeobox genes in grasses. Planta 219, 359–368.PubMedCrossRefGoogle Scholar
  3. Becraft, P.W., Li, K., Dey, N., and Asuncion-Crabb, Y. (2002). The maize dek1 gene functions in embryonic pattern formation and cell fate specification. Development 129, 5217–5225.PubMedGoogle Scholar
  4. Bommert, P.B., Lunde, C., Nardmann, J., Vollbrecht, E., Running, M.P., Jackson, D., Hake, S., and Werr, W. (2005). Thick tassel dwarf1 encodes a putative maize orthologue of the Arabidopsis CLAVATA1 leucine-rich receptor-like kinase. Development 132, 1235–1245.PubMedCrossRefGoogle Scholar
  5. Bryan, A.A., and Sass, J.E. (1941). Heritable characters in maize. J. Hered. 32, 343–346.Google Scholar
  6. Candela, H., Johnston, R., Gerhold, A., Foster, T., and Hake, S. (2008). The milkweed pod1 gene encodes a KANADI protein that is required for abaxial-adaxial patterhing in maize leaves. Plant cell 20, 2073–2087.PubMedCrossRefGoogle Scholar
  7. Chuck, G., Meeley, R., and Hake, S. (1998). The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes and Development 12, 1145–1154.PubMedCrossRefGoogle Scholar
  8. Chuck, G., Cigan, M., Saeteurn, K., and Hake, S. (2007a). The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet. 39, 544–549.CrossRefGoogle Scholar
  9. Chuck, G., Meeley, R., Irish, E., Sakai, H., and Hake, S. (2007b). The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet. 12, 1517–1521.CrossRefGoogle Scholar
  10. Clark, J.K., and Sheridan, W.F. (1988). Characterization of the two maize embryo-lethal defective kernal mutants rgh*-1210 and fl*-1253B: Effects on embryo and gametophyte development. Genetics 120, 279–290.PubMedGoogle Scholar
  11. Clark, J.K., and Sheridan, W.F. (1991). Isolation and characterization of 51 embryo-specific mutations of maize. Plant Cell 3, 935–951.PubMedCrossRefGoogle Scholar
  12. Clark, S.E., Running, M.P., and Meyerowitz, E.M. (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119, 397–418.PubMedGoogle Scholar
  13. Cone, K.C., Frisch, E.B., and Phillips, T.E. (1989). dek1 interferes with aleurone differentiation. Maize Genetics Cooperation Newsletter 63, 67–68.Google Scholar
  14. Dangl, J.L., Dietrich, R.A., and Richberg, M.H. (1996). Death don’t have no mercy: Cell death programs in plant-microbe interactions. Plant Cell 8, 1793–1807.PubMedCrossRefGoogle Scholar
  15. Doebley, J., Stec, A., and Gustus, C. (1995). teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141, 333–346.PubMedGoogle Scholar
  16. Doebley, J., Stec, A., and Hubbard, L. (1997). The evolution of apical dominance in maize. Nature 386, 485–488.PubMedCrossRefGoogle Scholar
  17. Dorweiler, J., Stec, A., Kermicle, J., and Doebley, J. (1993). Teosinte glume architecture1: A genetic locus controlling a key step in maize evolution. Science 262, 233–235.PubMedCrossRefGoogle Scholar
  18. Evans, M.M. (2007). The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo Sac and leaf development. Plant Cell 19, 46–62.PubMedCrossRefGoogle Scholar
  19. Foster, T., Yamaguchi, J., Wong, B.C., Veit, B., and Hake, S. (1999). Gnarley is a dominant mutation in the knox4 homeobox gene affecting cell shape and identity. Plant Cell 11, 1239–1252.PubMedCrossRefGoogle Scholar
  20. Freeling, M., and Hake, S. (1985). Developmental genetics of mutants that specify Knotted leaves in maize. Genetics 111, 617–634.PubMedGoogle Scholar
  21. Friml, J., Yang, S., Michniewicz, M., Weijers, D., Quint, A., Tietz, O., Benjamins, R., Ouwerkerk,P.B.F., Ljung, K., Sandberg, G., Hooykaas, P.J.J., Palme, K., and Offringa, R. (2004). A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306, 862–865.PubMedCrossRefGoogle Scholar
  22. Galinat, W.C. (1954a). Corn grass. I. Corn grass as a prototype or a false progenitor of maize. Am. Nat. 88, 101–104.CrossRefGoogle Scholar
  23. Galinat, W.C. (1954b). Corn grass. II. Effect of the Corn grass gene on the development of the maize inflorescence. Am. J. Bot. 41, 803–806.CrossRefGoogle Scholar
  24. Gelinas, D., Postlethwait, S.N., and Nelson, O.E. (1969). Characterization of development in maize through the use of mutants. II. The abnormal growth conditioned by the Knotted mutant. Am. J. Bot. 56, 671–678.Google Scholar
  25. Gray, J., Close, P.S., Briggs, S.P., and Johal, G.S. (1997). A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89, 25–31.PubMedCrossRefGoogle Scholar
  26. Gray, J., Janick-Buckner, D., Buckner, B., Close, P.S., and Johal, G.S. (2002). Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiology 130, 1894–1907.PubMedCrossRefGoogle Scholar
  27. Greene, B., Walko, R., and Hake, S. (1994). Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics 138, 1275–1285.PubMedGoogle Scholar
  28. Haas, G., and Orr, A. (1994). Organogenesis of the maize mutant Fascicled ear (Fas). Maize Gen.Coop. Newsl. 68, 18–19.Google Scholar
  29. Hake, S., Smith, H.M.S., Holtan, H., Magnani, E., Mele, G., and Ramirez, J. (2004). The role of KNOX genes in plant development. Annu. Rev. Cell Dev. Biol. 20, 125–151.PubMedCrossRefGoogle Scholar
  30. Harberd, N.P., and Freeling, M. (1989). Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics 121, 827–838.PubMedGoogle Scholar
  31. Hoisington, D.A., Neuffer, M.G., and Walbot, V. (1982). Disease lesion mimics in maize. I. Effect of genetic background, temperature, developmental age, and wounding on necrotic spot formation with Les1. Dev Biol 93, 381–388.PubMedCrossRefGoogle Scholar
  32. Hu, G., Richter, T.E., Hulbert, S.H., and Pryor, T. (1996). Disease Lesion Mimicry Caused by Mutations in the Rust Resistance Gene rp1. Plant Cell 8, 1367–1376.PubMedCrossRefGoogle Scholar
  33. Hu, G., Yalpani, N., Briggs, S.P., and Johal, G.S. (1998). A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10, 1095–1105.PubMedCrossRefGoogle Scholar
  34. Inada, D.C., Bashir, A., Lee, C., Thomas, B.C., Ko, C., Goff, S.A., and Freeling, M. (2003). Conserved noncoding sequences in the grasses. Genome Research 13, 2030–2041.PubMedCrossRefGoogle Scholar
  35. Jackson, D., Veit, B., and Hake, S. (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120, 405–413.Google Scholar
  36. Johal, G.S. (2007). Disease lesion mimic mutants of maize: APSnet Feature Story July 2007,American Phytipathological Society. http://www.apsnet.org/online/feature/mimics/.
  37. Johal, G.S., Hulbert, S.H., and Briggs, S.P. (1995). Disease Lesion Mimics of Maize — a Model for Cell-Death in Plants. Bioessays 17, 685–692.CrossRefGoogle Scholar
  38. Juarez, M.T., Twigg, R.W., and Timmermans, M.C. (2004a). Specification of adaxial cell fate during maize leaf development. Development 131, 4533–4544.CrossRefGoogle Scholar
  39. Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., and Timmermans, M.C. (2004b). microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88.CrossRefGoogle Scholar
  40. Kayes, J.M., and Clark, S.E. (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125, 3843–3851.PubMedGoogle Scholar
  41. Kerstetter, R., Vollbrecht, E., Lowe, B., Veit, B., Yamaguchi, J., and Hake, S. (1994). Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6, 1877–1887.PubMedCrossRefGoogle Scholar
  42. Lorrain, S., Vailleau, F., Balague, C., and Roby, D. (2003). Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?. Trends Plant Sci 8, 263–271.PubMedCrossRefGoogle Scholar
  43. Martin, G.B., Bogdanove, A.J., and Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54, 23–61.PubMedCrossRefGoogle Scholar
  44. McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A. 36, 344–355.PubMedCrossRefGoogle Scholar
  45. McSteen, P., and Hake, S. (2001). barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 128, 2881–2891.PubMedGoogle Scholar
  46. McSteen, P., Malcomber, S., Skirpan, A., Lunde, C., Wu, X., Kellogg, E., and Hake, S. (2007). barren inflorescence2 Encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol 144, 1000–1011.PubMedCrossRefGoogle Scholar
  47. Miles, C.D., and Daniel, D.J. (1974). Chloroplast Reactions of Photosynthetic Mutants in Zea mays. Plant Physiol 53, 589–595.PubMedCrossRefGoogle Scholar
  48. Morris, S.W., Vernooij, B., Titatarn, S., Starrett, M., Thomas, S., Wiltse, C.C., Frederiksen, R.A.,Bhandhufalck, A., Hulbert, S., and Uknes, S. (1998). Induced resistance responses in maize. Mol Plant Microbe Interact 11, 643–658.PubMedCrossRefGoogle Scholar
  49. Muehlbauer, G.J., Fowler, J.E., Girard, L., Tyers, R., Harper, L., and Freeling, M. (1999). Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf. Plant Physiology 119, 651–662.PubMedCrossRefGoogle Scholar
  50. Nelson, J.M., Lane, B., and Freeling, M. (2002). Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf's dorsoventral axis. Development 129, 4581–4589.PubMedGoogle Scholar
  51. Neuffer, M.G. (1966). Stability of the Suppressor Element in Two Mutator Systems at the A1 Locus in Maize. Genetics 53, 541–549.PubMedGoogle Scholar
  52. Neuffer, M.G. (1995). Chromosome breaking sites for genetic anlaysis in maize. Maydica 40, 99–116.Google Scholar
  53. Neuffer, M.G., and Calvert, O.H. (1975). Dominant Disease Lesion Mimics in Maize. Journal of Heredity 66, 265–270.Google Scholar
  54. Neuffer, M.G., and Coe, E.H. (1978). Paraffin oil technique for treating mature corn pollen with chemical mutagens. Maydica 23, 21–28.Google Scholar
  55. Neuffer, M.G., and Sheridan, W.F. (1980). Defective Kernel Mutants of Maize. I. Genetic and Lethality Studies. Genetics 95, 929–944.Google Scholar
  56. Neuffer, M.G., Coe, E.H., and Wessler, S.R. (1997). Mutants of maize. (Plainview, New York:Cold Spring Harbor Laboratory Press).Google Scholar
  57. Neuffer, M.G., Hoisington, D.A., Walbot, V., and Pawar, S.E. (1983). The genetic control of dis ease symptoms. (Oxford and IBH Pub. Co, New Delhi, India).Google Scholar
  58. Nogueira, F.T., Madi, S., Chitwood, D.H., Juarez, M.T., and C., T.M. (2007). Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev. 21, 750–755.PubMedCrossRefGoogle Scholar
  59. Nuffer, M.G. (1961). Mutation Studies at the A1 Locus in Maize. I. A Mutable Allele Controlled by Dt. Genetics 46, 625–640.Google Scholar
  60. Orr, A.R., Haas, G., and Sundberg, M.D. (1997). Organogenesis of Fascicled ear mutant inflores cences in maize (Poaceae). Am. J. Bot. 84, 723–734.CrossRefGoogle Scholar
  61. Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J.,Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D., and Harberd, N.P. (1999). Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256–261.PubMedCrossRefGoogle Scholar
  62. Penning, B.W., Johal, G.S., and McMullen, M.D. (2004). A major suppressor of cell death, slm1, modifies the expression of the maize (Zea mays L.) lesion mimic mutation les23. Genome 47, 961–969.PubMedCrossRefGoogle Scholar
  63. Phinney, B.O. (1956). Growth response of single-gene dwarf mutants in maize to gibberellic acid.Proc. Natl. Acad. Sci. USA 42, 185–189.CrossRefGoogle Scholar
  64. Poethig, R.S. (1988a). Heterochronic mutations affecting shoot development in maize. Genetics 119, 959–973.Google Scholar
  65. Poethig, R.S. (1988b). A non-cell-autonomous mutation regulating juvenility in maize. Nature 336, 82–83.CrossRefGoogle Scholar
  66. Ramirez, J. (2007). thesis.Google Scholar
  67. Scanlon, M.J., Henderson, D.C., and Bernstein, B. (2002). SEMAPHORE1 functions during the regulation of ancestrally duplicated knox genes and polar auxin transport in maize. Development 129, 2663–2673.PubMedGoogle Scholar
  68. Schneeberger, R.G., Becraft, P.W., Hake, S., and Freeling, M. (1995). Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes and Development 9, 2292–2304.PubMedCrossRefGoogle Scholar
  69. Sheridan, W.F., and Clark, J.K. (1987). Maize enbryogeny: a promising experimental system. TIG 3, 3–6.Google Scholar
  70. Singleton, W.R. (1951). Inheritance of Corn grass a macromutation in maize, and its possible significance as an ancestral type. Am Nat 305, 81–96.CrossRefGoogle Scholar
  71. Stadler, L.J., and Uber, F. (1942). Genetic effects of ultra-violet radiation in maize. I V. Comparison of monochromatic radiations. Genetics 27, 84–118.PubMedGoogle Scholar
  72. Taguchi-Shiobara, F., Yuan, Z., Hake, S., and Jackson, D. (2001). The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize.Genes Dev. 15, 2755–2766.Google Scholar
  73. Timmermans, M.C., Schultes, N.P., Jankovsky, J.P., and Nelson, T. (1998). Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development 125, 2813–2823.PubMedGoogle Scholar
  74. Timmermans, M.C., Hudson, A., Becraft, P.W., and Nelson, T. (1999). ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284, 151–153.PubMedCrossRefGoogle Scholar
  75. Tsiantis, M., Schneeberger, R., Golz, J.F., Freeling, M., and Langdale, J.A. (1999). The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284, 154–156.PubMedCrossRefGoogle Scholar
  76. Uchida, N., Townsley, B., Chung, K.H., and Sinha, N. (2007). Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci U S A. 104, 15953–15958.PubMedCrossRefGoogle Scholar
  77. Veit, B., Vollbrecht, E., Mathern, J., and Hake, S. (1990). A tandem duplication causes the Kn1-O allele of Knotted, a dominant morphological mutant of maize. Genetics 125, 623–631.PubMedGoogle Scholar
  78. Vollbrecht, E., Veit, B., Sinha, N., and Hake, S. (1991). The developmental gene knotted is a member of a maize homeobox gene family. Nature 350, 241–243.PubMedCrossRefGoogle Scholar
  79. Vollbrecht, E., Reiser, L., and Hake, S. (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127, 3161–3172.PubMedGoogle Scholar
  80. Walbot, V., Hoisington, D.A., and Neuffer, M.G. (1983). Disease lesion mimic mutations. (New York: Plenum Publishing Corp.).Google Scholar
  81. Wang, H., Nussbaum-Wagler, T., Li, B., Zhao, Q., Vigouroux, Y., Faller, M., Bomblies, K., Lukens,L., and Doebley, J.F. (2005). The origin of the naked grains of maize. Nature 436, 714–719.PubMedCrossRefGoogle Scholar
  82. Wang, K.L., Li, H., and Ecker, J.R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14, S131–151.PubMedGoogle Scholar
  83. Wright, A.D., and Neuffer, M.G. (1989). Orange pericarp in maize: filial expression in a maternal tissue. J. Hered. 80, 229–233.Google Scholar
  84. Wright, A.D., Moehlenkamp, C.A., Perrot, G.H., Neuffer, M.G., and Cone, K.C. (1992). The maize auxotrophic mutant orange pericarp is defective in duplicate genes for tryptophan synthase beta. Plant Cell 4, 711–719.PubMedCrossRefGoogle Scholar
  85. Wright, A.D., Sampson, M.B., Neuffer, M.G., Michalczuk, L., Slovin, J.P., and Cohen, J.D. (1991). Indole-3-Acetic Acid Biosynthesis in the Mutant Maize orange pericarp, a Tryptophan Auxotroph. Science 254, 998–1000.PubMedCrossRefGoogle Scholar
  86. Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thal-iana by miR156 and its target SPL3. Development 133, 3539–3547.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Agronomy, Curtis HallUniversity of MissouriColumbia
  2. 2.Dept of Botany and Plant PathologyPurdue UniversityWest Lafayette
  3. 3.Plant Gene Expression Center, USDA-ARS

Personalised recommendations