The Birth of Maize Molecular Genetics

  • L. Curtis Hannah
  • Drew Schwartz

Long before recombinant DNA technology was invented, maize genetics was a vibrant and exciting science dominated by controlling elements, cytogenet-ics, gene mapping and heterosis. Genes were understood as mutationally-defined units of function that could be placed on chromosomes. Incorporation of the concept of DNA as genetic material and the central dogma of genetics (DNA ⇔ RNA ⇒ protein) into the thinking of maize geneticists occurred rapidly. But, the only way to propagate maize DNA was to plant a seed.

In this chapter, we provide a personal account of how maize molecular genetics came into existence. We focus on some of the original, urgent questions of maize genetics that required the tools of molecular biology for satisfying explanations. No pretense is implied concerning the completeness of the narrative below, and we emphasize that this is a personal account.


Transposable Element Alcohol Dehydrogenase Maize Endosperm Intragenic Recombination Zein Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennetzen, J.L., Swanson, J., Taylor, W. C., and Freeling, M (1984) DNA insertion in the first intron of maize Adhl affects message levels: Cloning of progenitor and mutant Adhl alleles. Proc. Natl. Acad. Sci. USA 81, 4125–4128PubMedCrossRefGoogle Scholar
  2. Benzer, S. (1955) Fine structure of a genetic region in bacteriophage. Proc. Natl. Acad. Sci. USA 41, 344–354PubMedCrossRefGoogle Scholar
  3. Burr, B., and Burr F. A. (1976) Zein synthesis in maize endosperm by polyribosomes attached to protein bodies. Proc. Natl. Acad Sci USA 73, 515–519PubMedCrossRefGoogle Scholar
  4. Dooner, H. K., and Nelson, O. E. (1977) Controlling element-induced alterations in UDPglucose-flavonoid glucosyltransferase enzyme specified by the bronze locus in maize. Proc. Natl. Acad Sci. USA 74, 5623–5627PubMedCrossRefGoogle Scholar
  5. Doring, H. P., Tillmann, E., and Starlinger, P. (1984) DNA sequence of the maize transposable element Dissociation. Nature 307, 127–130PubMedCrossRefGoogle Scholar
  6. Doring, H. P., and Starlinger, P. (1986) Molecular genetics of transposable elements in plants. Ann. Rev. of Genet. 20, 175–200Google Scholar
  7. Fedoroff, N., Wessler, S., and Shure, M. (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35, 235–242PubMedCrossRefGoogle Scholar
  8. Fedoroff, N. V., Furtek D. B., and Nelson. O. E. (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element activator (Ac). Proc. Natl Acad. Sci. USA 81, 3825–3829PubMedCrossRefGoogle Scholar
  9. Freeling, M., and Bennett, D. C. (1985) Maize Adhl. Ann. Rev. of Genet. 19, 297–323Google Scholar
  10. Gerlach, W. L, Pryor, A. J., Dennis, E. S., Ferl, R. J., Sachs, M. M. and Peacock W. J. (1982) cDNA cloning and induction of the alcohol dehydrogenase gene (Adhl) of maize. Proc. Natl Acad. Sci. USA 79: 2981–2985PubMedCrossRefGoogle Scholar
  11. Gierl, A., Saedler, H., and Peterson P. A. (1989) Maize transposable elements. Ann. Rev. Genet. 23, 71–85PubMedCrossRefGoogle Scholar
  12. Hannah, L. C., and Nelson, O. E. (1976) Characterization of ADP-glucose pyrophosphorylase from shrunken-2 and brittle-2 mutants of maize. Biochem. Genet. 14:547–560PubMedCrossRefGoogle Scholar
  13. Kodrzycki, R., Boston, R. S., and Larkins B. A. (1989) The opaque-2 Mutation of Maize Differentially Reduces Zein Gene Transcription. The Plant Cell 1, 105–114PubMedCrossRefGoogle Scholar
  14. Larkins, B. A., and Dalby, B. A. (1975) An in vitro synthesis of zein-like protein by maize polyribosomes. Biochem. Biophys. Res. Comm. 66, 1048–1054PubMedCrossRefGoogle Scholar
  15. McCarty, D. R., Settles, A. M., Suzuki, M., Tan, B. C., Latshaw, S., Porch, T., Robin, K., Baier, J., Avigne, W., Lai, J., Messing, J., Koch, K., and Hannah L.C. (2005) Steady-state transposon mutagenesis in inbred maize. Plant J. 44, 52–61PubMedCrossRefGoogle Scholar
  16. McClintock, B. (1965) The control of gene action in maize. Brookhaven Sym. in Biology 18, 162–184Google Scholar
  17. Mertz, E. T., Bates, L. S., and Nelson, O. E. (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 17, 279–80CrossRefGoogle Scholar
  18. Mullerneumann, M., Yoder, J. I., and Starlinger, P. (1984) The DNA sequence of the transposable element Ac of Zea mays. Mol. Gen. Genet. 198, 19–24CrossRefGoogle Scholar
  19. Nelson, O. E. (1968) Waxy locus in maize. 2, Location of controlling element alleles. Genetics 60, 507–532PubMedGoogle Scholar
  20. Nelson, O. E., and Rines, H.W. (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem. Biophys. Res. Commun. 9, 297–300PubMedCrossRefGoogle Scholar
  21. Nelson, O. E., Mertz, E. T., and Bates, L. S. (1965) Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150, 1469–1470PubMedCrossRefGoogle Scholar
  22. Pereira, A., Cuypers, H., Gierl, A., Schwarz-Sommer, Z., and Saedler, H. (1986) Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J. 5, 835–841PubMedGoogle Scholar
  23. Pohlman, R. R., Fedoroff, N. V., and Messing, J. (1984) The nucleotide sequence of the maize controlling element Activator. Cell 37, 635–643PubMedCrossRefGoogle Scholar
  24. Saedler, H., and Nevers, P. (1985) A molecular model of transposition in plants. EMBO J. 4, 585–590PubMedGoogle Scholar
  25. Schwartz, D., (1959) Genetic studies on enzymes in maize and endosperm. Science 159, 1287Google Scholar
  26. Schwartz, D., (1960A) Electrophoretic and immunochemical studies with endosperm proteins of maize mutants. Genetics 45, 1419–1427Google Scholar
  27. Schwartz, D., (1960B) Genetic studies on mutant enzymes in maize: Synthesis of hybrid enzymes by heterozygotes. Genetics 16, 1210–1215Google Scholar
  28. Schwartz, D., (1962) Genetic studies on mutant enzymes in maize. III. Control of gene action in the synthesis of the pH 7.5 esterase. Genetics 47,1609–1615PubMedGoogle Scholar
  29. Schwartz, D., (1963) Genetic studies on mutant enzymes in maize. I V. Comparison of pH 7.5 esterases synthesized in seedling and endosperm. Genetics 49, 373–377Google Scholar
  30. Schwartz, D., (1966) Genetic control of alcohol dehydrogenase in maize — gene duplication and repression. Proc. Natl. Acad. Sci. USA 56, 1431–1436PubMedCrossRefGoogle Scholar
  31. Schwartz, D., (1967) E1 esterase isozymes of maize: on the nature of the gene-controlled variation. Proc. Natl. Acad. Sci. 58, 568–575PubMedCrossRefGoogle Scholar
  32. Schwartz, D. (1969) Alcohol dehydrogenase in maize — genetic basis for multiple isozymes. Science. 164, 585–87PubMedCrossRefGoogle Scholar
  33. Schwartz, D. (1971) Genetic control of alcohol dehydrogenase — competition model for regulation of gene action. Genetics 67, 411–423PubMedGoogle Scholar
  34. Schwartz, D., and Endo, T. (1966) Alcohol dehydrogenase polymorphism in maize — simple and compound loci. Genetics 53, 709–715PubMedGoogle Scholar
  35. Schwartz, D., and Laughner, W. J. (1969) A molecular basis for heterosis. Science 166, 626–627PubMedCrossRefGoogle Scholar
  36. Smithies, O., (1955) Zone electrophoresis in starch gels. Biochem. J. 61, 629–641PubMedGoogle Scholar
  37. Sutton, W.D., Gerlach, W.L., Schwartz, D., and Peacock, W. J. (1984) Molecular analysis of Ds controlling element mutations at the ADH1 locus of maize. Science 223, 1265–1268PubMedCrossRefGoogle Scholar
  38. Wessler, S. R., Baran, G., and Varagona, M. (1987) The maize transposable element Ds is spliced from RNA. Science 237, 916–918PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Horticultural SciencesUniversity of FloridaFlorida
  2. 2.Department of BiologyIndiana UniversityUSA

Personalised recommendations