Maize Transcription Factors

  • Erich Grotewold
  • John Gray

The availability of the complete sequence of the maize genome is permitting rapid advancement in our understanding of transcription factors and the mechanisms by which they control gene expression. The emerging challenge is to provide information on regulatory proteins, their target genes and the regulatory motifs in which they participate in a way that allows the integration with similar resources being generated in other plants, including other grasses. The most important aspects of maize transcription factors, recommendations for annotation and tools to investigate their function are discussed here.


Anthocyanin Biosynthetic Gene Plant Transcription Factor Arabidopsis Gene Regulatory Information Server Transparent Testa GLABRA1 Gene Maize Transcription Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkela, G., and Pereira, A. (2004). The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16, 2463–2480.PubMedCrossRefGoogle Scholar
  2. Alabadi, D., Oyama, T., Yonovsky, M.J., Harmon, F.G., Mas, P., and Kay, S.A. (2001). Reciprocal regulation between TOC1 and LHYICCA1 within the Arabidopsis circadian clock. Science 293, 880–883.PubMedCrossRefGoogle Scholar
  3. Allen, M.D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., and Suzuki, M. (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. Embo J 17, 5484–5496.PubMedCrossRefGoogle Scholar
  4. Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., and Teichmann, S.A. (2004). Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14, 283–291.PubMedCrossRefGoogle Scholar
  5. Barg, R., Sobolev, I., Eilon, T., Gur, A., Chmelnitsky, I., Shabtai, S., Grotewold, E., and Salts, Y. (2005). The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. Planta 221, 197–211.PubMedCrossRefGoogle Scholar
  6. Braun, E.L., and Grotewold, E. (1999). Newly discovered plant c-myb-like genes rewrite the evolution of the plant myb gene family. Plant Physiol. 121, 21–24.PubMedCrossRefGoogle Scholar
  7. Carey, C.C., Strahle, J.T., Selinger, D.A., and Chandler, V.L. (2004). Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell 16, 450–464.PubMedCrossRefGoogle Scholar
  8. Chopra, S., Athma, P., Li, X.G., and Peterson, T. (1998). A maize Myb homolog is encoded by a multicopy gene complex. Mol Gen Genet 260, 372–380.PubMedCrossRefGoogle Scholar
  9. Chopra, S., Cocciolone, S.M., Bushman, S., Sangar, V., McMullen, M.D., and Peterson, T. (2003). The maize Unstable factor for orange1 is a dominant epigenetic modifier of a tissue specifically silent allele of pericarp color1. Genetics 163, 1135–1146.PubMedGoogle Scholar
  10. Ciceri, P., Locatelli, F., Genga, A., Viotti, A., and Schmidt, R.J. (1999). The activity of the maize Opaque2 transcriptional activator is regulated diurnally. Plant Physiol 121, 1321–1328.PubMedCrossRefGoogle Scholar
  11. Cocciolone, S.M., Chopra, S., Flint-Garcia, S.A., McMullen, M.D., and Peterson, T. (2001). Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated. Plant J 27, 467–478.PubMedCrossRefGoogle Scholar
  12. Coe, E.H., and Neuffer, M.G. (1988). The genetics of corn. In G.F. Sprague and J.W. Dudley, eds Corn and Corn Improvement, Madison, WI: American Society of Agronomy, pp. 81–258.Google Scholar
  13. Cone, K.C., Cocciolone, S.M., Burr, F.A., and Burr, B. (1993). Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell 5, 1795–1805.PubMedCrossRefGoogle Scholar
  14. Corley, S.B., Carpenter, R., Copsey, L., and Coen, E. (2005). Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc Natl Acad Sci U S A 102, 5068–5073.PubMedCrossRefGoogle Scholar
  15. Cribb, L., Hall, L.N., and Langdale, J.A. (2001). Four mutant alleles elucidate the role of the G2 protein in the development of C4 and C3 photosynthesizing maize tissues. Genetics 159, 787–797.PubMedGoogle Scholar
  16. Davidson, E.H. (2001). Genomic regulatory systems. (San Diego, California: Academic Press).Google Scholar
  17. Davuluri, R.V., Sun, H., Palaniswamy, S.K., Matthews, N., Molina, C., Kurtz, M., and Grotewold, E. (2003). AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4, 25.PubMedCrossRefGoogle Scholar
  18. Desveaux, D., Subramaniam, R., Despres, C., Mess, J.N., Levesque, C., Fobert, P.R., Dangl, J.L., and Brisson, N. (2004). A“Whirly”transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6, 229–240.PubMedCrossRefGoogle Scholar
  19. Dias, A.P., Braun, E.L., McMullen, M.D., and Grotewold, E. (2003). Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication. Plant Physiol. 131, 610–620.PubMedCrossRefGoogle Scholar
  20. Duan, M.R., Nan, J., Liang, Y.H., Mao, P., Lu, L., Li, L., Wei, C., Lai, L., Li, Y., and Su, X.D. (2007). DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res 35, 1145–1154.PubMedCrossRefGoogle Scholar
  21. Ernst, H.A., Olsen, A.N., Larsen, S., and Lo Leggio, L. (2004). Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5, 297–303.PubMedCrossRefGoogle Scholar
  22. Evans, M.M., Passas, H.J., and Poethig, R.S. (1994). Heterochronic effects of glossy15 mutations on epidermal cell identity in maize. Development 120, 1971–1981.PubMedGoogle Scholar
  23. Fu, S., Rogowsky, P., Nover, L., and Scanlon, M.J. (2006). The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors. Planta 224, 42–52.PubMedCrossRefGoogle Scholar
  24. Gao, Y., Li, J., Strickland, E., Hua, S., Zhao, H., Chen, Z., Qu, L., and Deng, X.W. (2004). An Arabidopsis promoter microarray and its initial usage in the identification of HY5 binding targets in vitro. Plant Mol Biol 54, 683–699.PubMedCrossRefGoogle Scholar
  25. Gaut, B.S., and Doebley, J.F. (1997). DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. 94, 6809–6814.PubMedCrossRefGoogle Scholar
  26. Goff, S.A., Cone, K.C., and Chandler, V.L. (1992). Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev. 6, 864–875.PubMedCrossRefGoogle Scholar
  27. Grotewold, E. (2005). Plant metabolic diversity: A regulatory perspective. Trends Plant Sci. 10, 57–62.PubMedCrossRefGoogle Scholar
  28. Grotewold, E., Drummond, B.J., Bowen, B., and Peterson, T. (1994). The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76, 543–553.PubMedCrossRefGoogle Scholar
  29. Grotewold, E., Sainz, M.B., Tagliani, L., Hernandez, J.M., Bowen, B., and Chandler, V.L. (2000). Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc Natl Acad Sci U S A 97, 13579–13584.PubMedCrossRefGoogle Scholar
  30. Hake, S., Vollbrecht, E., and Freeling, M. (1989). Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J 8, 15–22.PubMedGoogle Scholar
  31. Hall, L.N., Rossini, L., Cribb, L., and Langdale, J.A. (1998). GOLDEN2: A novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 10, 925–936.PubMedCrossRefGoogle Scholar
  32. Heine, G.F., Hernandez, M.J., and Grotewold, E. (2004). Two cysteines in plant R2R3 MYB domains participate in REDOX-dependent DNA binding. J Biol Chem 279, 37878–37885.PubMedCrossRefGoogle Scholar
  33. Hernandez, J.M., Feller, A., Morohashi, K., Frame, K., and Grotewold, E. (2007). The bHLH domain of maize R links transcriptional regulation and histone modifications by recruitment of an EMSY-related factor. Proc Natl Acad Sci USA In Press.Google Scholar
  34. Hosoda, K., Imamura, A., Katoh, E., Hatta, T., Tachiki, M., Yamada, H., Mizuno, T., and Yamazaki, T. (2002a). Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell 14, 2015–2029.CrossRefGoogle Scholar
  35. Hulskamp, M., Misera, S., and Jurgens, G. (1994). Genetic dissection of trichome cell development in Arabidopsis. Cell 76, 555–566.PubMedCrossRefGoogle Scholar
  36. Ito, M. (2005). Conservation and diversification of three-repeat Myb transcription factors in plants. J Plant Res 118, 61–69.PubMedCrossRefGoogle Scholar
  37. Ito, M., Araki, S., Matsunaga, S., Itoh, T., Nishihama, R., Machida, Y., Doonan, J.H., and Watanabe, A. (2001). G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell 13, 1891–1905.PubMedCrossRefGoogle Scholar
  38. Kizis, D., and Pages, M. (2002). Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30, 679–689.PubMedCrossRefGoogle Scholar
  39. Klein, J., Saedler, H., and Huijser, P. (1996). A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol. Gen. Genet. 250, 7–16.PubMedGoogle Scholar
  40. Krizek, B.A. (2003). AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic Acids Res 31, 1859–1868.PubMedCrossRefGoogle Scholar
  41. Lauter, N., Kampani, A., Carlson, S., Goebel, M., and Moose, S.P. (2005). microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A 102, 9412–9417.PubMedCrossRefGoogle Scholar
  42. Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its Hierarchical Role in Light Regulation of Development. Plant Cell.Google Scholar
  43. Lipsick, J.S. (1996). One billion years of Myb. Oncogene 13, 223–235.PubMedGoogle Scholar
  44. Ludwig, S.E., and Wessler, S.R. (1990). Maize R gene family: Tissue-specific helix-loop-helix proteins. Cell 62, 849–851.PubMedCrossRefGoogle Scholar
  45. Mardis, E.R. (2007). ChIP-seq: welcome to the new frontier. Nat Methods 4, 613–614.PubMedCrossRefGoogle Scholar
  46. Moose, S.P., and Sisco, P.H. (1996). Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10, 3018–3027.PubMedCrossRefGoogle Scholar
  47. Morohashi, K., Xie, Z., and Grotewold, E. (2009). Gene-specific and genome-wide ChIP approaches to study plant transcriptional networks. Methods Mol Biol In Press.Google Scholar
  48. Morohashi, K., Zhao, M., Yang, M., Read, B., Lloyd, A., Lamb, R., and Grotewold, E. (2007). Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol. 145, 736–746.PubMedCrossRefGoogle Scholar
  49. Ogata, K., Morikawa, S., Nakamura, H., Sekikawa, A., Inoue, T., Kanai., H., Sarai., A., Ishii, S., and Nishimura, Y. (1994). Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79, 639–648.PubMedCrossRefGoogle Scholar
  50. Ogata, K., Morikawa, S., Nakamura, H., Hojo, H., Yoshimura, S., Zhang, R., Aimoto, S., Ametani, Y., Hirata, Z., Sarai, A., Ishii, S., and Nishiura, Y. (1995). Comparison of the free and CNA- complexed forms of the DNA-binding domain from c-Myb. Struct. Biol. 2, 309–319.CrossRefGoogle Scholar
  51. Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7, 173–182.CrossRefGoogle Scholar
  52. Ohto, M.-a., Fischer, R.L., Goldberg, R.B., Nakamura, K., and Harada, J.J. (2005). Control of seed mass by APETALA2. Proc Nat Acad Sci USA 102, 3123–3128.PubMedCrossRefGoogle Scholar
  53. Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K. (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10, 79–87.PubMedCrossRefGoogle Scholar
  54. Olsen, A.N., Ernst, H.A., Lo Leggio, L., Johansson, E., Larsen, S., and Skriver, K. (2004). Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family. Acta Crystallogr D Biol Crystallogr 60, 112–115.PubMedCrossRefGoogle Scholar
  55. Palaniswamy, K., James, S., Sun, H., Lamb, R., Davuluri, R.V., and Grotewold, E. (2006). AGRIS and AtRegNet: A platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Phyisiol. 140, 818–829.CrossRefGoogle Scholar
  56. Paul, A.-L., and Ferl, R.J. (1991). in vivo footprinting reveals unique cis-elements and different modes of hypoxic induction in maize Adh1 and Adh2. Plant Cell 3, 159–168.PubMedCrossRefGoogle Scholar
  57. Paul, A.-L., and Ferl, R.J. (1994). In vivo footprinting identifies and activating element of the maize Adh2 promoter specific for root and vascular tissues. Plant J. 5, 523–533.PubMedCrossRefGoogle Scholar
  58. Paz-Ares, J., Ghosal, D., Weinland, U., Peterson, P.A., and Saedler, H. (1987). The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural sililarities to transcriptional activators. EMBO J. 6, 3553–3558.PubMedGoogle Scholar
  59. Rabinowicz, P.D., Braun, E.L., Wolfe, A.D., Bowen, B., and Grotewold, E. (1999). Maize R2R3 Myb genes: Sequence analysis reveals amplification in higher plants. Genetics 153, 427–444.PubMedGoogle Scholar
  60. Riano-Pachon, D.M., Ruzicic, S., Dreyer, I., and Mueller-Roeber, B. (2007). PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8, 42.PubMedCrossRefGoogle Scholar
  61. Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biol Chem 378, 1079–1101.PubMedCrossRefGoogle Scholar
  62. Riechmann, J.L., and Ratcliffe, O.J. (2000a). A genomic perspective on plant transcription factors. Curr Op Plant Biol 3, 423–434.CrossRefGoogle Scholar
  63. Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., and Yu, G. (2000b). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110.CrossRefGoogle Scholar
  64. Riese, M., Höhmann, S., Saedler, H., Münster, T., and Huijser, P. (2007). Comparative analysis of the SBP-box gene families in P. patens and seed plants. Gene. 401, 28–37.Google Scholar
  65. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O.L., He, A., Marra, M., Snyder, M., and Jones, S. (2007). Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4, 651–657.PubMedCrossRefGoogle Scholar
  66. Ross, C.A., Liu, Y., and Shen, Q.J. (2007). The WRKY gene family in rice (Oryza sativa). Journal of Integrative Plant Biology 49, 827–842.CrossRefGoogle Scholar
  67. Rossini, L., Cribb, L., Martin, D.J., and Langdale, J.A. (2001). The maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13, 1231–1244.PubMedCrossRefGoogle Scholar
  68. Sablowski, R.W.M., and Meyerowitz, E.M. (1998). A Homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92, 93–103.PubMedCrossRefGoogle Scholar
  69. Sainz, M.B., Grotewold, E., and Chandler, V.L. (1997a). Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell 9, 611–625.CrossRefGoogle Scholar
  70. Sainz, M.B., Goff, S.A., and Chandler, V.L. (1997b). Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo. Mol. Cell. Biol. 17, 115–122.Google Scholar
  71. Savitch, L.V., Subramaniam, R., Allard, G.C., and Singh, J. (2007). The GLK1‘regulon’encodes disease defense related proteins and confers resistance to Fusarium graminearum in Arabidopsis. Biochemical and Biophysical Research Communications 359, 234–238.PubMedCrossRefGoogle Scholar
  72. Schmidt, R.J., Burr, F.A., and Burr, B. (1987). Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238, 960–963.PubMedCrossRefGoogle Scholar
  73. Schmidt, R.J., Burr, F.A., Aukerman, M.J., and Burr, B. (1990). Maize regulatory gene opaque-2 encodes a protein with a“leucine-zipper”motif that binds to zein DNA. Proc Natl Acad Sci U S A 87, 46–50.PubMedCrossRefGoogle Scholar
  74. Sekhon, R.S., Peterson, T., and Chopra, S. (2007). Epigenetic modifications of distinct sequences of the p1 regulatory gene specify tissue-specific expression patterns in maize. Genetics 175, 1059–1070.PubMedCrossRefGoogle Scholar
  75. Shigyo, M., Hasebe, M., and Ito, M. (2006). Molecular evolution of the AP2 subfamily. Gene (Amsterdam) 366, 256–265.Google Scholar
  76. Shin, B., Choi, G., Yi, H., Yang, S., Cho, I., Kim, J., Lee, S., Paek, N.C., Kim, J.H., and Song, P.S. (2002). AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1. Plant J 30, 23–32.PubMedCrossRefGoogle Scholar
  77. Shiu, S.H., Shih, M.C., and Li, W.H. (2005). Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol 139, 18–26.PubMedCrossRefGoogle Scholar
  78. Smith, H.M., Boschke, I., and Hake, S. (2002). Selective interaction of plant homeodomain proteins mediates high DNA- binding affinity. Proc Natl Acad Sci U S A 99, 9579–9584.PubMedCrossRefGoogle Scholar
  79. Smith, L.G., Green, B., Veit, B., and Hake, S. (1992). A dominant mutation in the maize home-obox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116, 21–30.PubMedGoogle Scholar
  80. Spelt, C., Quattrocchio, F., Mol, J., and Koes, R. (2002). ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14, 2121–2135.PubMedCrossRefGoogle Scholar
  81. Stevenson, C.E., Burton, N., Costa, M.M., Nath, U., Dixon, R.A., Coen, E.S., and Lawson, D.M. (2006). Crystal structure of the MYB domain of the RAD transcription factor from Antirrhinum majus. Proteins 65, 1041–1045.PubMedCrossRefGoogle Scholar
  82. Stracke, R., Werber, M., and Weisshaar, B. (2001). The R2R3 MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4, 447–456.PubMedCrossRefGoogle Scholar
  83. Sturaro, M., and Viotti, A. (2001). Methylation of the Opaque2 box in zein genes is parent-dependent and affects O2 DNA binding activity in vitro. Plant Mol Biol 46, 549–560.PubMedCrossRefGoogle Scholar
  84. Styles, E.D., and Ceska, O. (1989). Pericarp flavonoids in genetic strains of Zea mays. Maydica 34, 227–237.Google Scholar
  85. Tian, Y., Lu, X.-Y., Peng, L.-S., and Fang, J. (2006). The structure and function of plant WRKY transcription factors. Yichuan 28, 1607–1612.Google Scholar
  86. Timmermans, M.C., Hudson, A., Becraft, P.W., and Nelson, T. (1999). ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284, 151–153.PubMedCrossRefGoogle Scholar
  87. Tominaga, R., Iwata, M., Okada, K., and Wada, T. (2007). Functional Analysis of the Epidermal-Specific MYB Genes CAPRICE and WEREWOLF in Arabidopsis. Plant Cell 19, 2264–2277.PubMedCrossRefGoogle Scholar
  88. Wada, T., Tachibana, T., Shimura, Y., and Okada, K. (1997). Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277, 1113–1116.PubMedCrossRefGoogle Scholar
  89. Wang, D., Amornsiripanitch, N., and Dong, X. (2006). A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2, e123.PubMedCrossRefGoogle Scholar
  90. Wang, Z.-Y., Kenigsbuch, D., Sun, L., Harel, E., Ong, M.S., and Tobin, E.M. (1997). A Myb-Related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9, 491–507.PubMedCrossRefGoogle Scholar
  91. Wellmer, F., Alves-Ferreira, M., Dubois, A., Riechmann, J.L., and Meyerowitz, E.M. (2006). Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2, e117.PubMedCrossRefGoogle Scholar
  92. Wells, J., and Farnham, P.J. (2002). Characterizing transcription factor bidning sites using formaldehyde crosslinking and immunoprecipitation. Methods 26, 48–56.PubMedCrossRefGoogle Scholar
  93. Williams, C.E., and Grotewold, E. (1997). Differences between plant and animal Myb domains are fundamental for DNA-binding, and chimeric Myb domains have novel DNA-binding specificities. J. Biol. Chem. 272, 563–571.PubMedCrossRefGoogle Scholar
  94. Yamasaki, K., Kigawa, T., Inoue, M., Yamasaki, T., Yabuki, T., Aoki, M., Seki, E., Matsuda, T., Tomo, Y., Terada, T., Shirouzu, M., Tanaka, A., Seki, M., Shinozaki, K., and Yokoyama, S. (2005a). Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. J Mol Biol 348, 253–264.CrossRefGoogle Scholar
  95. Yamasaki, K., Kigawa, T., Inoue, M., Tateno, M., Yamasaki, T., Yabuki, T., Aoki, M., Seki, E., Matsuda, T., Tomo, Y., Hayami, N., Terada, T., Shirouzu, M., Tanaka, A., Seki, M., Shinozaki, K., and Yokoyama, S. (2005b). Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17, 944–956.CrossRefGoogle Scholar
  96. Yamasaki, K., Kigawa, T., Inoue, M., Tateno, M., Yamasaki, T., Yabuki, T., Aoki, M., Seki, E., Matsuda, T., Tomo, Y., Hayami, N., Terada, T., Shirouzu, M., Osanai, T., Tanaka, A., Seki, M., Shinozaki, K., and Yokoyama, S. (2004). Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16, 3448–3459.PubMedCrossRefGoogle Scholar
  97. Yamasaki, K., Kigawa, T., Inoue, M., Tateno, M., Yamasaki, T., Yabuki, T., Aoki, M., Seki, E., Matsuda, T., Nunokawa, E., Ishizuka, Y., Terada, T., Shirouzu, M., Osanai, T., Tanaka, A., Seki, M., Shinozaki, K., and Yokoyama, S. (2004). A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol 337, 49–63.PubMedCrossRefGoogle Scholar
  98. Yasumura, Y., Moylan, E.C., and Langdale, J.A. (2005). A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. Plant Cell 17, 1894–1907.PubMedCrossRefGoogle Scholar
  99. Yu, H., and Gerstein, M. (2006). Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103, 14724–14731.PubMedCrossRefGoogle Scholar
  100. Zhang, P., Chopra, S., and Peterson, T. (2000). A segmental gene duplication generated differentially expressed myb-homologous genes in maize. Plant Cell 12, 2311–2322.PubMedCrossRefGoogle Scholar
  101. Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y.V., Pellegrini, M., Goodrich, J., and Jacobsen, S.E. (2007). Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5, e129.PubMedCrossRefGoogle Scholar
  102. Zhu, Q.-H.-H., Hoque, M.S., Dennis, E.S., and Upadhyaya, N.M. (2003). Ds tagging of branched floretless 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biology 3.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Erich Grotewold
  • John Gray

There are no affiliations available

Personalised recommendations