Maize Transformation

  • Kan Wang
  • Bronwyn Frame
  • Yuji Ishida
  • Toshihiko Komari

Plant genetic transformation technologies have brought fundamental changes to both plant biology laboratory research as well as to modern agricultural field practices. Once a recalcitrant plant for tissue culture and gene delivery, maize is becoming one of the most targeted cereal crops using genetic transformation for both basic and applied purposes. This chapter provides a brief review of the history of maize transformation technology development, but focuses extensively on technical aspects of the methodology, including DNA delivery systems, target tissues and genotypes, selectable markers for transformation, and various issues related to integration and expression of transgenes. Some recent observations and improvements from two maize transformation groups are discussed. It is anticipated that increasing genomics information will assist further enhancement of maize transformation technology leading to more rapid progress in understanding and improvement of this important crop.


Embryogenic Callus Shoot Apical Meristem Particle Bombardment Selectable Marker Gene Maize Inbred Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmadabadi, M., Ruf, S. and Bock, R. (2007) A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 16, 437–448.PubMedCrossRefGoogle Scholar
  2. Armstrong, C. L. (1999) The first decade of maize transformation: a review and future perspective. Maydica 44, 101–109.Google Scholar
  3. Armstrong, C. L., Green, C. E. and Phillips, R. L. (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet Coop Newsl 65, 92–93.Google Scholar
  4. Armstrong, C. L., Petersen, W. L., Buchholz, W. G., Bowen, B. A. and Sulc, S. L. (1990) Factors affecting PEG-mediated stable transformation of maize protoplasts. Plant Cell Rep 9, 335–339.CrossRefGoogle Scholar
  5. Arnold, N., Bauer, T., Collingwood, T., Dekelver, R., Doyon, Y., Gao, Z., McCaskill, D., Miller, J., Mitchell, J., Moehle, E., Rebar, E., Rock, J., Rowland, L., Shukla, V., Simpson, M., Skokut, M., Urnov, F., Worden, S., Yau, K. and Zhang, L. (2007) Application of designed zinc-finger protein technology in plants. 2007 Botany & Plant Biology Joint Congress, Chicago, IL, American Society of Plant Biologists. pp. 248–249 (P44015).Google Scholar
  6. Bowman, J. L. and Eshed, Y. (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5, 110–115.PubMedCrossRefGoogle Scholar
  7. Brettschneider, R., Becker, D. and Lörz, H. (1997) Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl Genet 94, 737–748.CrossRefGoogle Scholar
  8. Carvalho, C. H. S., Bohorova, N., Bordallo, P. N., Abreu, L. L., Valicente, F. H., Bressan, W. and Paiva, E. (1997) Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep 17, 73–76.CrossRefGoogle Scholar
  9. Carlson, S. R., Rudgers, G. W., Zieler, H., Mach, J. M., Luo, S., Grunden, E., Krol, C., Copenhaver, G. P., Preuss, D. (2007) Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLOS Genetics 3, 1965–1974.PubMedCrossRefGoogle Scholar
  10. Che, P., Love, T. M., Frame, B. R., Wang, K., Carriquiry, A. L. and Howell, S. H. (2006) Gene expression patterns during somatic embryo development and germination in maize Hi-II callus cultures. Plant Mol Biol 62, 1–14.PubMedCrossRefGoogle Scholar
  11. Cheng, M., Fry, J. E., Pang, S., Zhou, H., Hironaka, C. M., Duncan, D. R., Conner, T. W. and Wan, Y. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115, 971–980.PubMedGoogle Scholar
  12. Chu, C. C., Wang, C. C., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y. and Bi, F. Y. (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci Sinica 18, 659–668.Google Scholar
  13. Daley, M., Knauf, V. C., Summerfelt, K. R. and Turner, J. C. (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17, 489–496.CrossRefGoogle Scholar
  14. Danilova, S. A. and Dolgikh, Y. I. (2005) Optimization of Agrobacterium (Agrobacterium tumefaciens) transformation of maize embryogenic callus. Russian Journal of Plant Physiology 52, 535–541.CrossRefGoogle Scholar
  15. Day, C. D., Lee, E., Kobayashi, J., Holappa, L. D., Albert, H., and Ow, D. W. (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14, 2869–2880.PubMedCrossRefGoogle Scholar
  16. De Block, M. and Debrouwer, D. (1991) Two T-DNA's co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82, 257–263.CrossRefGoogle Scholar
  17. De Buck, S., De Wilde, C., Van Montagu, M. and Depicker, A. (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol Breeding 6, 459–468.CrossRefGoogle Scholar
  18. Dennehey, B. K., Peterson, W. L., Ford-Santino, C., Pajeau, M. and Armstrong, C. L. (1994) Comparison of selective agents for use with the selectable marker gene bar in maize transformation. Plant Cell Tiss Org 36, 1–7.CrossRefGoogle Scholar
  19. Depicker, A., Herman, L., Jacobs, A., Schell, J. and Montagu, M. V. (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol Gen Genet 201, 477–484.CrossRefGoogle Scholar
  20. D'Halluin, K., Bonne, E., Bossut, M., De Beuckeleer, M. and Leemans, J. (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4, 1495–1505.PubMedCrossRefGoogle Scholar
  21. Dunder, E., Dawson, J., Suttie, J. and Pace, G. (1995) Maize transformation by microprojectile bombardment of immature embryos. In: I. Potrykus and G. Spangenberg (Eds.), Gene Transfer to Plants. Springer-Verlag, Berlin, pp. 127–138.Google Scholar
  22. Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M. H. and Chandrasegaran, S. (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33, 5978–5990.PubMedCrossRefGoogle Scholar
  23. Ebinuma, H., Sugita, K., Matsunaga, E. and Yamakado, M. (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94, 2117–2121.PubMedCrossRefGoogle Scholar
  24. Evans, R., Wang, A. S., Hanten, J., Altendorf, P. and Mettler, I. (1996) A positive selection system for maize transformation. In Vitro Cell Dev Biol-Plant 32, 72A (abstract).Google Scholar
  25. Finer, J. J., Vain, P., Jones, M. W. and McMullen, M. D. (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11, 323–328.CrossRefGoogle Scholar
  26. Frame, B. R., Drayton, P. R., Bagnall, S. V., Lewnau, C. J., Bullock, W. P., Wilson, H. M., Dunwell, J. M., Thompson, J. A. and Wang, K. (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J 6, 941–948.CrossRefGoogle Scholar
  27. Frame, B. R., McMurray, J. M., Fonger, T. M., Main, M. L., Taylor, K. W., Torney, F. J., Paz, M. M. and Wang, K. (2006a) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25, 1024–1034.CrossRefGoogle Scholar
  28. Frame, B. R., Paque, T. and Wang, K. (2006b). Maize (Zea mays L.). In: K. Wang (Eds.), Agrobacterium Protocols (2nd edition). Humana Press Inc., Totowa, NJ, pp. 185–199.CrossRefGoogle Scholar
  29. Frame, B. R., Shou, H., Chikwamba, R. K., Zhang, Z., Xiang, C., Fonger, T. M., Pegg, S. E., Li, B., Nettleton, D. S., Pei, D. and Wang, K. (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129, 13–22.PubMedCrossRefGoogle Scholar
  30. Frame, B. R., Zhang, H., Cocciolone, S. M., Sidorenko, L. V., Dietrich, C. R., Pegg, S. E., Zhen, S., Schnable, P. S. and Wang, K. (2000) Production of transgenic maize from bombarded Type II callus: Effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cellular and Developmental Biology Plant 36, 21–29.CrossRefGoogle Scholar
  31. Fromm, M. E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. and Klein, T. M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/technology 8, 833–839.PubMedCrossRefGoogle Scholar
  32. Gelvin, S. B. (2003) Agrobacterium-mediated plant transformation: the biology behind the “genejockeying” tool. Microbiol Mol Biol Rev 67, 16–37.PubMedCrossRefGoogle Scholar
  33. Gelvin, S. B. and Kim, S. I. (2007) Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochim Biophys Acta 1769, 410–421.PubMedGoogle Scholar
  34. Golovkin, M. V., Ábrahám, M., Mórocz, S., Bottka, S., Fehér, A. and Dudits, D. (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci 90, 41–52.CrossRefGoogle Scholar
  35. Gordon-Kamm, W., Dilkes, B. P., Lowe, K., Hoerster, G., Sun, X., Ross, M., Church, L., Bunde, C., Farrell, J., Hill, P., Maddock, S., Snyder, J., Sykes, L., Li, Z., Woo, Y. M., Bidney, D. and Larkins, B. A. (2002) Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc Natl Acad Sci USA 99, 11975–11980.PubMedCrossRefGoogle Scholar
  36. Gordon-Kamm, W. J., Spencer, T. M., Mangano, M. L., Adams, T. R., Daines, R. J., Start, W. G., O'Brien, J. V., Chambers, S. A., Adams, W. R., Jr., Willetts, N. G., Rice, T. B., Mackey, C. J., Krueger, R. W., Kausch, A. P. and Lemaux, P. G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2, 603–618.CrossRefGoogle Scholar
  37. Gould, J., Devey, M., Hasegawa, O., Ulian, E. C., Peterson, G. and Smith, R. H. (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95, 426–434.PubMedCrossRefGoogle Scholar
  38. Graves, A. C. F. and Goldman, S. L. (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7, 43–50.CrossRefGoogle Scholar
  39. Graves, A. E., Goldman, S. L., Banks, S. W. and Graves, A. C. (1988) Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp., and Triticum aestivum. J Bacteriol 170, 2395–2400.PubMedGoogle Scholar
  40. Grimsely, N., Hohn, T., Davies, J. W. and Hohn, B. (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325, 177–179.CrossRefGoogle Scholar
  41. Halweg, C., Thompson, W. F. and Spiker S. (2005) The rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: a flow cytometric study. 17, 418–429.Google Scholar
  42. Hansen, G. and Wright, M. S. (1999) Recent advances in the transformation of plants. Trends Plant Sci 4, 226–231.PubMedCrossRefGoogle Scholar
  43. Hepburn, A. G., White, J., Pearson, L., Maunders, M. J., Clarke, L. E., Prescott, A. G. and Blundy, K. S. (1985) The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. J Gen Microbiol 131, 2961–2969.PubMedGoogle Scholar
  44. Hernalsteens, J.-P., Thia-Toong, L., Schell, J. and Montagu, M. V. (1984) An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. The EMBO Journal 3, 3039–3041.PubMedGoogle Scholar
  45. Hiei, Y., Ishida, H., Kasaoka, K. and Komari, T. (2006) Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Pant Cell Tiss Org 87, 233–243.CrossRefGoogle Scholar
  46. Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6, 271–282.PubMedCrossRefGoogle Scholar
  47. Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J. and Schilperoort, R. A. (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid plant genetics. Nature 303, 179–180.CrossRefGoogle Scholar
  48. Hood, E. E., Helmer, G. L., Fraley, R. T. and Chilton, M. D. (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168, 1291–1301.PubMedGoogle Scholar
  49. Horikawa, Y., Yoshizumi, T. and Kakuta, H. (1997) Transformants through pollination of mature maize (Zea mays L.) pollen delivered bar gene by particle gun. Grassland Science 43, 117–123.Google Scholar
  50. Howe, A. R., Gasser, C. S., Brown, S. C., Padgette, S. R., Hart, J. J., Parker, G. B., Fromm, M. E. and Armstrong, C. L. (2002) Glyphosate as a selective agent for the production of fertile transgenic maize (Zea may L.) plants. Mol Breeding 10, 153–164.CrossRefGoogle Scholar
  51. Hu, T., Metz, S., Chay, C., Zhou, H. P., Biest, N., Chen, G., Cheng, M., Feng, X., Radionenko, M., Lu, F. and Fry, J. E. (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21, 1010–1019.PubMedCrossRefGoogle Scholar
  52. Huang, S., Gilbertson, L., Adams, T. H., Malloy, K., Reisenbigler, K., Birr, D., Snyder, M., Zhang, Q. and Luethy, M. (2004) Generation of marker-free trangenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res 13, 451–461.PubMedCrossRefGoogle Scholar
  53. Huang, X. and Wei, Z. (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tiss Org 83, 187–200.CrossRefGoogle Scholar
  54. Ishida, Y., Hiei, Y. and Komari, T. (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2, 1614–1621.PubMedCrossRefGoogle Scholar
  55. Ishida, Y., Murai, N., Kuraya, Y., Ohta, S., Saito, H., Hiei, Y. and Komari, T. (2004) Improved co-transformation of maize with vectors carrying two separate T-DNAs mediated by Agrobacterium tumefaciens. Plant Biotechnology 21, 57–63.Google Scholar
  56. Ishida, Y., Saito, H., Hiei, Y. and Komari, T. (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol 20, 57–66.Google Scholar
  57. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T. and Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14, 745–750.PubMedCrossRefGoogle Scholar
  58. Joersbo, M., Donaldson, I., Kreiberg, J., Petersen, S. G., Brunstedt, J. and Okkels, F. T. (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breeding 4, 111–117.CrossRefGoogle Scholar
  59. Kaeppler, H. F., Somers, D. A., Rines, H. W. and Cockburn, A. F. (1992) Silicon carbide fiber-mediated stable transformation of plant cells. Theor Appl Genet 84, 560–566.CrossRefGoogle Scholar
  60. Kikkert, J. R., Vidal, J. R. and Reisch, B. I. (2005) Stable transformation of plant cells by particle bombardment/biolistics. In: L. Peña (Eds.), Transgenic Plants: Methods and Protocols. Humana Press, Totowa, NJ, pp. 61–78.Google Scholar
  61. Klein, T. M., Wolf, E. D., Wu, R. and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70–73.CrossRefGoogle Scholar
  62. Komari, T. (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9, 303–306.CrossRefGoogle Scholar
  63. Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10, 165–174.PubMedCrossRefGoogle Scholar
  64. Komari, T., Takakura, Y., Ueki, J., Kato, N., Ishida, Y. and Hiei, Y. (2006) Binary vectors and super-binary vectors. In: K. Wang (Eds.), Agrobacterium Protocols. Humana Press, Totowa, NJ, pp. 15–41.CrossRefGoogle Scholar
  65. Koncz, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204, 383–396.CrossRefGoogle Scholar
  66. Koziel, G. M., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M. R., Merlin, E., Rhodes, R., Warren, G. W., Wright, M. S. and Evola, S. V. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11, 194–200.CrossRefGoogle Scholar
  67. Krakowsky, M. D., Lee, M., Garay, L., Woodman-Clikeman, W., Long, M. J., Sharopova, N., Frame, B. and Wang, K. (2006) Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theor Appl Genet 113, 821–830.PubMedCrossRefGoogle Scholar
  68. Kumar, S., Allen, G. C. and Thompson, W. F. (2006). Gene targeting in plants: fingers on the move. Trends Plant Sci 11, 159–161.PubMedCrossRefGoogle Scholar
  69. Kuraya, Y., Ohta, S., Fukuda, M., Hiei, Y., Murai, N., Hamada, K., Ueki, J., Imaseki, H. and Komari, T. (2004) Suppression of transfer of non-T-DNA ‘vector backbone’ sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens. Mol Breeding 14, 309–320.CrossRefGoogle Scholar
  70. Laursen, C. M., Krzyzek, R. A., Flick, C. E., Anderson, P. C. and Spencer, T. M. (1994) Production of fertile transgenic maize by electroporation of suspension culture cells. Plant Mol Biol 24, 51–61.PubMedCrossRefGoogle Scholar
  71. Li, W., Masilmany, P., Kasha, K. J. and Pauls, K. P. (2002) Development, tissue culture, and genotypic factors affecting plant regeneration from shoot apical meristems of germinated Zea mays L. seedlings. In Vitro Cell Dev Biol-Plant 38, 285–292.CrossRefGoogle Scholar
  72. Li, X., Volrath, S. L., Nicholl, D. B. G., Chilcott, C. E., Johnson, M. A., Ward, E. R. and Law, M. D. (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133, 736–747.PubMedCrossRefGoogle Scholar
  73. Lloyd, A., Plaisier, C. L., Carroll, D. and Drews, G. N. (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102, 2232–2237.PubMedCrossRefGoogle Scholar
  74. Lowe, B., Way, M. M., Kumpf, J. M., Rout, G. R., Warner, D., Johnson, R., Armstrong, C. L., Spencer, M. T. and Chomet, P. S. (2006) Marker assisted breeding for transformability in maize. Mol Breeding 18, 229–239.CrossRefGoogle Scholar
  75. Lowe, K., Bowen, B., Hoerster, G., Ross, M., Bond, D., Pierce, D. and Gordon-Kamm, B. (1995) Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 13, 677–682.CrossRefGoogle Scholar
  76. Maliga, P. (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55, 289–313.PubMedCrossRefGoogle Scholar
  77. Mankin, S. L., Allen, G. C., Phelan, T., Spiker, S. and Thompson, W. F. (2003) Elevation of transgene expression level by flanking matrix attachment regions (MAR) is promoter dependent: a study of the interactions of six promoters with the RB7 3′ MAR. Transgenic Res 12, 3–12.PubMedCrossRefGoogle Scholar
  78. Matsubayashi, Y., Takagi, L. and Sakagami, Y. (1997) Phytosulfokine-alpha, a sulfated pentapeptide, stimulates the proliferation of rice cells by means of specific high- and low-affinity binding sites. Proc Natl Acad Sci USA 94, 13357–13362.PubMedCrossRefGoogle Scholar
  79. Matzke, A.J., and Matzke, M.A. (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1, 142–148.PubMedCrossRefGoogle Scholar
  80. McCabe, D. and Christou, P. (1993) Direct DNA transfer using electric discharge particle acceleration (ACCELL™ technology). Plant Cell, Tiss Org 33, 227–236.CrossRefGoogle Scholar
  81. McCormac, A. C., Fowler, M. R., Chen, D. F. and Elliott, M. C. (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10, 143–155.PubMedCrossRefGoogle Scholar
  82. Miki, B. and McHugh, S. (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107, 193–232.PubMedCrossRefGoogle Scholar
  83. Miller, M., Tagliani, L., Wang, N., Berka, B., Bidney, D. and Zhao, Z. Y. (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11, 381–396.PubMedCrossRefGoogle Scholar
  84. Morrish, F., Songstad, D. D., Armstrong, C. L. and Fromm, M. (1993) Microprojectile bombardment: A method for the production of transgenic cereal crop plants and the functional analysis of genes. In: A. Hiatt (Eds.), Transgenic Plants: Fundamentals and Applications. Marcel Dekker, Inc., New York, pp. 133–171.Google Scholar
  85. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15, 473–497.CrossRefGoogle Scholar
  86. Negrotto, D., Jolley, M., Beer, S., Wenck, A. R. and Hansen, G. (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19, 798–803.CrossRefGoogle Scholar
  87. Nishimura, A., Ashikari, M., Lin, S., Takashi, T., Angeles, E. R., Yamamoto, T. and Matsuoka, M. (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA 102, 11940–11944.PubMedCrossRefGoogle Scholar
  88. O'Connor-Sánchez, A., Cabrera-Ponce, J. L., Valdez-Melara, M., Téllez-Rodríguez, P., Pons-Hernández, J. L. and Herrera-Estrella, L. (2002) Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic-like structures derived from shoot tips. Plant Cell Rep 21, 302–312.CrossRefGoogle Scholar
  89. Odell, J., Caimi, P., Sauer, B. and Russell, S. (1990) Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet 223, 369–378.PubMedCrossRefGoogle Scholar
  90. Ohta, S., Mita, S., Hattori, T. and Nakamura, S. (1990) Construction and expression in tobacco of a beta-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31, 805–813.Google Scholar
  91. Ooms, G., Hooykaas, P. J., Van Veen, R. J., Van Beelen, P., Regensburg-Tuink, T. J. and Schilperoort, R. A. (1982) Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7, 15–29.PubMedCrossRefGoogle Scholar
  92. Ow, D. W. (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48, 183–200.PubMedCrossRefGoogle Scholar
  93. Ow, D. W. (2005) Transgene management via multiple site-specific recombination systems. In Vitro Cell Dev Biol-Plant, 41, 213–219.CrossRefGoogle Scholar
  94. Ow, D. W. (2007) GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol 18, 115–120.PubMedCrossRefGoogle Scholar
  95. Pawlowski, W. P. and Somers, D. A. (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6, 17–30.PubMedCrossRefGoogle Scholar
  96. Pawlowski, W. P. and Somers, D. A. (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci USA 95, 12106–12110.PubMedCrossRefGoogle Scholar
  97. Paz, M., Shou, H., Guo, Z.-B., Zhang, Z.-Y., Banerjee, A. and Wang, K. (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136, 167–179.CrossRefGoogle Scholar
  98. Pescitelli, S. M. and Sukhapinda, K. (1995) Stable transformation via electroporation into maize Type II callus and regeneration of fertile transgenic plants. Plant Cell Rep 14, 712–716.CrossRefGoogle Scholar
  99. Petolino, J. F., Hopkins, N. L., Kosegi, B. D. and Skokut, M. (2000) Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Rep 19, 781–786.CrossRefGoogle Scholar
  100. Porteus, M. H. and Carroll, D. (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23, 967–973.PubMedCrossRefGoogle Scholar
  101. Potrykus, I., Bilang, R., Fütterer, J., Sautter, C., Schrott, M. and Spangenberg, G. (1998) Genetic engineering of crop plants. In: A. Altman (Eds.), Agricultural Biotechnology. Marcel Dekker, Inc., New York, pp. 119–159.Google Scholar
  102. Potrykus, I. and Spangenberg, G. (1995) Gene Transfer to Plants. Springer-Verlag, Berlin.Google Scholar
  103. Primich-Zachwieja, S. and Minocha, S. C. (1991) Induction of virulence response in Agrobacterium tumefaciens by tissue explants of various plant species. Plant Cell Rep 10, 545–549.CrossRefGoogle Scholar
  104. Quan, R., Shang, M., Zhang, H., Zhao, Y. and Zhang, J. (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166, 141–149.CrossRefGoogle Scholar
  105. Rhodes, C. A., Pierce, D. A., Mettler, I. J., Mascarenhas, D. and Detmer, J. J. (1988) Genetically transformed maize plants from protoplasts. Science 240, 204–207.PubMedCrossRefGoogle Scholar
  106. Schocher, R. J., Shillito, R. D., Saul, M. W., Paszkowski, J. and Potrykus, I. (1986) Co-transformation of unlinked foreign genes into plants by direct gene transfer. Bio/Technology 4, 1093–1096.CrossRefGoogle Scholar
  107. Shou, H., Frame, B., Whitham, S. and Wang, K. (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breeding 13, 201–208.CrossRefGoogle Scholar
  108. Sidorov, V., Gilbertson, L., Addae, P. and Duncan, D. R. (2006) Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep 25, 320–328.PubMedCrossRefGoogle Scholar
  109. Songstad, D. D., Armstrong, C. L. and Petersen, W. L. (1991) Silver Nitrate increases Type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep 9, 699–702.CrossRefGoogle Scholar
  110. Songstad, D. D., Armstrong, C. L., Petersen, W. L., Hairston, B. and Hinchee, M. A. (1996) Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell Dev Biol 32, 179–183.CrossRefGoogle Scholar
  111. Southgate, E. M., Davey, M. R., Power, J. B. and Westcott, R. J. (1998) A comparison of methods for direct gene transfer into maize (Zea mays L.). In Vitro Cell Dev Biol-Plant 34, 218–224.CrossRefGoogle Scholar
  112. Srivastava, V., Ariza-Nieto, M. and Wilson, A., J. (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2, 169–179.PubMedCrossRefGoogle Scholar
  113. Sticklen, M. B. and Oraby, H. F. (2005) Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell Dev Biol-Plant 41, 187–200.CrossRefGoogle Scholar
  114. Terada, R., Urawa, H., Inagaki, Y., Tsugane, K., and Iida, S. (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20: 1030–1034.PubMedCrossRefGoogle Scholar
  115. Tingay, S., McElroy, D., Kalla, R., Fieg, S. J., Wang, M.-B., Thornton, S. and Brettell, R. (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11, 1369–1376.CrossRefGoogle Scholar
  116. Torney, F., Frame, B. R. and Wang, K. (2007) Maize. In: E.-C. Pua and M. R. Davey (Eds.), Transgenic Crops IV. Springer, Berlin Heidelberg, pp. 73–105.CrossRefGoogle Scholar
  117. Trick, H. N. and Finer, J. J. (1997) SAAT: Sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6, 1–8.CrossRefGoogle Scholar
  118. Ueki, J., Komari, T. and Imaseki, H. (2004) Enhancement of reporter-gene expression by insertions of two introns in maize and tobacco protoplasts. Plant Biotechnol 21, 15–24.Google Scholar
  119. Vain, P., McMullen, M. D. and Finer, J. J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12, 84–88.CrossRefGoogle Scholar
  120. Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L. and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220, 245–250.PubMedCrossRefGoogle Scholar
  121. Walters, D. A., Vetsch, C. S., Potts, D. E. and Lundquist, R. C. (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol Biol 18, 189–200.PubMedCrossRefGoogle Scholar
  122. Wan, Y., Widholm, J. M. and Lemaux, P. G. (1995) Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196, 7–14.CrossRefGoogle Scholar
  123. Wang, A. S., Evans, R. A., Altendorf, P. R., Hanten, J. A., Doyle, M. C. and Rosichan, J. L. (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19, 654–660.CrossRefGoogle Scholar
  124. Wang, K., Frame, B. R. and Marcell, L. (2003) Maize Genetic Transformation. In: P. K. Jaiwal and R. P. Singh (Eds.), Plant Genetic Engineering: improvement of food crops. Sci-Tech Publication, Houston, Texas, USA, pp. 175–217.Google Scholar
  125. Wenck, A., Czako, M., Kanevski, I. and Marton, L. (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 34, 913–922.PubMedCrossRefGoogle Scholar
  126. Wright, D. A., Townsend, J. A., Winfrey, R. J., Jr., Irwin, P. A., Rajagopal, J., Lonosky, P. M., Hall, B. D., Jondle, M. D. and Voytas, D. F. (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44, 693–705.PubMedCrossRefGoogle Scholar
  127. Wright, M., Dawson, J., Dunder, E., Suttie, J., Reed, J., Kramer, C., Chang, Y., Novitzky, R., Wang, H. and Artim-Moore, L. (2001) Efficient biolistic transformation of maize (Zea may L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20, 429–436.CrossRefGoogle Scholar
  128. Wu, H., Sparks, C. A. and Jones, H. D. (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breeding 18, 195–208.CrossRefGoogle Scholar
  129. Yu, W., Han, F., Gao, Z., Vega, J. M. and Birchler, J. A. (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104, 8924–8929.PubMedCrossRefGoogle Scholar
  130. Yu, W., Lamb, J. C., Han, F. and Birchler, J. A. (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103, 17331–17336.PubMedCrossRefGoogle Scholar
  131. Zhang, S., Williams-Carrier, R. and Lemaux, P. G. (2002) Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep 21, 263–270.CrossRefGoogle Scholar
  132. Zhang, W., Subbarao, S., Addae, P., Shen, A., Armstrong, C., Peschke, V. and Gilbertson, L. (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107, 1157–1168.PubMedCrossRefGoogle Scholar
  133. Zhao, Z. Y., Cai, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J. and Pierce, D. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44, 789–798.PubMedCrossRefGoogle Scholar
  134. Zhao, Z. Y., Gu, W., Cai, T., Tagliani, L. A., Hondred, D., Bond, D., Krell, S., Rudert, M. L., Bruce, W. B. and Pierce, D. A. (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newsl 72, 34–37.Google Scholar
  135. Zhao, Z.-Y., Gu, W., Cai, T., Tagliani, L. A., Hondred, D., Bond, D., Schroeder, S., Rudert, M. and Pierce, D. A. (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breeding 8, 323–333.CrossRefGoogle Scholar
  136. Zhong, G. Y., Peterson, D., Delaney, D. E., Bailey, M., Witcher, D. R., Register, J. C., III, Bond, D., Li, C. P., Marshall, L., Kulisek, E., Ritland, D., Meyer, T., Hood, E. E. and Howard, J. A. (1999) Commercial production of aprotinin in transgenic maize seeds. Mol Breeding 5, 345–356.CrossRefGoogle Scholar
  137. Zhong, H., Srinivasan, C. and Sticklen, M. B. (1992) In-vitro morphogenesis of corn (Zea mays L.). Planta 187, 483–489.CrossRefGoogle Scholar
  138. Zhong, H., Sun, B., Warkentin, D., Zhang, S., Wu, R., Wu, T. and Sticklen, M. B. (1996) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol 110, 1097–1107.PubMedGoogle Scholar
  139. Zhou, H., Arrowsmith, J. W., Fromm, M. E., Hironaka, C. M., Taylor, M. L., Rodriguez, D. J., Pajeau, M., Brown, S. M., Santino, C. G. and Fry, J. E. (1995) Glyphosate-tolerant CP4 and GOX gene as a selectable marker in wheat transformation. Plant Cell Rep 15, 159–163.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for Plant Transformation and Department of AgronomyIowa State UniversityAmesUSA
  2. 2.Plant Innovation CenterJapan Tobacco Inc.IwataJapan

Personalised recommendations