Skip to main content

The Future of Maize

  • Chapter
Handbook of Maize

In the near future, maize will continue to expand and diversify as a research model, as an industrial resource and as a crop for feed and fuel. The generation of the first maize genome sequence, followed by great improvements in genome sequencing technology, will allow the exceptional genetic diversity of maize to be described in multiple sequenced genomes. Maize will become a premier plant system for association genetics, and reverse genetic tools will continue to improve to a point where the genetic basis of phenotypic variation can be comprehensively defined. As a model for gene function in a complex genomic environment, maize will be without peer, leading to a uniquely deep understanding of the dynamic relationship between chromosome packaging, chromatin structure, epigenetics and the evolution of genetic regulatory circuits. As a crop, maize production will continue to consume more acreage worldwide, with mixed benefits and problems. The relentless narrowing of the commercial maize gene pool and its increased use in borderline environments will enhance the potential for both local and worldwide crop failures as the environment changes and when new pathogen races jet through a susceptible global germplasm. The recent preciptious shift to maize grain as an ethanol source is a mistake driven by politics and profit. One hopes that wisdom will prevail in the near future. Moreover, it is vital that the current maize-to-ethanol boom will not obscure the long-term value of maize as an industrial feedstock. Maize already has many uses, from adhesives to plastics, and food scientists will continue to expand this cornucopia. The great diversity, ease of genetic study, and talented research community in maize will ensure its continued place in the first line of model systems for plant biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balint-Kurti, P.J., M. Blanco, M. Millard, S. Duvick, J.B. Holland, M.J. Clements, R.N. Holley, M.L. Carson and M.M. Goodman (2006) Registration of 20 GEM maize breeding germplasm lines adapted to the southern USA.Crop Sci. 46:996–998.

    Article  Google Scholar 

  • Bennetzen, J.L. (2000) The many hues of plant heterochromatin.Genome Biol..1:107.1–107.4.

    Article  Google Scholar 

  • Bennetzen, J.L. and M. Freeling (1997) The unified grass genome: synergy in synteny.Genome Res. 7:301–307.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., M.-M. Qin, S. Ingels and A.H. Ellingboe (1988) Allele-specific andMutator-associated instability at theRp1disease resistance locus of maize.Nature 332:369–370.

    Article  Google Scholar 

  • Brink, R.A. (1958) Paramutation at the R locus in maize.Cold Spring Harbor Symp. Quant. Biol.23: 379–391.

    PubMed  CAS  Google Scholar 

  • Buckler, E.S., IV, J. Yu, J.B. Holland and M.D. McMullen (2008) Genome-wide complex trait dissection through nested association mapping.Genetics 178:539–551.

    Article  PubMed  Google Scholar 

  • Check, E. (2004) David versus Goliath.Nature 432:546–548.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R.M., E. Linton, J. Messing and J.F. Doebley (2004) Pattern of diversity in the genomic region near the maize domestication genetb1. Proc. Natl. Acad. Sci. USA 101:700–707.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, H.B. and B. McClintock (1931) A correlation of cytological and genetical crossing-over inZea mays.Proc. Natl. Acad. Sci. USA 17:492–497.

    Article  PubMed  CAS  Google Scholar 

  • Cui, X., R.P. Wise and P.S. Schnable (1996) Therf2nuclear restorer gene of male-sterile T-cytoplasm maize.Science 272:1334–1336.

    Article  PubMed  CAS  Google Scholar 

  • Dewey, R.E., C.S. Levings III and D.H. Timothy (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm.Cell 44:439–449.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, A.E., R.J. Pleven, B.T. Turner, A.D. Jones, M. O'Hare, and D.M. Kammen (2006) Ethanol can contribute to energy and environmental goals.Science 311:506–508.

    Article  PubMed  CAS  Google Scholar 

  • Johal, G.S. and S.P. Briggs (1992) Reductase activity encoded by theHM1disease resistance gene in maize.Science 258:985–987.

    Article  PubMed  CAS  Google Scholar 

  • Kermicle, J. L. (1970) Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission.Genetics 66:69–85.

    PubMed  Google Scholar 

  • Lawrence, C.J. and V. Walbot (2007) Translational genomics for bioenergy production from fuelstock grasses: Maize as a model species.Plant Cell 19:2091–2094.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E.A. and M. Tollenaar (2007) Physiological basis of successful breeding strategies for maize grain yield.Crop Sci. 47:S202–S215.

    Article  Google Scholar 

  • McClintock, B. (1931) Cytological observations of deficiencies involving known genes, translocations, and an inversion inZea mays.Missouri Agric. Exp. Station Res. Bull. 163:1–30.

    Google Scholar 

  • McClintock, B. (1934) The relation of a particular chromosomal element to the development of nucleoli inZea mays.Zeitschrift fur Zellforschung und Microskopische Anatomie 21:294–328.

    Article  Google Scholar 

  • McClintock, B. (1941) The stability of broken ends of chromosomes inZea mays.Genetics 26:234–282.

    PubMed  CAS  Google Scholar 

  • McClintock, B. (1948) Mutable loci in maize.Carnegie Inst.Wash. Yearbook 47:155–169.

    Google Scholar 

  • Nelson, O.E. (1962) Thewaxylocus in maize. I. Intralocus recombination frequency estimates by pollen and by conventional analysis.Genetics 47:737–742.

    PubMed  CAS  Google Scholar 

  • Neuffer, M.G., E.H. Coe and S.R. Wessler (1997)Mutants of Maize. Cold Spring Harbor Press, New York.

    Google Scholar 

  • Ohlrogge, J. and M.J. Chrispeels (2003) Plants as chemical and pharmaceutical factories. In M.J. Chrispeels and D.E. Sadava (eds.)Plants, Genes, and Crop Biotechnology, Jones and Bartlett Publ., Sudbury, MA, pp. 500–527.

    Google Scholar 

  • Petsko, G.A. (2006) The system is broken.Genome Biol. 7:105.

    Article  PubMed  Google Scholar 

  • Petsko, G.A. (2007) An idea whose time has gone.Genome Biol. 8:107.

    Article  PubMed  Google Scholar 

  • Phinney, B.O. (1956). Growth response of single-gene dwarf mutants in maize to gibberellic acid.Proc. Natl. Acad. Sci. USA 42:185–189.

    Article  PubMed  CAS  Google Scholar 

  • Pollak, L.M. and W. Salhuana (2001) The germplasm enhancement of maize (GEM) project: Private and public sector collaboration. In H.D. Cooper, C. Spillane and T. Hodgkin (eds.)Broadening the Genetic Base of Crop Production. CABI Publ., Wallingford, Oxon, United Kingdom, pp. 319–329.

    Google Scholar 

  • Ragauskas, A.J., C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick, Jr., J.P. Hallett, D.J. Leaks, C.L. Liotta, J.R. Mielenz, R. Murphy, R. Templer and T. Tschaplinski (2006) The path forward for biofuels and biomaterials.Science 311:484–489.

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel, P., A. Tikhonov, Y.-K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova and J.L. Bennetzen (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Searchinger, T., R. Heimlich, R. A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes, and T.-H. Yu (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change.Science 319:1238–1240.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L.G., S. Hake and A.W. Sylvester (1996) Thetangled-1mutation alters cell division orientations throughout maize leaf development without altering leaf shape.Development 122:481–489.

    PubMed  CAS  Google Scholar 

  • Stam, M., C. Belele, W. Ramakrishna, J. Dorweiler, J.L. Bennetzen and V.L. Chandler (2002) The regulatory regions required forB' paramutation and expression are located far upstream of the maizeb1transcribed sequences.Genetics 162:917–930.

    PubMed  CAS  Google Scholar 

  • Tatum, L.A. (1971) The southern corn leaf blight epidemic.Science 171:1113–1116.

    Article  PubMed  Google Scholar 

  • Vollbrecht, E., B. Veit, N. Sinha and S. Hake (1991) The developmental geneKnotted-1is a member of a maize homeobox gene family.Nature 350:241–243.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J. and E.S. Buckler (2006) Genetic association mapping and genome organization of maize.Curr. Opin. Biotech. 17:155–160.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Bennetzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Bennetzen, J.L. (2009). The Future of Maize. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_39

Download citation

Publish with us

Policies and ethics