Cell wall Biosynthetic Genes of Maize and their Potential for Bioenergy Production

  • Wilfred Vermerris

The maize cell wall is a complex composite of cellulose, hemicellulosic polysaccharides pectin, proteins, and lignin, and representative of the unique Type II cell wall architecture common among the Poales. The genetic control of cell wall biosynthesis in maize is being actively pursued, using a combination of comparative genomics, forward and reverse genetics, and expression profiling. This has revealed the existence of many multi-gene families with individual members that are differentially expressed. While the precise function of most of the individual genes is yet to be established, it is clear that the existence of multi-gene families enables the synthesis of cell walls that are tailored to the specific needs of individual tissues throughout the life of the plant. A better understanding of cell wall biosynthesis will be of great value for the development of dedicated bioenergy crops used for the production of cellulosic ethanol, especially if cell wall traits are combined with morphological variants with increased biomass production.


Corn Stover Secondary Cell Wall Cinnamyl Alcohol Dehydrogenase Cell Wall Composition Cellulosic Ethanol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adger, N., Aggarwal, P., Agrawla, S., Alcamo, J., Allali, A. et al. (2007) A report accepted by Working Group II of the International Panel on Climate Change.
  2. Appenzeller, L., Doblin, M., Barreiro, R., Wang, H., Niu, X., Kollipara, K., Carrigan, L., Tomes, D., Chapman, M., and K. S. Dhugga, (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11: 287–299.CrossRefGoogle Scholar
  3. Arioli, T., Peng, L., Betzner, A. S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Höfte, H.Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J., and R. E.Williamson, (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720.PubMedCrossRefGoogle Scholar
  4. Barrière, Y., Ralph, J., Méchin, V., Guillaumie, S., Grabber, J. H., Argillier, O., Chabbert, B., and C. Lapierre, (2004) Genetic and molecular baisis of grass cell wall biosynthesis and degradability. II. Lessons from brown midrib mutants, C. R. Biologies 327:847–860.PubMedCrossRefGoogle Scholar
  5. Benfey, P. N., Linstead, P. J., Roberts, K., Schiefelbein, J. W., Hauser, M. T., and R. A. Aeschbacher, (1993), Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119: 57–70.PubMedGoogle Scholar
  6. Boon, J.J. (1989) An introduction to pyrolysis mass spectrometry of lignocellulosic material: case studies of barley straw, corn stem and Agropyron. In Physico-chemical characterization of plant residues for industrial and feed use (A. Chesson and E. R. Ørskov, eds.) Elsevier Applied Science, London, pp. 25–49.Google Scholar
  7. Brady, S. M., Song, S., Dhugga, K. S., Rafalski, J. A., and P. N. Benfey, (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol. 143: 172–187.PubMedCrossRefGoogle Scholar
  8. Brinkmann, K., Blaschke, L., and A. Polle, (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J. Chem. Ecol. 28: 2483–2501PubMedCrossRefGoogle Scholar
  9. Brown, D. M., Zeef, L. A. H., Ellis, J., Goodacre, R., and S. R. Turner (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profilingand reverse genetics. Plant Cell 17: 2281–2295.PubMedCrossRefGoogle Scholar
  10. Brown, Jr., R. M. (2004) Cellulose structure and biosynthesis: What is in store for the 21st century? J. Polymer Sci. 42: 487–495.Google Scholar
  11. Burn, J. E., Hocart, C. H., Birch, R. J., Cork, A. C., and Williamson, R. E. (2002) Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol. 129: 797–807.PubMedCrossRefGoogle Scholar
  12. Burnham, C. R. (1947) Untitled. Maize Genet. Coop. News Lett. 21: 36–37.Google Scholar
  13. Burnham, C. R., and R. A. Brink (1932) Linkage relations of a second brown midrib gene (bm2) in maize, J. Am. Soc. Agron. 24: 960–963.Google Scholar
  14. Burton, R. A., Wilson, S. M., Hrmova, M., Harvey, A. J., Shirley, N. J., Medhurst, A., Stone, B. A., Newbigin, E. J., Bacic, A., and G. B. Fincher (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-d-glucans. Science 311: 1940–1942.PubMedCrossRefGoogle Scholar
  15. Carpita, N. C. (1996) Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 445–476.PubMedCrossRefGoogle Scholar
  16. Carpita, N. C., and D. M. Gibeaut, (1993) Structural models of the primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the wall during growth. Plant J. 3: 1–30.PubMedCrossRefGoogle Scholar
  17. Carpita, N. C. and M. C. McCann (2000) The cell wall. In: Biochemistry and Molecular Biology ofPlants (B. B. Buchanan, W. Gruissem and R. L. Jones, eds.), J. Wiley and Sons, Somerset, NJ,pp. 52–108.Google Scholar
  18. Carpita, N. C, Tierney, M., and M. Campbell (2001) Molecular biology of the plant cell wall: searchingfor the genes that define structure, architecture and dynamics. Plant Mol. Biol. 47: 1–5.PubMedCrossRefGoogle Scholar
  19. Carpita, N. C., and D. Whittern (1986) A highly substituted glucuronoarabinoxylan from developingmaize coleoptiles. Carbohydr. Res. 146: 129–140.CrossRefGoogle Scholar
  20. Cassab, G. I. (1998) Plant cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 281–309.PubMedCrossRefGoogle Scholar
  21. Rafalski (2006) Brittle stalk2 encodes a putative glycosyl-phosphatidyl-inositol anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls. Planta 224: 1174–1184.PubMedCrossRefGoogle Scholar
  22. Cocuron, J. C., Lerouxel, O., Drakakai, G., Alonso, A. P., Liepman, A. H., Keegstra, K., Raikhel, N.,and C. G. Wilkerson, (2007) A gene from the cellulose synthase-like C family encodes a β-1,4glucan synthase. Proc. Natl. Acad. Sci. USA 104: 8550–8555.PubMedCrossRefGoogle Scholar
  23. Colasanti, J., and V. Sundaresan (2000) ‘Florigen’ enters the molecular age: long-distance signals that cause the plant to flower. Trends Biochem. Sci. 25: 236–240.PubMedCrossRefGoogle Scholar
  24. Colasanti, J., Tremblay, R., Wong, A. Y., Coneva, V., Kozaki, A., and B. K. Mable (2006) The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7:1–17.CrossRefGoogle Scholar
  25. Colasanti, J., Yuan, Z., and V. Sundaresan, (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93: 593–603.PubMedCrossRefGoogle Scholar
  26. Cosgrove, D. J., Bedinger, P., and D. M. Durachko (1997) Group 1 allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. USA 94: 6559–6564.PubMedCrossRefGoogle Scholar
  27. The growing world of expansins. Plant Cell Physiol. 43: 1436–14444.PubMedCrossRefGoogle Scholar
  28. Cosgrove, D. J., and Z. C. Li, (1993) Role of expansin in cell enlargement of oat coleoptiles. Plant Physiol. 103: 1321–1328.PubMedGoogle Scholar
  29. Cutler S., and C. R. Somerville (1997) Cellulose synthase: cloning in silico. Curr. Biol. 7: R108–R111.PubMedCrossRefGoogle Scholar
  30. Davin, L. B., and N. G. Lewis (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 123: 453–461.PubMedCrossRefGoogle Scholar
  31. Davin, L. B. and N. G. Lewis (2005a) Dirigent phenoxy radical coupling: advances and challenges. Curr. Opin. Biotechnol. 16: 398–406.CrossRefGoogle Scholar
  32. Davin, B. L., and N. G. Lewis (2005b) Lignin primary structures and dirigent sites. Curr. Opin. Biotechnol. 16: 407–415.CrossRefGoogle Scholar
  33. Delmer, D. P. (1999) Cellulose biosynthesis: Exciting times for a difficult field of study. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 245–276CrossRefGoogle Scholar
  34. Obeso, M., Caparro-Ruiz, D., Vignols, F., Puigdomènech, P., and J. Rigau (2003) Characterisation of maize peroxidases having differential patterns of mRNA accumulation in relation to lignifying tissues. Gene 309: 23–33.PubMedCrossRefGoogle Scholar
  35. Dhugga, K. S. (2001) Building the wall: genes and enzyme complexes for polysaccharide synthases. Curr. Opin. Plan.t Biol. 4: 488–493.CrossRefGoogle Scholar
  36. Dhugga, K. S., Barreiro, R., Whitten, B., Stecca K., Hazerbroek, J., Randhwa, G.S., Dolan, M., Kinney, A.J., Tomes, D., Nichols, S., and P. Anderson (2004) Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 303: 363–366.PubMedCrossRefGoogle Scholar
  37. Dijak, M., Modarres, A. M., Hamilton, R. I., Dwyer, L. M., Stewart, D. W, Mather, D. E., and D. L. Smith (1999) Leafy reduced-stature maize hybrids for short-season environments. Crop Sci. 39: 1106–1110.Google Scholar
  38. Ding, S. Y. and M. E. Himmel (2006) The maize primary cell wall microfibril: A new model derived from direct visualization. J. Agric. Food Chem. 54: 597–606.PubMedCrossRefGoogle Scholar
  39. Doblin, S., Kurek, I., Jacob-Wilk, D. and D. P. Delmer (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 43: 1407–1420.PubMedCrossRefGoogle Scholar
  40. Emerson, R. A., Beadle, G. W, and A. C. F raser (1935) A summary of linkage studies in maize. Cornell Univ. Agric. Exp. Stn. Memoir 180: 1–83.Google Scholar
  41. Escovar-Kousen, J.M., D. Wilson, and D. Irwin (2004) Integration of computer modeling and initial studies of site-directed mutagenesis to improve cellulose activity on Cel9A from Thermobifida fusca. Appl. Biochem. Biotechnol. 113–116: 287–297.PubMedCrossRefGoogle Scholar
  42. Evans, R. J., and T. A. Milne, (1987) Molecular characterization of the pyrolysis of biomass. Fundamentals. Energy & Fuels 1: 123–137.CrossRefGoogle Scholar
  43. Eyster, W H. (1926) Chromosome VIII in maize.Science 64: 22.PubMedCrossRefGoogle Scholar
  44. Fagard, M., Desnos, T, Desprez, T, Goubet, F, Refregier, G, Mouille, G, McCann, M., Rayon, C, Vernhettes, S., and H. Höfte, (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12: 2409–2423.PubMedCrossRefGoogle Scholar
  45. Faik, A., Price, N.J., Raikhel, N.V., and K. Keegstra. (2002) An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. Proc. Natl. Acad. Sci. USA 99: 7797–7802.PubMedCrossRefGoogle Scholar
  46. Favery, B., Ryan, E., Foreman, J., Linstead, P., Boudonck, K., Steer, M., Shaw, P., and L. Dolan (2001) KOJAK encodes a cellulose synthase-like protein required for root haircell morphogenesis in Arabidopsis. Genes Dev. 15: 79–89.PubMedCrossRefGoogle Scholar
  47. Fontaine, A.-S., Bout, S., Barrière, Y., and W. Vermerris (2003) Variation in cell wall composition among forage maize inbred lines and its impact on digestibility, Analysis of neutral detergent fiber composition by pyrolysis-gas chromatography-mass spectrometry. J. Agric. Food Chem. 51: 8080–8087.PubMedCrossRefGoogle Scholar
  48. Franke, R., Hemm, M. R., Denault, J. W., Ruegger, M. O., Humphreys, J. M., and C. Chapple (2002a) Changes in the secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J. 30: 47–59.CrossRefGoogle Scholar
  49. Franke, R., Humphreys, J. M., Hemm, M. R., Denault, J. W., Ruegger, M. O., Cusumano, J. C., and C. Chapple (2002b) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpro-panoid metabolism. Plant J. 30: 33–45.CrossRefGoogle Scholar
  50. Frey, T., Coors, J. G., Shaver, R. D., Lauer, J. G., Eilert, D. T., and P. J. Flannery (2004) Selection for silage quality in the Wisconsin quality synthetic population and related maize populations. Crop Sci. 44: 1200–1208.Google Scholar
  51. Guillaumie, S, San-Clemente, H., Deswarte, C., Martinez, Y., Lapierre, C., Murgneux, A., Barrière, Y., Pichon, M., and D. Goffner (2007a) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol.143: 339–363.CrossRefGoogle Scholar
  52. Guillaumie, S., Pichon, M., Martinant, J.P., Bosio, M., Goffner, D., and Y. Barrière (2007b) Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta 226: 235–250.CrossRefGoogle Scholar
  53. Guillet-Claude, C., Birolleau-Touchard, C., Manicacci, D., Rogowsky, P. M., Rigau, J., Murigneux, A., Martinant, J. P., and Y. Barrière (2004) Nucleotide diversity of the ZmPox3 maize peroxi-dase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genetics 5: 1–11.CrossRefGoogle Scholar
  54. Halpin, C., Holt, K., Chojecki, J., Oliver, D., Chabbert, B., Monties, B., Edwards, K., Barakate, A., and G. A. Foxon (1998) Brown-midrib maize (bm1) - a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J. 14 : 545–553.PubMedCrossRefGoogle Scholar
  55. Hamann, T., Osborne, E., Youngs, H.L., Misson, J., Nussaume, L., and C. Somerville (2004) Global expression analysis of CESA and CSL genes in Arabidopsis. Cellulose 11: 279–286.CrossRefGoogle Scholar
  56. Hatfield, R., and W. Vermerris (2001) Lignin formation in plants: the dilemma of linkage specificity.Plant Physiol. 126: 1351–1357.PubMedCrossRefGoogle Scholar
  57. Hatfield, R. D., Ralph, J., and J. H. Grabber (1998) Cell wall cross-linking by ferulates and diferulates in grasses. J. Sci. Food Agric. 79: 403–407.CrossRefGoogle Scholar
  58. Hazen, S. P., Scott-Craig, J.S., and J.D. Walton (2002) Cellulose synthase-like genes of rice. Plant Physiol. 128: 336–340.PubMedCrossRefGoogle Scholar
  59. Ho, N.W.Y., Chen, Z., and A.P. Brainard (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64: 1852–1859.PubMedGoogle Scholar
  60. Holland, N., Holland, D., Helentjaris, T., Dhugga, K. S., Xoconostle-Cazares, B., and D. P. Delmer, (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol. 123: 1313–1323.PubMedCrossRefGoogle Scholar
  61. Humphreys, J. M., and C. Chapple (2002) Rewriting the lignin road map. Curr. Opin. Plant Biol.5: 224–229.PubMedCrossRefGoogle Scholar
  62. Iiyama, K., Lam, T. B. T., and B. A. Stone (1990) Phenolic acid bridges between polysaccharides and lignin in wheat intemodes. Phytochem. 29: 733–737.CrossRefGoogle Scholar
  63. Iiyama, K., Lam, T. B., and B. A. Stone (1994) Covalent cross-links in the cell wall. Plant Physiol. 104: 315–320.PubMedGoogle Scholar
  64. Jorgenson, L. R. (1931) Brown midrib and its linkage relations. J. Am. Soc. Agr. 23 : 549–557.Google Scholar
  65. Jung, H.G., D.R. Mertens, D.R. Buxton (1998) Forage quality variation among maize inbreds: in vitro fiber digestion kinetics and prediction with NIRS. Crop Sci. 38: 205–210.Google Scholar
  66. Kim, C. M., Park, S. H., Il J. B., Park, S. H., Piao, H. L., Eun, M. Y., Dolan, L., and C. D. Han (2007) OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol. 143: 1220–1230.PubMedCrossRefGoogle Scholar
  67. Kozaki, A., Kake, S., and J. Colasanti (2004) The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucl. Acid Res. 32: 1710–1720.CrossRefGoogle Scholar
  68. Kuc, J., and O. Nelson (1964) The abnormal lignins produced by the brown-midrib mutants of maize, I. The brown-midrib-1 mutant. Arch. Biochem. Biophys. 105: 103–113.PubMedCrossRefGoogle Scholar
  69. Kuc, J., Nelson, O. E., and P. Flanagan (1968) Degradation of abnormal lignins in the brown-midrib mutants and double mutants of maize. Phytochem. 7: 1435–1436.CrossRefGoogle Scholar
  70. Lapierre, C., Monties, B., and Rolando, C. (1988) Mise en évidence d' un nouveau type d' unité constitutive dans les lignines d' un mutant de maís bm3. C. R. Acad. Sci. Paris, Ser. III 307: 723–728.Google Scholar
  71. Li, L. C., Bedinger, P. A., Volk, C., Jones, D., and D. J.Cosgrove (2003) Purification and characterization of four β-expansins (Zea m 1 isoforms) from maize pollen. Plant Physiol. 132: 2073–2085.PubMedCrossRefGoogle Scholar
  72. Liepman, A. H., Wilkerson, C. G., and K. Keegstra (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc.Natl. Acad. Sci. USA 102: 2221–2226.PubMedCrossRefGoogle Scholar
  73. Lim, E.-.K, Li, Y., Parr, A., Jackson, R., Ashford, D. A., and D. J. Bowles (2001) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis, J. Biol. Chem. 276: 4344–4349.PubMedCrossRefGoogle Scholar
  74. Lu, F. and J. Ralph (1999) Detection and determination of p-coumaroylated units in lignins. J. Agric. Food Chem 47: 1988–1992.PubMedCrossRefGoogle Scholar
  75. Marita, J., Vermerris, W., Ralph, J., and R. D. Hatfield (2003) Variations in the cell wall composition of maize brown midrib mutants. J. Agric. Food Chem. 51: 1313–1321.PubMedCrossRefGoogle Scholar
  76. McAloon, A., Taylor, F., Yee, W., Ibsen, K., and Wooley, R. (2000) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstock. National Renewable Energy Laboratory, Golden, CO. pp. 44. ( Scholar
  77. McLaughlin, S. B. and L. A. Kszos, (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28: 515–535.CrossRefGoogle Scholar
  78. Modarres, A. M., Hamilton, R. I., Dwyer, L. M., Stewart, D. W., Dijak, M., and D. L. Smith (1997a) Leafy reduced-stature maize for short-season environments: Yield and yield components of inbred lines. Euphytica 97: 129–138.CrossRefGoogle Scholar
  79. Modarres, A. M., Hamilton, R. I., Dwyer, L. M., Stewart, D. W., Mather, D. E., Dijak, M., and D. L. Smith (1997b) Leafy reduced-stature maize for short-season environments: morphological aspects of inbred lines. Euphytica 96: 301–309.CrossRefGoogle Scholar
  80. Morrison, T. A., and D. R. Buxton (1993) Activity of phenylalanine ammonia-lyase, tyrosine ammo-nia-lyase, and cinnamyl alcohol dehydrogenase in the maize stalk. Crop Sci. 33: 1264–1268.Google Scholar
  81. Morrow, S.L., Mascia, P., Self, K.A., and M. Altschuler (1997). Molecular characterization of a brown midrib3 deletion mutation in maize. Mol. Breeding 3: 351–357.CrossRefGoogle Scholar
  82. Mosier, N., R. Hendrickson, N. Ho, M. Sedlak, and M.R. Ladisch (2005a) Optimization of pH controlled liquid hot water pretreatment of corn stover. Biores. Technol. 96: 1986–1993.CrossRefGoogle Scholar
  83. Mosier, N., C. Wyman, B. Dale, R. Elander, Y.Y.Lee, M. Holtzapple, and M.R. Ladisch (2005b) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores. Technol. 96: 673–686.CrossRefGoogle Scholar
  84. Mueller, S. C. and M. Brown, Jr. (1980) Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J. Cell Biol. 84: 315–326.CrossRefGoogle Scholar
  85. Myton, K. E., and S. C. Fry, (1994) Intraprotoplasmic feruoylation of arabinoxylans in Festuca arundinacea cell cultures. Planta 193: 326–330.Google Scholar
  86. Nair, R. B., Bastress, K. L., Ruegger, M. O., Denault, J. W., and C. Chapple (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydroge- nase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16: 544–554.PubMedCrossRefGoogle Scholar
  87. Pear, J. R., Kawagoe, Y., Schreckengost, W. E., Delmer, D. P., and D. M. Stalker (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93: 12637–12642.PubMedCrossRefGoogle Scholar
  88. Pedersen, J. F., Vogel, K. P., and D. L. Funnell (2005) Impact of reduced lignin on plant fitness. Crop Sci. 45: 812–819.CrossRefGoogle Scholar
  89. Perrin, R. M. (2001) Cellulose: How many cellulose synthases to make a plant? Curr. Biol. 11: R213–R216.PubMedCrossRefGoogle Scholar
  90. Provan, G. J., Scobbie, L., and A. Chesson (1997) Characterisation of lignin from CAD and OMT deficient Bm mutants of maize. J. Sci. Food Agric. 73: 133–142.CrossRefGoogle Scholar
  91. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick Jr., W. J., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., and T. Tschaplinski (2006) The path forward for biofuels and biomaterials. Science 311: 484–489.PubMedCrossRefGoogle Scholar
  92. Ralph, J., Bunzel, M., Marita, J. M., Hatfield, R. D., Lu, F., Kim, H., Schatz, P. F., Grabber, J. H., and H. Steinhart (2004b) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem. Rev. 3: 79–96.CrossRefGoogle Scholar
  93. Ralph, J., and R. D. Hatfield, (1991) Pyrolysis-GC-MS characterization of forage materials. J. Agr. Food Chem. 39: 1426–1437.CrossRefGoogle Scholar
  94. Ralph, J., Hatfield, R. D., Quideau, S., Helm, R. F., Grabber, J. H., and H.-J. G. Jung (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J. Am. Chem. Soc. 116: 9448–9456.CrossRefGoogle Scholar
  95. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P. F., Marita, J. M., Hatfield, R. D., Ralph, S. A., Christensen, J. H., and W. Boerjan (2004a) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. 3: 29–60.CrossRefGoogle Scholar
  96. Reiter W.-D., Chapple, C. C. S., and C. R. Somerville (1993) Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261: 1032–1035.PubMedCrossRefGoogle Scholar
  97. Richmond, T. A. and C. R. Somerville (2000) The cellulose synthase superfamily. Plant Physiol. 124: 495–498.PubMedCrossRefGoogle Scholar
  98. Richmond T. A. and C. R. Somerville (2001). Integrative approaches to determining Csl function. Plant Physiol. 47: 131–143.Google Scholar
  99. Roesler, J., Krekel, F., Amrhein, N., and Schmid, J. (1997) Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity, Plant Physiol. 113: 175–179.CrossRefGoogle Scholar
  100. Roudier, F., Fernandez, A. G., Fujita, M., Himmelspach, R., Borner, G. H. H., Schindelman, G., Song, S., Baskin, T. I., Dupree, P., Wasteneys, G. O. et al. (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositolanchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17: 1749–1763.PubMedCrossRefGoogle Scholar
  101. Roudier, F., Schindelman, G., DeSalle, R., and P. N. Benfey (2002) The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiol. 130: 538–548.PubMedCrossRefGoogle Scholar
  102. Saxena, I. M. and R. M. Brown, Jr. (2005) Cellulose biosynthesis: Current views and evolving concepts. Ann. Bot. 96: 9–21.PubMedCrossRefGoogle Scholar
  103. Saxena I. M., Lin F. C., and R. M. Brown, Jr. (1990) Cloning and sequencing of the cellulose synthase catalytic sub-unit gene of Acetobacter xylinum. Plant Mol. Biol. 15: 673–683.PubMedCrossRefGoogle Scholar
  104. Scheller, H. V., Jensen, J. K., Sørensen, S. Ø., Harholt, J., and N. Geshi (2007) Biosynthesis of pectin. Physiol. Plant. 129: 283–295.CrossRefGoogle Scholar
  105. Schoch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann, P., and D. Werck-Reichhart (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276: 36566–36574.PubMedCrossRefGoogle Scholar
  106. Séné, C. F. B., McCann, M., Wilson, R. H., and R. Grinter (1994) Fourier-transform Raman and Fourier-transform infrared spectroscopy. An investigation of five higher plant cell walls and their components. Plant Physiol. 106: 1623–1631.PubMedGoogle Scholar
  107. Settles, A. M., Latshaw, S., and McCarty, D. R. (2004) Molecular analysis of high-copy insertion sites in maize. Nucl. Acids Res. 32: e54.PubMedCrossRefGoogle Scholar
  108. Sewell, M. M., Davis, M. F., Tuskan, G. A., Wheeler, N. C., Elam, C. C., Bassoni, D. L., and D. B. Neale (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). Theor. Appl. Genet. 104: 214–222.PubMedCrossRefGoogle Scholar
  109. Shaver, D. L. (1983) Genetics and breeding of maize with extra leaves above the ear. Proc. Annu. Corn Sorghum Res. Conf. 38: 161–180.Google Scholar
  110. Shaver, D. L. (1967) Perennial maize. J. Heredity 58: 270–273.Google Scholar
  111. Shi, C., Koch, G., Ouzunova, M., Wenzel, G., Zein, I., and T. Lübberstedt (2006) Comparison of maize brown-midrib isogenic lines by cellular UV-microspectrophotometry and comparative transcript profiling. Plant Mol. Biol. 62: 697–714.PubMedCrossRefGoogle Scholar
  112. Shinners, K. J., Binversie, B. N., Muck, R. E., and P. J. Weimer (2007) Comparison of wet and dry corn stover harvest and storage. Biomass Bioenergy 31, 211–221.CrossRefGoogle Scholar
  113. Sindhu, A., Langewisch, T., Olek, A., Multani, D. S., McCann, M. C., Vermerris, W., Carpita, N. C., and G. Johal (2007) Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol. (in review).Google Scholar
  114. Somerville, C. R. (2006) Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22: 53–78.PubMedCrossRefGoogle Scholar
  115. Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Parezdez, A., Persson, S., Raab, T., Vorwerk, S., and H. Youngs (2004) Towards a systems approach to understanding plant cell walls. Science 306: 2206–2211.PubMedCrossRefGoogle Scholar
  116. Suzuki, S., Lam, T. B. T., and K. Iiyama (1997) 5-Hydroxyguaiacyl nuclei as aromatic constituents of native lignin. Phytochem. 46: 695–700.CrossRefGoogle Scholar
  117. Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K., and Turner, S. R. (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl. Acad. Sci. USA 100: 1450–1455.PubMedCrossRefGoogle Scholar
  118. Taylor N. G., Laurie, S., and S. R. Turner (2000) Multiple cellulose synthesis catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12: 2529–2539.PubMedCrossRefGoogle Scholar
  119. Taylor, N. G., Scheible, W. R., Cutler, S., Somerville, C. R., and S. R. Turner, (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11: 769–779.PubMedCrossRefGoogle Scholar
  120. Tobias C. M., and E. K. Chow (2005) Structure of the cinnamyl alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220: 678–688.PubMedCrossRefGoogle Scholar
  121. Tracy, W. F. and H. L. Everett (1982) Variable penetrance and expressivity of grassy tillers, gt. Maize Genet. Coop. News Lett. 56: 77–78.Google Scholar
  122. USDA and U.S. DOE (2005) Biomass as feedstocks for a bioenergy and bioproducts industry: the technical feasibility of producing a billion-ton annual supply. (
  123. U.S. DOE. (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095, U.S. Department of Energy Office of Science and Office of Efficiency and Renewable Energy. (
  124. Vergara, C. E. and N. C. Carpita (2001) β-d-Glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1→3),(1→4) β-d-glucan synthase. Plant Mol. Biol. 47: 145–160.PubMedCrossRefGoogle Scholar
  125. Vermerris, W., and J. J. Boon (2001) Tissue-specific patterns of lignification are disturbed in the brown midrib2 mutant of maize (Zea mays L.). J. Agric. Food Chem. 49: 721–728.PubMedCrossRefGoogle Scholar
  126. Vermerris, W., and L. M. McIntyre (1999) Time to flowering in brown midrib mutants of maize: an alternative approach to the analysis of developmental traits. Heredity 83: 171–178.PubMedCrossRefGoogle Scholar
  127. Vermerris, W. and Nicholson, R. L. (2006) Phenolic Compound Biochemistry. Springer, New York, 276 pp.Google Scholar
  128. Vermerris, W., Saballos, A., Ejeta, G., Mosier, N. S., Ladisch, M. R., and N. C. Carpita, (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci. 47: S142–S153.CrossRefGoogle Scholar
  129. Vermerris, W., Thompson, K. J., and L. M. McIntyre (2002a) The maize Brown midrib1 locus affects cell wall composition and plant development in a dose-dependent manner. Heredity 88: 450–457.CrossRefGoogle Scholar
  130. Vermerris, W., Thompson, K. J., McIntyre, L. M., and J. D. Axtell (2002b) Evidence for an evolutionary conserved interaction between cell wall biogenesis and plant development in maize and sorghum. BMC Evolutionary Biology 2
  131. Vignols, F., Rigau, J., Torres, M. A., Capellades, M., and P. Puigdomènech (1995) The brownmidrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyl transferase. Plant Cell 7: 407–416.PubMedCrossRefGoogle Scholar
  132. Wang, X., Cnops, G., Vanderhaeghen, R., Block, S. D., Van Montagu, M., and M. Van Lijsebettens (2001) AtCSLD3M, a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiol. 126: 575–586.PubMedCrossRefGoogle Scholar
  133. Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., and E. M. Meyerowitz, (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859.PubMedCrossRefGoogle Scholar
  134. Weimer, P. J., Dien, B. S., Springer, T. L., and K. P. Vogel, (2005) In vitro gas production as a surrogate measure of the fermentability of cellulosic biomass to ethanol. Appl. Microbiol. Biotechnol. 67: 52–58.PubMedCrossRefGoogle Scholar
  135. Wilhelm, W. W., Johnson, J. M. F., Hatfield, J. L., Voorhees, W. B., and D. R. Linden (2004) Crop and soil productivity response to corn residue removal: A literature review. Agronomy J. 96: 1–17.CrossRefGoogle Scholar
  136. Wu, Y., Sharp, R. E., Durachko, D. M., and D. J. Cosgrove (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol. 111: 765–772.PubMedGoogle Scholar
  137. Yang, B., and C. E. Wyman (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotech. Bioeng. 86: 88–95.CrossRefGoogle Scholar
  138. Yennawar, N. H., Li, L. C., Dudzinski, D. M., Tabuchi, A., and D. J. Cosgrove (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc. Natl. Acad. Sci. USA 103: 14664–14671.PubMedCrossRefGoogle Scholar
  139. Yong, W., Link, B., O'Malley, R., Tewari, J., Hunter, C. T., Lu, C. A., Li, X., Bleecker, A. B., Koch, K. E., McCann, M. C., McCarty, D. R., Staiger, C., Thomas, S. R., Vermerris, W., and N. C. Carpita (2005) Genomics of plant cell wall biogenesis. Planta 221: 747–751.PubMedCrossRefGoogle Scholar
  140. Zhu, J., Chen, S., Alvarez, S., Asirvatham, V. S., Schachtman, D. P., Wu, Y., and R. E. Sharp, (2006). Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol. 140: 313–325.Google Scholar
  141. Zugenmaier, P. (2001) Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26: 1341–1417.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Wilfred Vermerris
    • 1
    • 2
  1. 1.University of Florida Genetics Institute and Agronomy departmentGainesville
  2. 2.Department of Agricultural & Biological Engineering and Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations