The Cytochrome P450 Superfamily of Monooxygenases

  • Alfons Gierl

Cytochrome P450 monooxygenases (P450) are encoded by a superfamily of genes that is ubiquitously present in bacteria, animals and plants. Plants have many different P450s and use them for biosynthesis and for detoxification. Plant P450s function in primary and secondary metabolism and are involved in biosynthesis of hormons and signalling molecules.


P450 Gene Jerusalem Artichoke P450 Reductase Allene Oxide Cytochrome P450 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bate NJ, S. Sivasankar, C. Moxon, J.M. Riley, J.E. Thompson and S.J. Rothstein (1998) Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, a cytochrome P-450 that is wound inducible. Plant Physiol. 117:1393–400.PubMedCrossRefGoogle Scholar
  2. Benveniste I., J.-P. Salün and F. Durst (1977) Wound-induced cinnamic acid hydroxylase in Jerusalem artichoke tuber. Phytochem 16:69–73.CrossRefGoogle Scholar
  3. Benveniste I., N. Tijet, F. Adas, G. Philipps, J.P. Salaun and F Durst (1998) CYP86A1 from Arabidopsis thaliana encodes a cytochrome P450-dependent fatty acid omega-hydroxylase. Biochem Biophys Res Commun. 243:688–93.PubMedCrossRefGoogle Scholar
  4. Bernhardt R. (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol. 124:128–145.PubMedCrossRefGoogle Scholar
  5. Bishop G.J., T. Nomura, T. Yokota, K. Harrison, T. Noguchi, S. Fujioka, S. Takatsuto, J.D. Jones and Y. Kamiya (1999) The tomato DWARF enzyme catalyzes C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA. 96:1761–1766.PubMedCrossRefGoogle Scholar
  6. Bozak K.R., H. Yu, R. Sirevåg and R.E. Christoffersen (1990) Sequence analysis of ripening-related cytochrome P-450 cDNAs from avocado fruit. Proc Natl Acad Sci U S A. 87:3904–3908.PubMedCrossRefGoogle Scholar
  7. Croteau R., R.E.B. Ketchum, R.M. Long, R. Kaspera and M.R. Wildung (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97CrossRefGoogle Scholar
  8. Dejong J.M., Y. Liu, A.P. Bollon, R.M. Long, S. Jennewein, D. Williams and R.B. Croteau RB. (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng. 93:212–224.PubMedCrossRefGoogle Scholar
  9. Denisov I.G., T.M. Makris, S.G. Sligar and I. Schlichting (2005) Structure and chemistry of cytochrome P450. Chem Rev. 105:2253–2277.PubMedCrossRefGoogle Scholar
  10. Duan H. and M.A. Schuler (2006) Heterologous expression and strategies for encapsulation of membrane-localized plant P450s. Phytochem Rev 5:507–523.CrossRefGoogle Scholar
  11. Frey M., P. Chomet, E. Glawischnig, C. Stettner, S. Grün, A. Winklmair, W. Eisenreich, A. Bacher, R.B. Meeley, S.P. Briggs, K. Simcox and A. Gierl (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277:696–699.PubMedCrossRefGoogle Scholar
  12. Hannemann F., A. Bichet, K.M. Ewen and R. Bernhardt R. (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta. 1770:330–344.PubMedGoogle Scholar
  13. Helliwell C.A., C.C. Sheldon, M.R. Olive, A.R. Walker, J.A. Zeevaart, W.J. Peacock and E.S. Dennis (1998) Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc Natl Acad Sci U S A. 95:9019–9024.PubMedCrossRefGoogle Scholar
  14. Helliwell C.A., P.M. Chandler, A. Poole, E.S. Dennis and W.J. Peacock (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci U S A 98:2065–2070.PubMedCrossRefGoogle Scholar
  15. Ketchum R.E., L. Wherland and R.B. Croteau (2007) Stable transformation and long-term maintenance of transgenic Taxus cell suspension cultures. Plant Cell Rep. 26:1025–1033.PubMedCrossRefGoogle Scholar
  16. Kim J. and D. DellaPenna (2006) Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci U S A. 103:3474–3479.PubMedCrossRefGoogle Scholar
  17. Laudert D., U. Pfannschmidt, F. Lottspeich, H. Hollander-Czytko and E.W. Weiler. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol Biol. 31:323–335.Google Scholar
  18. Li X., M.A. Schuler and M.R. Berenbaum MR. (2002) Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419:712–5.PubMedCrossRefGoogle Scholar
  19. Mizutani M, D. Ohta and R. Sato (1993) Purification and characterization of a cytochrome P450 (truns-cinnamic acid 4-hydroxylase) from etiolated mung bean seedlings. Plant Cell Physiol 34:481–488.Google Scholar
  20. Morant M., S. Bak, B.L.Moller and D. Werck-Reichhart (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol. 14:151–162.PubMedCrossRefGoogle Scholar
  21. Morikawa T.,M. Mizutani and D. Ohta (2006) Cytochrome P450 subfamily CYP710A genes encode sterol C-22 desaturase in plants. Biochem Soc Trans. 34:1202–1205.PubMedCrossRefGoogle Scholar
  22. Nelson D.R. (2004) Cytochrome P450 nomenclature. Methods Mol Biol. 320:1–10.Google Scholar
  23. Nelson D.R., M.A. Schuler, S.M. Paquette, D. Werck-Reichhart and S. Bak (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 135:756–772.PubMedCrossRefGoogle Scholar
  24. Nelson D.R. (2006) Plant cytochrome P450s from moss to poplar. Phytochem Rev 5:193–204.CrossRefGoogle Scholar
  25. Persans M.W., J. Wang, M.A. Schuler (2001) Characterization of maize cytochrome P450 monooxy-genases induced in response to safeners and bacterial pathogens. Plant Physiol. 125:1126–38.PubMedCrossRefGoogle Scholar
  26. Saito S., N. Hirai, C. Matsumoto, H. Ohigashi, D. Ohta, K. Sakata and M. Mizutani M. (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 134:1439–1449.PubMedCrossRefGoogle Scholar
  27. Schoch G., S. Goepfert, M. Morant, A. Hehn, D. Meyer, P. Ullmann and D. Werck-Reichhart (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem. 276:36566–36574.PubMedCrossRefGoogle Scholar
  28. Schuler, M.A., H. Duan, M. Bilgin and S. Ali (2006) Arabidopsis cytochrome P450s through the looking glass: a window on plant biochemistry. Phytochem Rev 5:205–237.CrossRefGoogle Scholar
  29. Sicker D, M. Frey, M. Schulzand A. Gierl (2000) Role of natural benzoxazinones in the survival strategy of plants. Int Rev Cytol. 198:319–46.PubMedCrossRefGoogle Scholar
  30. Shimada Y., H. Goda, A. Nakamura, S. Takatsuto, S. Fujioka and S. Yoshida (2003) Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol. 131:287–97.PubMedCrossRefGoogle Scholar
  31. Srere P.A. (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56:89–124PubMedCrossRefGoogle Scholar
  32. Szekeres M., K. Nemeth, Z. Koncz-Kalman, J. Mathur, A. Kauschmann, T. Altmann, G.P. Redei, F. Nagy, J. Schell and C. Koncz C. (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–82.PubMedCrossRefGoogle Scholar
  33. Takei K., T. Yamaya and H. Sakakibara H. (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J Biol Chem. 279:41866–41872.PubMedCrossRefGoogle Scholar
  34. Tattersall D.B., S. Bak, P.R. Jones, C.E. Olsen, J.K. Nielsen, M.L. Hansen, P.B. Hoj and B.L. Moller (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–1828.PubMedCrossRefGoogle Scholar
  35. Tian L., V. Musetti, J. Kim, M. Magallanes-Lundback and D. DellaPenna (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome P 450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc Natl Acad Sci U S A. 101:402–7.PubMedCrossRefGoogle Scholar
  36. Turk E.M., S. Fujioka, H. Seto, Y. Shimada, S. Takatsuto, S. Yoshida, M.A. Denzel, Q.I. Torres and M.M. Neff MM. (2003) CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol. 133:1643–1653.PubMedCrossRefGoogle Scholar
  37. Turk E.M., S. Fujioka, H. Seto, Y. Shimada, S. Takatsuto, S. Yoshida, H. Wang, Q.I. Torres, J.M. Ward, G. Murthy, J. Zhang, J.C. Walker and M.M. Neff (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J. 42:23–34.PubMedCrossRefGoogle Scholar
  38. Winkler RG and T Helentjaris (1995) The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis. Plant Cell 7:1307–1317.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Alfons Gierl

There are no affiliations available

Personalised recommendations