Advertisement

Sequencing Genes and Gene Islands by Gene Enrichment

  • Pablo D. Rabinowicz
  • W. Brad Barbazuk

Access to the sequence of any gene in a genome greatly accelerates genetics research. Whole genome sequencing is a way to retrieve such information although, for large genomes such as that of maize, it represents a huge effort. Fortunately, a maize genome sequencing project is currently underway but, before this project started, the maize research community benefited from the development of gene enrichment methods that allow selectively cloning and sequencing genes. The application of these methods to maize generated comprehensive gene sequence collections that were extensively used by the community. Once the maize genome project is completed, combination of gene enrichment methods with next-generation sequencing technologies will greatly facilitate genome-wide comparative analysis of different maize inbred lines for functional, population, and evolutionary studies.

Keywords

Bacterial Artificial Chromosome Bacterial Artificial Chromosome Clone Repetitive Element Maize Genome Gene Enrichment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril,C.R., Wu, A., Olde, B., Moreno, R.F. et al. (1991) Complementary DNA sequencing:expressed sequence tags and human genome project. Science 252: 1651–1656.PubMedCrossRefGoogle Scholar
  2. Bai, L., Singh, M., Pitt, L., Sweeney, M., and Brutnell, T.P. (2007) Generating novel allelic variation through activator insertional mutagenesis in maize. Genetics 175: 981–992.PubMedCrossRefGoogle Scholar
  3. Bailey, J.A., Gu, Z., Clark, R.A., Reinert, K., Samonte, R.V., Schwartz, S., Adams, M.D., Myers,E.W., Li, P.W., and Eichler, E.E. (2002) Recent segmental duplications in the human genome.Science 297: 1003–1007.PubMedCrossRefGoogle Scholar
  4. Bainbridge, M.N., Warren, R.L., Hirst, M., Romanuik, T., Zeng, T., Go, A., Delaney, A., Griffith, M.,Hickenbotham, M., Magrini, V. et al. (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7: 246.PubMedCrossRefGoogle Scholar
  5. Barbazuk, W.B., Bedell, J.A., and Rabinowicz, P.D. (2005) Reduced representation sequencing: a success in maize and a promise for other plant genomes. Bioessays 27: 839–848.PubMedCrossRefGoogle Scholar
  6. Barbazuk, W.B., Emrich, S.J., Chen, H.D., Li, L., and Schnable, P.S. (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51: 910–918.PubMedCrossRefGoogle Scholar
  7. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837.PubMedCrossRefGoogle Scholar
  8. Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger, B., Mesirov, J.P.,and Lander, E.S. (2002) ARACHNE: a whole-genome shotgun assembler. Genome Res. 12:177–189.PubMedCrossRefGoogle Scholar
  9. Bennetzen, J.L., Chandler, V.L., and Schnable, P. (2001) National Science Foundation-sponsored workshop report. Maize genome sequencing project. Plant Physiol. 127: 1572–1578.PubMedCrossRefGoogle Scholar
  10. Bennetzen, J. L., C. Coleman, J. Ma, R. Liu and W. Ramakrishna (2004) Consistent over-estimation of gene number in complex plant genomes. Curr. Opin. Plant Biol. 7: 732–736.PubMedCrossRefGoogle Scholar
  11. Bentley, D.R. (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16: 545–552.PubMedCrossRefGoogle Scholar
  12. Berezikov, E., Thuemmler, F., van Laake, L.W., Kondova, I., Bontrop, R., Cuppen, E., and Plasterk,R.H. (2006) Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38: 1375–1377.PubMedCrossRefGoogle Scholar
  13. Bonaldo, M.F., Lennon, G., and Soares, M.B. (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res. 6: 791–806.PubMedCrossRefGoogle Scholar
  14. Bortiri, E., Jackson, D., and Hake, S. (2006) Advances in maize genomics: the emergence of positional cloning. Curr Opin Plant Biol 9: 164–171.PubMedCrossRefGoogle Scholar
  15. Bruggmann, R., Bharti, A.K., Gundlach, H., Lai, J., Young, S., Pontaroli, A.C., Wei, F., Haberer, G.,Fuks, G., Du, C. et al. (2006) Uneven chromosome contraction and expansion in the maize genome. Genome Res. 16: 1241–1251.PubMedCrossRefGoogle Scholar
  16. Burr, B., Burr, F.A., Thompson, K.H., Albertson, M.C., and Stuber, C.W. (1988) Gene mapping with recombinant inbreds in maize. Genetics 118: 519–526.PubMedGoogle Scholar
  17. Childs, K.L., Hamilton, J.P., Zhu, W., Ly, E., Cheung, F., Wu, H., Rabinowicz, P.D., Town, C.D., Buell,C.R., and Chan, A.P. 2006 The TIGR Plant Transcript Assemblies database. Nucleic Acids Res. Google Scholar
  18. Clifton, S.W., Minx, P., Fauron, C.M., Gibson, M., Allen, J.O., Sun, H., Thompson, M., Barbazuk,W.B., Kanuganti, S., Tayloe, C. et al. (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136: 3486–3503.PubMedCrossRefGoogle Scholar
  19. Colasanti, J., Tremblay, R., Wong, A.Y., Coneva, V., Kozaki, A., and Mable, B.K. (2006) The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7: 158.PubMedCrossRefGoogle Scholar
  20. Dean, F.B., Hosono, S., Fang, L., Wu, X., Faruqi, A.F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y.,Du, J. et al. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99: 5261–5266.PubMedCrossRefGoogle Scholar
  21. Dila, D., Sutherland, E., Moran, L., Slatko, B., and Raleigh, E.A. (1990) Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12. J. Bacteriol. 172: 4888–4900.PubMedGoogle Scholar
  22. Dong, Q., Lawrence, C.J., Schlueter, S.D., Wilkerson, M.D., Kurtz, S., Lushbough, C., and Brendel, V.(2005) Comparative plant genomics resources at PlantGDB. Plant Physiol. 139: 610–618.PubMedCrossRefGoogle Scholar
  23. Emberton, J., Ma, J., Yuan, Y., SanMiguel, P., and Bennetzen, J.L. (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res. 15: 1441–1446.PubMedCrossRefGoogle Scholar
  24. Emrich, S.J., Aluru, S., Fu, Y., Wen, T.J., Narayanan, M., Guo, L., Ashlock, D.A., and Schnable, P.S.(2004) A strategy for assembling the maize (Zea mays L.) genome. Bioinformatics 20: 140–147.PubMedCrossRefGoogle Scholar
  25. Emrich, S.J., Barbazuk, W.B., Li, L., and Schnable, P.S. (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 17: 69–73.PubMedCrossRefGoogle Scholar
  26. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult,C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M. et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.PubMedCrossRefGoogle Scholar
  27. Fojtova, M., Kovarik, A., and Matyasek, R. (2001) Cytosine methylation of plastid genome in higher plants. Fact or artefact? Plant Sci 160: 585–593.PubMedCrossRefGoogle Scholar
  28. Fu, Y., Wen, T.J., Ronin, Y.I., Chen, H.D., Guo, L., Mester, D.I., Yang, Y., Lee, M., Korol, A.B.,Ashlock, D.A. et al. (2006) Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics 174: 1671–1683.PubMedCrossRefGoogle Scholar
  29. Gardiner, J.M., Buell, C.R., Elumalai, R., Galbraith, D.W., Henderson, D.A., Iniguez, A.L.,Kaeppler, S.M., Kim, J.J., Liu, J., Smith, A. et al. (2005) Design, production, and utilization of long oligonucleotide microarrays for expression analysis in maize. Maydica 50: 425–435.Google Scholar
  30. Gaut, B.S. and Doebley, J.F. (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A 94: 6809–6814.PubMedCrossRefGoogle Scholar
  31. Gibbs, R.A. Weinstock, G.M. Metzker, M.L. Muzny, D.M. Sodergren, E.J. Scherer, S. Scott, G. Steffen, D. Worley, K.C. Burch, P.E. et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521.PubMedCrossRefGoogle Scholar
  32. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel,J.D., Jacq, C., Johnston, M. et al. (1996) Life with 6000 genes. Science 274: 546–567.PubMedCrossRefGoogle Scholar
  33. Haberer, G., Young, S., Bharti, A.K., Gundlach, H., Raymond, C., Fuks, G., Butler, E., Wing,R.A., Rounsley, S., Birren, B. et al. (2005) Structure and architecture of the maize genome.Plant Physiol 139: 1612–1624.PubMedCrossRefGoogle Scholar
  34. Hake, S. and Walbot, V. (1980) The genome of Zea mays, its organization and homology to related grasses. Chromosoma 79: 251–270.CrossRefGoogle Scholar
  35. Hanley, S., Edwards, D., Stevenson, D., Haines, S., Hegarty, M., Schuch, W., and Edwards, K.J.(2000) Identification of transposon-tagged genes by the random sequencing of Mutator-tagged DNA fragments from Zea mays. Plant J. 23: 557–566.PubMedCrossRefGoogle Scholar
  36. Henderson, I.R., Zhang, X., Lu, C., Johnson, L., Meyers, B.C., Green, P.J., and Jacobsen, S.E.(2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38: 721–725.PubMedCrossRefGoogle Scholar
  37. Huang, X. and Madan, A. (1999) CAP3: A DNA sequence assembly program. Genome Res. 9:868–877.PubMedCrossRefGoogle Scholar
  38. Ilic, K., SanMiguel, P.J., and Bennetzen, J.L. (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc. Natl. Acad. Sci. U. S. A. 100: 12265–12270.PubMedCrossRefGoogle Scholar
  39. Jaffe, D.B., Butler, J., Gnerre, S., Mauceli, E., Lindblad-Toh, K., Mesirov, J.P., Zody, M.C., and Lander, E.S. (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2.Genome Res 13: 91–96.PubMedCrossRefGoogle Scholar
  40. Jeck, W.R., Reinhardt, J.A., Baltrus, D.A., Hickenbotham, M.T., Magrini, V., Mardis, E.R., Dangl,J.L., and Jones, C.D. (2007) Extending assembly of short DNA sequences to handle error.Bioinformatics.Google Scholar
  41. Jin, Y., Wang, M., Fu, J., Xuan, N., Zhu, Y., Lian, Y., Jia, Z., Zheng, J., and Wang, G. (2007) Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics 90: 265–275.PubMedCrossRefGoogle Scholar
  42. Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316: 1497–1502.PubMedCrossRefGoogle Scholar
  43. Kalyanaraman, A., Aluru, S., and Schnable, P.S. (2006) Turning repeats to advantage: scaffolding genomic contigs using LTR retrotransposons. Comput Syst Bioinformatics Conf: 167–178.Google Scholar
  44. Lai, J., Ma, J., Swigonova, Z., Ramakrishna, W., Linton, E., Llaca, V., Tanyolac, B., Park, Y.J., Jeong,O.Y., Bennetzen, J.L. et al. (2004) Gene loss and movement in the maize genome. Genome Res. 14: 1924–1931.PubMedCrossRefGoogle Scholar
  45. Lander, E.S. and Weinberg, R.A. (2000) Genomics: journey to the center of biology. Science 287:1777–1782.PubMedCrossRefGoogle Scholar
  46. Langham, R.J., Walsh, J., Dunn, M., Ko, C., Goff, S.A., and Freeling, M. (2004) Genomic duplication, fractionation and the origin of regulatory novelty. Genetics 166: 935–945.PubMedCrossRefGoogle Scholar
  47. Lee, Y., Tsai, J., Sunkara, S., Karamycheva, S., Pertea, G., Sultana, R., Antonescu, V., Chan, A.,Cheung, F., and Quackenbush, J. (2005) The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes. Nucleic Acids Res. 33: D71–74.PubMedCrossRefGoogle Scholar
  48. Lippman, Z., Gendrel, A.V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K.,Mittal, V., May, B., Kasschau, K.D. et al. (2004) Role of transposable elements in heterochro-matin and epigenetic control. Nature 430: 471–476.PubMedCrossRefGoogle Scholar
  49. Luo, M.C., Thomas, C., You, F.M., Hsiao, J., Ouyang, S., Buell, C.R., Malandro, M., McGuire,P.E., Anderson, O.D., and Dvorak, J. (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82: 378–389.PubMedCrossRefGoogle Scholar
  50. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J.,Braverman, M.S., Chen, Y.J., Chen, Z. et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380.PubMedGoogle Scholar
  51. Marra, M., Kucaba, T., Sekhon, M., Hillier, L., Martienssen, R., Chinwalla, A., Crockett, J.,Fedele, J., Grover, H., Gund, C. et al. (1999) zA map for sequence analysis of the Arabidopsis thaliana genome. Nat. Genet. 22: 265–270.PubMedCrossRefGoogle Scholar
  52. May, B.P., Liu, H., Vollbrecht, E., Senior, L., Rabinowicz, P.D., Roh, D., Pan, X., Stein, L.,Freeling, M., Alexander, D. et al. (2003) Maize-targeted mutagenesis: A knockout resource for maize. Proc. Natl. Acad. Sci. U. S. A. 100: 11541–11546.PubMedCrossRefGoogle Scholar
  53. McCarty, D.R., Settles, A.M., Suzuki, M., Tan, B.C., Latshaw, S., Porch, T., Robin, K., Baier, J., Avigne, W., Lai, J. et al. (2005) Steady-state transposon mutagenesis in inbred maize. Plant J. 44: 52–61.PubMedCrossRefGoogle Scholar
  54. McCullough, A.J., Kangasjarvi, J., Gengenbach, B.G., and Jones, R.J. (1992) Plastid DNA in Developing Maize Endosperm : Genome Structure, Methylation, and Transcript Accumulation Patterns. Plant Physiol 100: 958–964.PubMedCrossRefGoogle Scholar
  55. Meyers, B.C., Tingey, S.V., and Morgante, M. (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res. 11: 1660–1676.PubMedCrossRefGoogle Scholar
  56. Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P.,Brockman, W., Kim, T.K., Koche, R.P. et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553–560.PubMedCrossRefGoogle Scholar
  57. Miura, A., Yonebayashi, S., Watanabe, K., Toyama, T., Shimada, H., and Kakutani, T. (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis.Nature 411: 212–214.PubMedCrossRefGoogle Scholar
  58. Mouse Genome Sequencing Consortium. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.CrossRefGoogle Scholar
  59. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz, S.A.,Mobarry, C.M., Reinert, K.H., Remington, K.A. et al. (2000) A whole-genome assembly of Drosophila. Science 287: 2196–2204.PubMedCrossRefGoogle Scholar
  60. Palmer, L.E., Rabinowicz, P.D., O'Shaughnessy, A.L., Balija, V.S., Nascimento, L.U., Dike, S., de la Bastide, M., Martienssen, R.A., and McCombie, W.R. (2003) Maize genome sequencing by methylation filtration. Science 302: 2115–2117.PubMedCrossRefGoogle Scholar
  61. Patanjali, S.R., Parimoo, S., and Weissman, S.M. (1991) Construction of a uniform-abundance (normalized) cDNA library. Proc. Natl. Acad. Sci. U. S. A. 88: 1943–1947.PubMedCrossRefGoogle Scholar
  62. Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J.,Cheung, F., Parvizi, B. et al. (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19: 651–652.PubMedCrossRefGoogle Scholar
  63. Peterson, D.G., Schulze, S.R., Sciara, E.B., Lee, S.A., Bowers, J.E., Nagel, A., Jiang, N., Tibbitts,D.C., Wessler, S.R., and Paterson, A.H. (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res. 12: 795–807.PubMedCrossRefGoogle Scholar
  64. Rabinowicz, P.D. (2007) Plant genomic sequencing using gene-enriched libraries. Chem Rev 107: 3377–3390.PubMedCrossRefGoogle Scholar
  65. Rabinowicz, P.D. and Bennetzen, J.L. (2006) The maize genome as a model for efficient sequence analysis of large plant genomes. Curr. Opin. Plant Biol. 9: 149–156.PubMedCrossRefGoogle Scholar
  66. Rabinowicz, P.D., Citek, R., Budiman, M.A., Nunberg, A., Bedell, J.A., Lakey, N., O'Shaughnessy,A.L., Nascimento, L.U., McCombie, W.R., and Martienssen, R.A. (2005) Differential methylation of genes and repeats in land plants. Genome Res. 15: 1431–1440.PubMedCrossRefGoogle Scholar
  67. Rabinowicz, P.D., Palmer, L.E., May, B.P., Hemann, M.T., Lowe, S.W., McCombie, W.R., and Martienssen, R.A. (2003) Genes and transposons are differentially methylated in plants, but not in mammals. Genome Res. 13: 2658–2664.PubMedCrossRefGoogle Scholar
  68. Rabinowicz, P.D., Schutz, K., Dedhia, N., Yordan, C., Parnell, L.D., Stein, L., McCombie, W.R.,and Martienssen, R.A. (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat. Genet. 23: 305–308.PubMedCrossRefGoogle Scholar
  69. Raizada, M.N., Nan, G.L., and Walbot, V. (2001) Somatic and germinal mobility of the RescueMu transposon in transgenic maize. Plant Cell 13: 1587–1608.PubMedCrossRefGoogle Scholar
  70. Raleigh, E.A. and Wilson, G. (1986) Escherichia coli K-12 restricts DNA containing 5-methylcytosine.Proc. Natl. Acad. Sci. U. S. A. 83: 9070–9074.PubMedCrossRefGoogle Scholar
  71. Rayburn, A.L., Biradar, D.P., Bullock, D.G., and McMurphy, L.M. (1993) Nuclear DNA content in F1 hybrids of maize. Heredity 70: 294–300.CrossRefGoogle Scholar
  72. SanMiguel, P., and J. L. Bennetzen (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals Bot. 82: 37–44.CrossRefGoogle Scholar
  73. SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A.,Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z. et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.PubMedCrossRefGoogle Scholar
  74. Sasaki, T. and Burr, B. (2000) International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3: 138–141.PubMedCrossRefGoogle Scholar
  75. Singer, T., Yordan, C., and Martienssen, R.A. (2001) Robertson's Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1).Genes Dev. 15: 591–602.PubMedCrossRefGoogle Scholar
  76. Soares, M.B., Bonaldo, M.F., Jelene, P., Su, L., Lawton, L., and Efstratiadis, A. (1994) Construction and characterization of a normalized cDNA library. Proc. Natl. Acad. Sci. U. S. A. 91: 9228–9232.PubMedCrossRefGoogle Scholar
  77. Soderlund, C., Humphray, S., Dunham, A., and French, L. (2000) Contigs built with fingerprints,markers, and FPC V4.7. Genome Res. 10: 1772–1787.PubMedCrossRefGoogle Scholar
  78. Soderlund, C., Longden, I., and Mott, R. (1997) FPC: a system for building contigs from restriction fingerprinted clones. Comput. Appl. Biosci. 13: 523–535.PubMedGoogle Scholar
  79. Springer, N.M. and Kaeppler, S.M. (2005) Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins. Plant Physiol 138: 92–104.PubMedCrossRefGoogle Scholar
  80. Springer, N.M., Xu, X., and Barbazuk, W.B. (2004) Utility of different gene enrichment approaches toward identifying and sequencing the maize gene space. Plant Physiol. 136:3023–3033.PubMedCrossRefGoogle Scholar
  81. Sutherland, E., Coe, L., and Raleigh, E.A. (1992) McrBC: a multisubunit GTP-dependent restriction endonuclease. J. Mol. Biol. 225: 327–348.PubMedCrossRefGoogle Scholar
  82. Sutton, G., White, O., Adams, M., and Kerlavage, A.R. (1995) TIGR Assembler: a new tool for assembling large shotgun sequencing projects. Genome Sci. Tech. 1: 9–19.Google Scholar
  83. Swigonova, Z., Lai, J., Ma, J., Ramakrishna, W., Llaca, V., Bennetzen, J.L., and Messing, J. (2004) Close split of sorghum and maize genome progenitors. Genome Res 14: 1916–1923.PubMedCrossRefGoogle Scholar
  84. Tang, H. (2007) Genome assembly, rearrangement, and repeats. Chem Rev 107: 3391–3406.PubMedCrossRefGoogle Scholar
  85. The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.CrossRefGoogle Scholar
  86. The C. elegans Sequencing Consortium. (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018.CrossRefGoogle Scholar
  87. Vaughn, M.W., Tanurd Ic, M., Lippman, Z., Jiang, H., Carrasquillo, R., Rabinowicz, P.D., Dedhia, N.,McCombie, W.R., Agier, N., Bulski, A. et al. (2007) Epigenetic Natural Variation in Arabidopsis thaliana. PLoS Biol 5: e174.PubMedCrossRefGoogle Scholar
  88. Warren, R.L., Sutton, G.G., Jones, S.J., and Holt, R.A. (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23: 500–501.PubMedCrossRefGoogle Scholar
  89. Wheeler D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M.,Dicuccio, M., Edgar, R., Federhen, S. et al. (2006) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. Google Scholar
  90. Whitelaw, C.A., Barbazuk, W.B., Pertea, G., Chan, A.P., Cheung, F., Lee, Y., Zheng, L., van Heeringen, S., Karamycheva, S., Bennetzen, J.L. et al. (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302: 2118–2120.PubMedCrossRefGoogle Scholar
  91. Yu, C. and Li, Z. (2006) Construction of methylation-sensitive partial restriction bacterial artificial chromosome libraries in maize. Anal. Biochem. 359: 141–143.PubMedCrossRefGoogle Scholar
  92. Yuan, Y., SanMiguel, P.J., and Bennetzen, J.L. (2002) Methylation-Spanning Linker Libraries Link Gene-Rich Regions and Identify Epigenetic Boundaries in Zea mays. Genome Res. 12:1345–1349.PubMedCrossRefGoogle Scholar
  93. Yuan, Y., SanMiguel, P.J., and Bennetzen, J.L. (2003) High-Cot sequence analysis of the maize genome. Plant J. 34: 249–255.PubMedCrossRefGoogle Scholar
  94. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I.R., Shinn, P.,Pellegrini, M., Jacobsen, S.E. et al. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126: 1189–1201.PubMedCrossRefGoogle Scholar
  95. Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., and Henikoff, S. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39: 61–69.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute for Genome Sciences and Department of Biochemistry and Molecular Biology, School of MedicineUniversity of MarylandBaltimore
  2. 2.Department of Botany and Zoology, and the Genetics InstituteUniversity of FloridaGainesville

Personalised recommendations