Skip to main content

Maize Transformation

  • Chapter
Handbook of Maize

Plant genetic transformation technologies have brought fundamental changes to both plant biology laboratory research as well as to modern agricultural field practices. Once a recalcitrant plant for tissue culture and gene delivery, maize is becoming one of the most targeted cereal crops using genetic transformation for both basic and applied purposes. This chapter provides a brief review of the history of maize transformation technology development, but focuses extensively on technical aspects of the methodology, including DNA delivery systems, target tissues and genotypes, selectable markers for transformation, and various issues related to integration and expression of transgenes. Some recent observations and improvements from two maize transformation groups are discussed. It is anticipated that increasing genomics information will assist further enhancement of maize transformation technology leading to more rapid progress in understanding and improvement of this important crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadabadi, M., Ruf, S. and Bock, R. (2007) A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 16, 437–448.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. L. (1999) The first decade of maize transformation: a review and future perspective. Maydica 44, 101–109.

    Google Scholar 

  • Armstrong, C. L., Green, C. E. and Phillips, R. L. (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet Coop Newsl 65, 92–93.

    Google Scholar 

  • Armstrong, C. L., Petersen, W. L., Buchholz, W. G., Bowen, B. A. and Sulc, S. L. (1990) Factors affecting PEG-mediated stable transformation of maize protoplasts. Plant Cell Rep 9, 335–339.

    Article  CAS  Google Scholar 

  • Arnold, N., Bauer, T., Collingwood, T., Dekelver, R., Doyon, Y., Gao, Z., McCaskill, D., Miller, J., Mitchell, J., Moehle, E., Rebar, E., Rock, J., Rowland, L., Shukla, V., Simpson, M., Skokut, M., Urnov, F., Worden, S., Yau, K. and Zhang, L. (2007) Application of designed zinc-finger protein technology in plants. 2007 Botany & Plant Biology Joint Congress, Chicago, IL, American Society of Plant Biologists. pp. 248–249 (P44015).

    Google Scholar 

  • Bowman, J. L. and Eshed, Y. (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5, 110–115.

    Article  PubMed  CAS  Google Scholar 

  • Brettschneider, R., Becker, D. and Lörz, H. (1997) Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl Genet 94, 737–748.

    Article  CAS  Google Scholar 

  • Carvalho, C. H. S., Bohorova, N., Bordallo, P. N., Abreu, L. L., Valicente, F. H., Bressan, W. and Paiva, E. (1997) Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep 17, 73–76.

    Article  CAS  Google Scholar 

  • Carlson, S. R., Rudgers, G. W., Zieler, H., Mach, J. M., Luo, S., Grunden, E., Krol, C., Copenhaver, G. P., Preuss, D. (2007) Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLOS Genetics 3, 1965–1974.

    Article  PubMed  CAS  Google Scholar 

  • Che, P., Love, T. M., Frame, B. R., Wang, K., Carriquiry, A. L. and Howell, S. H. (2006) Gene expression patterns during somatic embryo development and germination in maize Hi-II callus cultures. Plant Mol Biol 62, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, M., Fry, J. E., Pang, S., Zhou, H., Hironaka, C. M., Duncan, D. R., Conner, T. W. and Wan, Y. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115, 971–980.

    PubMed  CAS  Google Scholar 

  • Chu, C. C., Wang, C. C., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y. and Bi, F. Y. (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci Sinica 18, 659–668.

    Google Scholar 

  • Daley, M., Knauf, V. C., Summerfelt, K. R. and Turner, J. C. (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17, 489–496.

    Article  CAS  Google Scholar 

  • Danilova, S. A. and Dolgikh, Y. I. (2005) Optimization of Agrobacterium (Agrobacterium tumefaciens) transformation of maize embryogenic callus. Russian Journal of Plant Physiology 52, 535–541.

    Article  CAS  Google Scholar 

  • Day, C. D., Lee, E., Kobayashi, J., Holappa, L. D., Albert, H., and Ow, D. W. (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14, 2869–2880.

    Article  PubMed  CAS  Google Scholar 

  • De Block, M. and Debrouwer, D. (1991) Two T-DNA's co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82, 257–263.

    Article  Google Scholar 

  • De Buck, S., De Wilde, C., Van Montagu, M. and Depicker, A. (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol Breeding 6, 459–468.

    Article  Google Scholar 

  • Dennehey, B. K., Peterson, W. L., Ford-Santino, C., Pajeau, M. and Armstrong, C. L. (1994) Comparison of selective agents for use with the selectable marker gene bar in maize transformation. Plant Cell Tiss Org 36, 1–7.

    Article  CAS  Google Scholar 

  • Depicker, A., Herman, L., Jacobs, A., Schell, J. and Montagu, M. V. (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol Gen Genet 201, 477–484.

    Article  CAS  Google Scholar 

  • D'Halluin, K., Bonne, E., Bossut, M., De Beuckeleer, M. and Leemans, J. (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4, 1495–1505.

    Article  PubMed  Google Scholar 

  • Dunder, E., Dawson, J., Suttie, J. and Pace, G. (1995) Maize transformation by microprojectile bombardment of immature embryos. In: I. Potrykus and G. Spangenberg (Eds.), Gene Transfer to Plants. Springer-Verlag, Berlin, pp. 127–138.

    Google Scholar 

  • Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M. H. and Chandrasegaran, S. (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33, 5978–5990.

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma, H., Sugita, K., Matsunaga, E. and Yamakado, M. (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94, 2117–2121.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R., Wang, A. S., Hanten, J., Altendorf, P. and Mettler, I. (1996) A positive selection system for maize transformation. In Vitro Cell Dev Biol-Plant 32, 72A (abstract).

    Google Scholar 

  • Finer, J. J., Vain, P., Jones, M. W. and McMullen, M. D. (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11, 323–328.

    Article  CAS  Google Scholar 

  • Frame, B. R., Drayton, P. R., Bagnall, S. V., Lewnau, C. J., Bullock, W. P., Wilson, H. M., Dunwell, J. M., Thompson, J. A. and Wang, K. (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J 6, 941–948.

    Article  CAS  Google Scholar 

  • Frame, B. R., McMurray, J. M., Fonger, T. M., Main, M. L., Taylor, K. W., Torney, F. J., Paz, M. M. and Wang, K. (2006a) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25, 1024–1034.

    Article  CAS  Google Scholar 

  • Frame, B. R., Paque, T. and Wang, K. (2006b). Maize (Zea mays L.). In: K. Wang (Eds.), Agrobacterium Protocols (2nd edition). Humana Press Inc., Totowa, NJ, pp. 185–199.

    Chapter  Google Scholar 

  • Frame, B. R., Shou, H., Chikwamba, R. K., Zhang, Z., Xiang, C., Fonger, T. M., Pegg, S. E., Li, B., Nettleton, D. S., Pei, D. and Wang, K. (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129, 13–22.

    Article  PubMed  CAS  Google Scholar 

  • Frame, B. R., Zhang, H., Cocciolone, S. M., Sidorenko, L. V., Dietrich, C. R., Pegg, S. E., Zhen, S., Schnable, P. S. and Wang, K. (2000) Production of transgenic maize from bombarded Type II callus: Effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cellular and Developmental Biology Plant 36, 21–29.

    Article  Google Scholar 

  • Fromm, M. E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. and Klein, T. M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/technology 8, 833–839.

    Article  PubMed  CAS  Google Scholar 

  • Gelvin, S. B. (2003) Agrobacterium-mediated plant transformation: the biology behind the “genejockeying” tool. Microbiol Mol Biol Rev 67, 16–37.

    Article  PubMed  CAS  Google Scholar 

  • Gelvin, S. B. and Kim, S. I. (2007) Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochim Biophys Acta 1769, 410–421.

    PubMed  CAS  Google Scholar 

  • Golovkin, M. V., Ábrahám, M., Mórocz, S., Bottka, S., Fehér, A. and Dudits, D. (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci 90, 41–52.

    Article  CAS  Google Scholar 

  • Gordon-Kamm, W., Dilkes, B. P., Lowe, K., Hoerster, G., Sun, X., Ross, M., Church, L., Bunde, C., Farrell, J., Hill, P., Maddock, S., Snyder, J., Sykes, L., Li, Z., Woo, Y. M., Bidney, D. and Larkins, B. A. (2002) Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc Natl Acad Sci USA 99, 11975–11980.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm, W. J., Spencer, T. M., Mangano, M. L., Adams, T. R., Daines, R. J., Start, W. G., O'Brien, J. V., Chambers, S. A., Adams, W. R., Jr., Willetts, N. G., Rice, T. B., Mackey, C. J., Krueger, R. W., Kausch, A. P. and Lemaux, P. G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2, 603–618.

    Article  CAS  Google Scholar 

  • Gould, J., Devey, M., Hasegawa, O., Ulian, E. C., Peterson, G. and Smith, R. H. (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95, 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Graves, A. C. F. and Goldman, S. L. (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7, 43–50.

    Article  CAS  Google Scholar 

  • Graves, A. E., Goldman, S. L., Banks, S. W. and Graves, A. C. (1988) Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp., and Triticum aestivum. J Bacteriol 170, 2395–2400.

    PubMed  CAS  Google Scholar 

  • Grimsely, N., Hohn, T., Davies, J. W. and Hohn, B. (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325, 177–179.

    Article  Google Scholar 

  • Halweg, C., Thompson, W. F. and Spiker S. (2005) The rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: a flow cytometric study. 17, 418–429.

    CAS  Google Scholar 

  • Hansen, G. and Wright, M. S. (1999) Recent advances in the transformation of plants. Trends Plant Sci 4, 226–231.

    Article  PubMed  Google Scholar 

  • Hepburn, A. G., White, J., Pearson, L., Maunders, M. J., Clarke, L. E., Prescott, A. G. and Blundy, K. S. (1985) The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. J Gen Microbiol 131, 2961–2969.

    PubMed  CAS  Google Scholar 

  • Hernalsteens, J.-P., Thia-Toong, L., Schell, J. and Montagu, M. V. (1984) An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. The EMBO Journal 3, 3039–3041.

    PubMed  CAS  Google Scholar 

  • Hiei, Y., Ishida, H., Kasaoka, K. and Komari, T. (2006) Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Pant Cell Tiss Org 87, 233–243.

    Article  Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6, 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J. and Schilperoort, R. A. (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid plant genetics. Nature 303, 179–180.

    Article  CAS  Google Scholar 

  • Hood, E. E., Helmer, G. L., Fraley, R. T. and Chilton, M. D. (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168, 1291–1301.

    PubMed  CAS  Google Scholar 

  • Horikawa, Y., Yoshizumi, T. and Kakuta, H. (1997) Transformants through pollination of mature maize (Zea mays L.) pollen delivered bar gene by particle gun. Grassland Science 43, 117–123.

    CAS  Google Scholar 

  • Howe, A. R., Gasser, C. S., Brown, S. C., Padgette, S. R., Hart, J. J., Parker, G. B., Fromm, M. E. and Armstrong, C. L. (2002) Glyphosate as a selective agent for the production of fertile transgenic maize (Zea may L.) plants. Mol Breeding 10, 153–164.

    Article  CAS  Google Scholar 

  • Hu, T., Metz, S., Chay, C., Zhou, H. P., Biest, N., Chen, G., Cheng, M., Feng, X., Radionenko, M., Lu, F. and Fry, J. E. (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21, 1010–1019.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S., Gilbertson, L., Adams, T. H., Malloy, K., Reisenbigler, K., Birr, D., Snyder, M., Zhang, Q. and Luethy, M. (2004) Generation of marker-free trangenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res 13, 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X. and Wei, Z. (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tiss Org 83, 187–200.

    Article  Google Scholar 

  • Ishida, Y., Hiei, Y. and Komari, T. (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2, 1614–1621.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, Y., Murai, N., Kuraya, Y., Ohta, S., Saito, H., Hiei, Y. and Komari, T. (2004) Improved co-transformation of maize with vectors carrying two separate T-DNAs mediated by Agrobacterium tumefaciens. Plant Biotechnology 21, 57–63.

    CAS  Google Scholar 

  • Ishida, Y., Saito, H., Hiei, Y. and Komari, T. (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol 20, 57–66.

    CAS  Google Scholar 

  • Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T. and Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14, 745–750.

    Article  PubMed  CAS  Google Scholar 

  • Joersbo, M., Donaldson, I., Kreiberg, J., Petersen, S. G., Brunstedt, J. and Okkels, F. T. (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breeding 4, 111–117.

    Article  CAS  Google Scholar 

  • Kaeppler, H. F., Somers, D. A., Rines, H. W. and Cockburn, A. F. (1992) Silicon carbide fiber-mediated stable transformation of plant cells. Theor Appl Genet 84, 560–566.

    Article  Google Scholar 

  • Kikkert, J. R., Vidal, J. R. and Reisch, B. I. (2005) Stable transformation of plant cells by particle bombardment/biolistics. In: L. Peña (Eds.), Transgenic Plants: Methods and Protocols. Humana Press, Totowa, NJ, pp. 61–78.

    Google Scholar 

  • Klein, T. M., Wolf, E. D., Wu, R. and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70–73.

    Article  CAS  Google Scholar 

  • Komari, T. (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep 9, 303–306.

    Article  CAS  Google Scholar 

  • Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10, 165–174.

    Article  PubMed  CAS  Google Scholar 

  • Komari, T., Takakura, Y., Ueki, J., Kato, N., Ishida, Y. and Hiei, Y. (2006) Binary vectors and super-binary vectors. In: K. Wang (Eds.), Agrobacterium Protocols. Humana Press, Totowa, NJ, pp. 15–41.

    Chapter  Google Scholar 

  • Koncz, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204, 383–396.

    Article  CAS  Google Scholar 

  • Koziel, G. M., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M. R., Merlin, E., Rhodes, R., Warren, G. W., Wright, M. S. and Evola, S. V. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11, 194–200.

    Article  CAS  Google Scholar 

  • Krakowsky, M. D., Lee, M., Garay, L., Woodman-Clikeman, W., Long, M. J., Sharopova, N., Frame, B. and Wang, K. (2006) Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theor Appl Genet 113, 821–830.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Allen, G. C. and Thompson, W. F. (2006). Gene targeting in plants: fingers on the move. Trends Plant Sci 11, 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Kuraya, Y., Ohta, S., Fukuda, M., Hiei, Y., Murai, N., Hamada, K., Ueki, J., Imaseki, H. and Komari, T. (2004) Suppression of transfer of non-T-DNA ‘vector backbone’ sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens. Mol Breeding 14, 309–320.

    Article  Google Scholar 

  • Laursen, C. M., Krzyzek, R. A., Flick, C. E., Anderson, P. C. and Spencer, T. M. (1994) Production of fertile transgenic maize by electroporation of suspension culture cells. Plant Mol Biol 24, 51–61.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Masilmany, P., Kasha, K. J. and Pauls, K. P. (2002) Development, tissue culture, and genotypic factors affecting plant regeneration from shoot apical meristems of germinated Zea mays L. seedlings. In Vitro Cell Dev Biol-Plant 38, 285–292.

    Article  Google Scholar 

  • Li, X., Volrath, S. L., Nicholl, D. B. G., Chilcott, C. E., Johnson, M. A., Ward, E. R. and Law, M. D. (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133, 736–747.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, A., Plaisier, C. L., Carroll, D. and Drews, G. N. (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102, 2232–2237.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, B., Way, M. M., Kumpf, J. M., Rout, G. R., Warner, D., Johnson, R., Armstrong, C. L., Spencer, M. T. and Chomet, P. S. (2006) Marker assisted breeding for transformability in maize. Mol Breeding 18, 229–239.

    Article  CAS  Google Scholar 

  • Lowe, K., Bowen, B., Hoerster, G., Ross, M., Bond, D., Pierce, D. and Gordon-Kamm, B. (1995) Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 13, 677–682.

    Article  CAS  Google Scholar 

  • Maliga, P. (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55, 289–313.

    Article  PubMed  CAS  Google Scholar 

  • Mankin, S. L., Allen, G. C., Phelan, T., Spiker, S. and Thompson, W. F. (2003) Elevation of transgene expression level by flanking matrix attachment regions (MAR) is promoter dependent: a study of the interactions of six promoters with the RB7 3′ MAR. Transgenic Res 12, 3–12.

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi, Y., Takagi, L. and Sakagami, Y. (1997) Phytosulfokine-alpha, a sulfated pentapeptide, stimulates the proliferation of rice cells by means of specific high- and low-affinity binding sites. Proc Natl Acad Sci USA 94, 13357–13362.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, A.J., and Matzke, M.A. (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1, 142–148.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, D. and Christou, P. (1993) Direct DNA transfer using electric discharge particle acceleration (ACCELL™ technology). Plant Cell, Tiss Org 33, 227–236.

    Article  CAS  Google Scholar 

  • McCormac, A. C., Fowler, M. R., Chen, D. F. and Elliott, M. C. (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10, 143–155.

    Article  PubMed  CAS  Google Scholar 

  • Miki, B. and McHugh, S. (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107, 193–232.

    Article  PubMed  CAS  Google Scholar 

  • Miller, M., Tagliani, L., Wang, N., Berka, B., Bidney, D. and Zhao, Z. Y. (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11, 381–396.

    Article  PubMed  CAS  Google Scholar 

  • Morrish, F., Songstad, D. D., Armstrong, C. L. and Fromm, M. (1993) Microprojectile bombardment: A method for the production of transgenic cereal crop plants and the functional analysis of genes. In: A. Hiatt (Eds.), Transgenic Plants: Fundamentals and Applications. Marcel Dekker, Inc., New York, pp. 133–171.

    Google Scholar 

  • Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15, 473–497.

    Article  CAS  Google Scholar 

  • Negrotto, D., Jolley, M., Beer, S., Wenck, A. R. and Hansen, G. (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19, 798–803.

    Article  CAS  Google Scholar 

  • Nishimura, A., Ashikari, M., Lin, S., Takashi, T., Angeles, E. R., Yamamoto, T. and Matsuoka, M. (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA 102, 11940–11944.

    Article  PubMed  CAS  Google Scholar 

  • O'Connor-Sánchez, A., Cabrera-Ponce, J. L., Valdez-Melara, M., Téllez-Rodríguez, P., Pons-Hernández, J. L. and Herrera-Estrella, L. (2002) Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic-like structures derived from shoot tips. Plant Cell Rep 21, 302–312.

    Article  CAS  Google Scholar 

  • Odell, J., Caimi, P., Sauer, B. and Russell, S. (1990) Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet 223, 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, S., Mita, S., Hattori, T. and Nakamura, S. (1990) Construction and expression in tobacco of a beta-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31, 805–813.

    CAS  Google Scholar 

  • Ooms, G., Hooykaas, P. J., Van Veen, R. J., Van Beelen, P., Regensburg-Tuink, T. J. and Schilperoort, R. A. (1982) Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7, 15–29.

    Article  PubMed  CAS  Google Scholar 

  • Ow, D. W. (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48, 183–200.

    Article  PubMed  CAS  Google Scholar 

  • Ow, D. W. (2005) Transgene management via multiple site-specific recombination systems. In Vitro Cell Dev Biol-Plant, 41, 213–219.

    Article  CAS  Google Scholar 

  • Ow, D. W. (2007) GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol 18, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, W. P. and Somers, D. A. (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6, 17–30.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, W. P. and Somers, D. A. (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci USA 95, 12106–12110.

    Article  PubMed  CAS  Google Scholar 

  • Paz, M., Shou, H., Guo, Z.-B., Zhang, Z.-Y., Banerjee, A. and Wang, K. (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136, 167–179.

    Article  CAS  Google Scholar 

  • Pescitelli, S. M. and Sukhapinda, K. (1995) Stable transformation via electroporation into maize Type II callus and regeneration of fertile transgenic plants. Plant Cell Rep 14, 712–716.

    Article  CAS  Google Scholar 

  • Petolino, J. F., Hopkins, N. L., Kosegi, B. D. and Skokut, M. (2000) Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Rep 19, 781–786.

    Article  CAS  Google Scholar 

  • Porteus, M. H. and Carroll, D. (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23, 967–973.

    Article  PubMed  CAS  Google Scholar 

  • Potrykus, I., Bilang, R., Fütterer, J., Sautter, C., Schrott, M. and Spangenberg, G. (1998) Genetic engineering of crop plants. In: A. Altman (Eds.), Agricultural Biotechnology. Marcel Dekker, Inc., New York, pp. 119–159.

    Google Scholar 

  • Potrykus, I. and Spangenberg, G. (1995) Gene Transfer to Plants. Springer-Verlag, Berlin.

    Google Scholar 

  • Primich-Zachwieja, S. and Minocha, S. C. (1991) Induction of virulence response in Agrobacterium tumefaciens by tissue explants of various plant species. Plant Cell Rep 10, 545–549.

    Article  CAS  Google Scholar 

  • Quan, R., Shang, M., Zhang, H., Zhao, Y. and Zhang, J. (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166, 141–149.

    Article  CAS  Google Scholar 

  • Rhodes, C. A., Pierce, D. A., Mettler, I. J., Mascarenhas, D. and Detmer, J. J. (1988) Genetically transformed maize plants from protoplasts. Science 240, 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Schocher, R. J., Shillito, R. D., Saul, M. W., Paszkowski, J. and Potrykus, I. (1986) Co-transformation of unlinked foreign genes into plants by direct gene transfer. Bio/Technology 4, 1093–1096.

    Article  CAS  Google Scholar 

  • Shou, H., Frame, B., Whitham, S. and Wang, K. (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breeding 13, 201–208.

    Article  CAS  Google Scholar 

  • Sidorov, V., Gilbertson, L., Addae, P. and Duncan, D. R. (2006) Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep 25, 320–328.

    Article  PubMed  CAS  Google Scholar 

  • Songstad, D. D., Armstrong, C. L. and Petersen, W. L. (1991) Silver Nitrate increases Type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep 9, 699–702.

    Article  CAS  Google Scholar 

  • Songstad, D. D., Armstrong, C. L., Petersen, W. L., Hairston, B. and Hinchee, M. A. (1996) Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell Dev Biol 32, 179–183.

    Article  Google Scholar 

  • Southgate, E. M., Davey, M. R., Power, J. B. and Westcott, R. J. (1998) A comparison of methods for direct gene transfer into maize (Zea mays L.). In Vitro Cell Dev Biol-Plant 34, 218–224.

    Article  CAS  Google Scholar 

  • Srivastava, V., Ariza-Nieto, M. and Wilson, A., J. (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Sticklen, M. B. and Oraby, H. F. (2005) Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell Dev Biol-Plant 41, 187–200.

    Article  CAS  Google Scholar 

  • Terada, R., Urawa, H., Inagaki, Y., Tsugane, K., and Iida, S. (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20: 1030–1034.

    Article  PubMed  CAS  Google Scholar 

  • Tingay, S., McElroy, D., Kalla, R., Fieg, S. J., Wang, M.-B., Thornton, S. and Brettell, R. (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11, 1369–1376.

    Article  CAS  Google Scholar 

  • Torney, F., Frame, B. R. and Wang, K. (2007) Maize. In: E.-C. Pua and M. R. Davey (Eds.), Transgenic Crops IV. Springer, Berlin Heidelberg, pp. 73–105.

    Chapter  Google Scholar 

  • Trick, H. N. and Finer, J. J. (1997) SAAT: Sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6, 1–8.

    Article  Google Scholar 

  • Ueki, J., Komari, T. and Imaseki, H. (2004) Enhancement of reporter-gene expression by insertions of two introns in maize and tobacco protoplasts. Plant Biotechnol 21, 15–24.

    CAS  Google Scholar 

  • Vain, P., McMullen, M. D. and Finer, J. J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12, 84–88.

    Article  Google Scholar 

  • Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L. and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220, 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Walters, D. A., Vetsch, C. S., Potts, D. E. and Lundquist, R. C. (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol Biol 18, 189–200.

    Article  PubMed  CAS  Google Scholar 

  • Wan, Y., Widholm, J. M. and Lemaux, P. G. (1995) Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196, 7–14.

    Article  CAS  Google Scholar 

  • Wang, A. S., Evans, R. A., Altendorf, P. R., Hanten, J. A., Doyle, M. C. and Rosichan, J. L. (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19, 654–660.

    Article  CAS  Google Scholar 

  • Wang, K., Frame, B. R. and Marcell, L. (2003) Maize Genetic Transformation. In: P. K. Jaiwal and R. P. Singh (Eds.), Plant Genetic Engineering: improvement of food crops. Sci-Tech Publication, Houston, Texas, USA, pp. 175–217.

    Google Scholar 

  • Wenck, A., Czako, M., Kanevski, I. and Marton, L. (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 34, 913–922.

    Article  PubMed  CAS  Google Scholar 

  • Wright, D. A., Townsend, J. A., Winfrey, R. J., Jr., Irwin, P. A., Rajagopal, J., Lonosky, P. M., Hall, B. D., Jondle, M. D. and Voytas, D. F. (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44, 693–705.

    Article  PubMed  CAS  Google Scholar 

  • Wright, M., Dawson, J., Dunder, E., Suttie, J., Reed, J., Kramer, C., Chang, Y., Novitzky, R., Wang, H. and Artim-Moore, L. (2001) Efficient biolistic transformation of maize (Zea may L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20, 429–436.

    Article  CAS  Google Scholar 

  • Wu, H., Sparks, C. A. and Jones, H. D. (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breeding 18, 195–208.

    Article  CAS  Google Scholar 

  • Yu, W., Han, F., Gao, Z., Vega, J. M. and Birchler, J. A. (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104, 8924–8929.

    Article  PubMed  CAS  Google Scholar 

  • Yu, W., Lamb, J. C., Han, F. and Birchler, J. A. (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103, 17331–17336.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Williams-Carrier, R. and Lemaux, P. G. (2002) Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep 21, 263–270.

    Article  CAS  Google Scholar 

  • Zhang, W., Subbarao, S., Addae, P., Shen, A., Armstrong, C., Peschke, V. and Gilbertson, L. (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107, 1157–1168.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z. Y., Cai, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J. and Pierce, D. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44, 789–798.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Z. Y., Gu, W., Cai, T., Tagliani, L. A., Hondred, D., Bond, D., Krell, S., Rudert, M. L., Bruce, W. B. and Pierce, D. A. (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newsl 72, 34–37.

    Google Scholar 

  • Zhao, Z.-Y., Gu, W., Cai, T., Tagliani, L. A., Hondred, D., Bond, D., Schroeder, S., Rudert, M. and Pierce, D. A. (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breeding 8, 323–333.

    Article  CAS  Google Scholar 

  • Zhong, G. Y., Peterson, D., Delaney, D. E., Bailey, M., Witcher, D. R., Register, J. C., III, Bond, D., Li, C. P., Marshall, L., Kulisek, E., Ritland, D., Meyer, T., Hood, E. E. and Howard, J. A. (1999) Commercial production of aprotinin in transgenic maize seeds. Mol Breeding 5, 345–356.

    Article  CAS  Google Scholar 

  • Zhong, H., Srinivasan, C. and Sticklen, M. B. (1992) In-vitro morphogenesis of corn (Zea mays L.). Planta 187, 483–489.

    Article  CAS  Google Scholar 

  • Zhong, H., Sun, B., Warkentin, D., Zhang, S., Wu, R., Wu, T. and Sticklen, M. B. (1996) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol 110, 1097–1107.

    PubMed  CAS  Google Scholar 

  • Zhou, H., Arrowsmith, J. W., Fromm, M. E., Hironaka, C. M., Taylor, M. L., Rodriguez, D. J., Pajeau, M., Brown, S. M., Santino, C. G. and Fry, J. E. (1995) Glyphosate-tolerant CP4 and GOX gene as a selectable marker in wheat transformation. Plant Cell Rep 15, 159–163.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kan Wang , Bronwyn Frame or Yuji Ishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Wang, K., Frame, B., Ishida, Y., Komari, T. (2009). Maize Transformation. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_31

Download citation

Publish with us

Policies and ethics