Transposon Resources for Forward and Reverse Genetics in Maize

  • Donald R. McCarty
  • Robert B. Meeley

The maize geneticists toolkit includes an impressive set of strategies for creating mutations that facilitate identifying genes based on phenotypes (forward genetics) and/or assigning phenotypes to genes identified by sequence (reverse genetics). Key to both forward and reverse genetics strategies are methods for construction and efficient molecular analysis of large, mutagenized maize populations that ideally contain mutations in all genes. Hence, as the technologies for high-throughput phenotype analysis of maize populations advance apace with DNA sequencing and genotyping technologies, the conventional distinction between forward and reverse genetics is likely to blur. Strategies for comprehensive mutagenesis of maize genes include TILLING (Till et al., 2004); RNAi (McGinnis et al., 2007); and transposon insertional mutagenesis, the focus of this chapter. These three approaches have complementary strengths and weaknesses with differences in relative cost per gene, precision, genetic background limitations, scalability, accessibility and relative coverage of the maize genome. While insertional mutagenesis is the most venerable of these technologies, resources based on mutations caused by defined DNA insertions are likely to have an enduring importance in functional genomics for several practical reasons: 1) compared to other types of mutations (e.g. point mutations) insertions are relatively easy to identify and map in the genome using conventional or high-throughput sequencing technologies, 2) large insertions are highly effective in causing significant disruptions of gene function (e.g. null mutations), and 3) the resulting loss-of-function mutations are genetically stable and typically recessive. Recessive, loss of function mutations are an important reference point for functional analysis of a gene.

Various DNA elements including random T-DNA insertions introduced by transformation (Alonso et al., 2003), engineered transposons (Muskett et al., 2003; Kolesnik et al., 2004; Raizada et al., 2003), as well as native transposons (Yamazaki et al., 2001) have been employed for large scale insertional mutagenesis of plant genomes. For maize, transposon-based resources are currently favored for several reasons: 1) the relative inefficiency of methods for transformation of maize limits production of large numbers of T-DNA lines; 2) maize is a pre-eminent model for transposon genetics with multiple genetically well-characterized transposon families; and 3) because maize is more easily out-crossed than self-pollinating species such as Arabidopsis and rice, plant populations containing large numbers of independent transpositions are comparatively easy to construct. The so-called “cut and paste” DNA transposons that have been the most favored for genomic resource development in maize include the Ac/Ds (Cowperthwaite et al., 2002; Kolkman et al., 2005) and Robertson's Mutator (Bensen et al., 1995, May et al., 2003; McCarty et al., 2005) systems. Each of these systems has well-characterized mechanisms enabling genetic control of transposon mobility in the genome. These transposon systems differ in properties that affect their suitability for functional genomics applications including: 1) copy number of active elements in the genome, 2) relative bias for insertion into gene sequences, and 3) propensity for transposition to linked sites.


Reverse Genetic Maize Genome Terminal Inverted Repeat Transposition Rate Terminal Inverted Repeat Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alleman, M. and M. Freeling (1986) TheMutransposable elements of maize: evidence for transposition and copy number regulation during development.Genetics112: 107–19.PubMedGoogle Scholar
  2. Alonso, J. M., A. N. Stepanova, T. J. Leisse, C. J. Kim, H. Chen, P. Shinn, D. K. Stevenson, J. Zimmerman, P. Barajas, R. Cheuk, C. Gadrinab, C. Heller, A. Jeske, E. Koesema, C. C. Meyers, H. Parker, L. Prednis, Y. Ansari, N. Choy, H. Deen, M. Geralt, N. Hazari, E. Hom, M. Karnes, C. Mulholland, R. Ndubaku, I. Schmidt, P. Guzman, L. Aguilar-Henonin, M. Schmid, D. Weigel, D. E. Carter, T. Marchand, E. Risseeuw, D. Brogden, A. Zeko, W. L. Crosby, C. C. Berry and J. R. Ecker (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana.Science301:653–7.PubMedCrossRefGoogle Scholar
  3. Bai, L., M. Singh, L. Pitt, M. Sweeney and T. P. Brutnell (2007) Generating novel allelic variation throughActivatorinsertional mutagenesis in maize.Genetics175:981–92.PubMedCrossRefGoogle Scholar
  4. Barkan, A. and R. A. Martienssen (1991) Inactivation of maize transposon-Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end ofMu1.Proc Natl Acad Sci, USA88:3502–3506.PubMedCrossRefGoogle Scholar
  5. Barski, A., S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones, Z. Wang, G. Wei, I. Chepelev and K. Zhao (2007) High-resolution profiling of histone methylations in the human genome.Cell129:823–37.PubMedCrossRefGoogle Scholar
  6. Benito, M. I. and V. Walbot (1994) The terminal, inverted repeat sequences ofMuDRare functionally active promoters in maize cells.Maydica39:255–264.Google Scholar
  7. Bennetzen, J. L. (1996) TheMutatortransposable element system of maize.Curr Top Microbiol Immunol20:195–229.Google Scholar
  8. Bensen, R. J., G. S. Johal, V. C. Crane, J. T. Tossberg, P. S. Schnable, R. B. Meeley and S. P. Briggs (1995) Cloning and characterization of the maize An1 gene.Plant Cell7:75–84.PubMedCrossRefGoogle Scholar
  9. Brutnell, T.P. and L. J. Conrad (2003) Transposon tagging using Activator (Ac) in maize.Methods Mol Biol23:157–76.Google Scholar
  10. Chandler, V. L. and K. J. Hardeman (1992) TheMuelements of Zea mays.Adv Genet3:77–122.CrossRefGoogle Scholar
  11. Chomet, P.S. (1994) Transposon tagging withMutator. InThe Maize Handbook(Freeling, M. and Walbot, V., eds). New York: Springer Verlag, pp. 243–249.Google Scholar
  12. Chuck, G., R. Meeley and S. Hake (1998) The control of maize spikelet meristem fate by the APETALA2-like geneindeterminate spikelet 1. Genes Dev12:1145–1154.PubMedCrossRefGoogle Scholar
  13. Conrad, L. J. and T. P. Brutnell (2005) Ac-immobilized, a stable source of Activator transposase that mediates sporophytic and gametophytic excision of Dissociation elements in maize.Genetics171:1999–2012.PubMedCrossRefGoogle Scholar
  14. Cowperthwaite, M., W. Park, Z. Xu, X. Yan, S. C. Maurais and H. K. Dooner (2002) Use of the transposon Ac as a gene-searching engine in the maize genome.Plant Cell14:713–26.PubMedCrossRefGoogle Scholar
  15. Cresse, A. D., S. H. Hulbert, W. E. Brown, J. R. Lucas and J. L. Bennetzen (1995)Mu1-related transposable elements of maize preferentially insert into low copy number DNA.Genetics140: 315–24.PubMedGoogle Scholar
  16. Das, L. and R. A. Martienssen (1995) Site-selected transposon mutagenesis at the hcf106 locus in maize.Plant Cell7: 287–94.PubMedCrossRefGoogle Scholar
  17. Dietrich, C. R., F. Cui, M. L. Packila, J. Li, D. A. Ashlock, B. J. Nikolau and P. S. Schnable (2002) MaizeMutransposons are targeted to the 5′ untranslated region of the gl8 gene and sequences flankingMutarget-site duplications exhibit nonrandom nucleotide composition throughout the genome.Genetics160: 697–716.PubMedGoogle Scholar
  18. Emrich, S. J., L. Li, T. J. Wen, M. D. Yandeau-Nelson, Y. Fu, L. Guo, H. H. Chou, S. Aluru, D. A. Ashlock and P. S. Schnable (2007) Nearly identical paralogs: implications for maize (Zea maysL.) genome evolution.Genetics175:429–39.PubMedCrossRefGoogle Scholar
  19. Emrich, S. J., S. Aluru, Y. Fu, T. J. Wen, M. Narayanan, L. Guo, D. A. Ashlock and P. S. Schnable (2004) A strategy for assembling the maize (Zea mays L.) genome.Bioinformatics20:140–7.PubMedCrossRefGoogle Scholar
  20. Eveland, A. L., D. R. McCarty and K. E. Koch (2008) Transcript Profiling by 3′UTR Sequencing Resolves Expression of Gene Families.Plant Physiol146:32–44.PubMedCrossRefGoogle Scholar
  21. Fernandes, J., Q. Dong, B. Schneider, D. J. Morrow, G. L. Nan, V. Brendel and V. Walbot (2004) Genome-wide mutagenesis of Zea mays L. using RescueMu transposons.Genome Biol5: R82.PubMedCrossRefGoogle Scholar
  22. Frey, M., C. Stettner and A. Gierl (1998) A general method for gene isolation in tagging approaches: Amplification of insertion mutagenised sites (AIMS).Plant J13:717–721.CrossRefGoogle Scholar
  23. Fu, S., R. Meeley and M. J. Scanlon (2002)Empty pericarp 2encodes a negative regulator of the heat shock response and is required for maize embryogenesis.Plant Cell14:3119–32.PubMedCrossRefGoogle Scholar
  24. Gallavotti, A., Q. Zhao, J. Kyozuka, R. B. Meeley, M. K. Ritter, J. F. Doebley, M. E. Pè and R. J. Schmidt (2004) The role of barren stalk1 in the architecture of maize.Nature432:630–5.PubMedCrossRefGoogle Scholar
  25. Gaut, B. S. and J. F. Doebley (1997) DNA sequence evidence for the segmental allotetraploid origin of maize.Proc Natl Acad Sci, USA94: 6809–6814PubMedCrossRefGoogle Scholar
  26. Gray, J., P. Close, S. Briggs and G. Johal (1997) A novel suppressor of cell death in plants encoded by theLls1gene of maize.Cell89:25–31PubMedCrossRefGoogle Scholar
  27. Golubovskaya, I. N., O. Hamant, L. Timofejeva, C. J. Wang, D. Braun, R. Meeley and W. Z. Cande (2006) Alleles ofafd1dissect REC8 functions during meiotic prophase I.J Cell Sci119:3306–15.PubMedCrossRefGoogle Scholar
  28. Hanley, S., D. Edwards, D. Stevenson, S. Haines, M. Hegarty, W. Schuch and K. J. Edwards (2000) Identification of transposon-tagged genes by the random sequencing of Mutator-tagged DNA fragments from Zea mays.Plant J23:557–66.PubMedCrossRefGoogle Scholar
  29. Hershberger, R. J., C. A. Warren and V. Walbot (1991)Mutatoractivity in maize correlates with the presence and expression of theMutransposable elementMu9. ProcNatl Acad Sci USA88:10198–202.PubMedCrossRefGoogle Scholar
  30. Holding, D. R., M. S. Otegui, B. Li, R. B. Meeley, T. Dam, B. G. Hunter, R. Jung and B. A. Larkins (2007) The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation.Plant Cell19:2569–82.PubMedCrossRefGoogle Scholar
  31. Kent, W. J. (2002) BLAT—the BLAST-like alignment tool.Genome Res12:656–64.PubMedGoogle Scholar
  32. Kolesnik, T., I. Szeverenyi, D. Bachmann, C. S. Kumar, S. Jiang, R. Ramamoorthy, M. Cai, Z. G. Ma, V. Sundaresan and S. Ramachandran (2004) Establishing an efficientAc/Dstagging system in rice: large-scale analysis of Ds flanking sequences.Plant J37:301–14.PubMedGoogle Scholar
  33. Kolkman, J. M., L. J. Conrad, P. R. Farmer, K. Hardeman, K. R. Ahern, P. E. Lewis, R. J. Sawers, S.Lebejko, P. Chomet and T. P. Brutnell (2005) Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis. Genetics 169: 981–95.PubMedCrossRefGoogle Scholar
  34. Li, J., L. C. Harper, I. Golubovskaya, C. R. Wang, D. Weber, R. B. Meeley, J. McElver, B. Bowen, W. Z. Cande and P. S. Schnable (2007) Functional analysis of maize RAD51 in meiosis and double-strand break repair.Genetics176:1469–82.PubMedCrossRefGoogle Scholar
  35. Lid, S. E., D. Gruis, R. Jung, J. A. Lorentzen, E. Ananiev, M. Chamberlin, X. Niu, R. Meeley, S. Nichols and O. A. Olsen (2002) Thedefective kernel 1(dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily.Proc Natl Acad Sci USA99:5460–5.PubMedCrossRefGoogle Scholar
  36. Lisch, D., P. Chomet and M. Freeling (1995) Genetic characterization of theMutatorsystem in maize: behavior and regulation ofMutransposons in a minimal line.Genetics139:1777–96.PubMedGoogle Scholar
  37. Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y. J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fi-erro, X. V. Gomes, B. C. Godwin, W. He, S. Helgesen, C. H. Ho, G. P. Irzyk, S. C. Jando, M. L. Alenquer, T. P. Jarvie, K. B. Jirage, J. B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. McDade, M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T. Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M. P. Weiner, P. Yu, R. F. Begley and J. M. Rothberg (2005) Genome sequencing in microfabricated high-density picolitre reactors.Nature437:376–80.PubMedGoogle Scholar
  38. Martienssen, R. A. and A. Baron (1994) Coordinate suppression of mutations caused byRobertson's mutatortransposons in maize.Genetics. 136:1157–70.PubMedGoogle Scholar
  39. May, B. P., H. Liu, E. Vollbrecht, L. Senior, P. D. Rabinowicz, D. Roh, X. Pan, L. Stein, M. Freeling, D. Alexander and R. A. Martienssen (2003) Maize-targeted mutagenesis: A knockout resource for maize.Proc Natl Acad Sci USA100:11541–6.PubMedCrossRefGoogle Scholar
  40. McCarty, D. R., A. M. Settles, M. Suzuki, B. C. Tan, S. Latshaw, T. Porch, K. Robin, J. Baier, W. Avigne, J. Lai, J. Messing, K. E. Koch and L. C. Hannah (2005) Steady-state transposon mutagenesis in inbred maize.Plant J44: 52–61.PubMedCrossRefGoogle Scholar
  41. McGinnis, K., N. Murphy, A. R. Carlson, A. Akula, C. Akula, H. Basinger, M. Carlson, P. Hermanson, N. Kovacevic, M. A. McGill, V. Seshadri, J. Yoyokie, K. Cone, H. F. Kaeppler, S. M. Kaeppler and N. M. Springer (2007) Assessing the efficiency of RNA interference for maize functional genomics.Plant Physiol143:1441–51.PubMedCrossRefGoogle Scholar
  42. Meeley, R. and S. Briggs (1995) Reverse genetics for maize.Maize Genetics News Letter69:67–82Google Scholar
  43. Mena, M., B. Ambrose, R. Meeley, S. Briggs, M. F. Yanofsky and R. J. Schmidt (1996) Diversification of C-function activity in maize flower development.Science274:1537–1540.PubMedCrossRefGoogle Scholar
  44. Muskett, P. R., L. Clissold, A. Marocco, P. S. Springer, R. Martienssen and C. Dean (2003) A resource of mapped dissociation launch pads for targeted insertional mutagenesis in the Arabidopsis genome.Plant Physiol132, 506–16.PubMedCrossRefGoogle Scholar
  45. Palmer, L. E., P. D. Rabinowicz, A. L. O'Shaughnessy, V. S. Balija, L. U. Nascimento, S. Dike, M. de la Bastide, R. A. Martienssen and W. R. McCombie (2003) Maize genome sequencing by methylation filtration.Science302: 2115–7.PubMedCrossRefGoogle Scholar
  46. Park, W. J., V. Kriechbaumer, A. Möller, M. Piotrowski, R. B. Meeley, A. Gierl and E. Glawischnig (2003) The Nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid.Plant Physiol133:794–802.PubMedCrossRefGoogle Scholar
  47. Pawlowski, W. P., I. N. Golubovskaya, L. Timofejeva, R. B. Meeley, W. F. Sheridan and W. Z.Cande (2004) Coordination of meiotic recombination, pairing, and synapsis by PHS1.Science303:89–92.PubMedCrossRefGoogle Scholar
  48. Porch, T. G., C. W. Tseung, E. A. Schmelz and A. M. Settles (2006) The maizeViviparous10/ Viviparous13locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis.Plant J45: 250–63.PubMedCrossRefGoogle Scholar
  49. Rabinowicz, P. D., K. Schutz, N. Dedhia, C. Yordan, L. D. Parnell, L. Stein, W. R. McCombie and R. A. Martienssen (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome.Nat Genet23:305–8.PubMedCrossRefGoogle Scholar
  50. Raizada, M.N. (2003) RescueMu protocols for maize functional genomics.Methods Mol Biol23: 37–58.Google Scholar
  51. Robertson, D. S. (1978) Characterization of a mutator system in maize.Mutat. Res51: 21–28.Google Scholar
  52. Robertson, D. S. (1980) The Timing ofMuActivity in Maize.Genetics94:969–978.PubMedGoogle Scholar
  53. Rudenko, G. and V. Walbot (2001) Expression and post-transcriptional regulation of maize transposable elementMuDRand its derivatives.Plant Cell13:553–570.PubMedCrossRefGoogle Scholar
  54. Settles, A. M., S. Latshaw and D. R. McCarty (2004) Molecular analysis of high-copy insertion sites in maize.Nucleic Acids Res32: e54.PubMedCrossRefGoogle Scholar
  55. Settles, A. M., D. R. Holding, B. C. Tan, S. P. Latshaw, J. Liu, M. Suzuki, L. Li, B. A. O'Brien, D. S. Fajardo, E. Wroclawska, C. W. Tseung, J. Lai, Hunter CT, W. T. Avigne, J. Baier, J. Messing, L. C. Hannah, K. E. Koch, P. W. Becraft, B. A. Larkins and D. R. McCarty (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population.BMC Genomics8:116.PubMedCrossRefGoogle Scholar
  56. Schuler, G. D., S. F. Altschul and D. J. Lipman (1991) A workbench for multiple alignment construction and analysis.Proteins9:180–90.PubMedCrossRefGoogle Scholar
  57. Slotkin, R. K., M. Freeling and D. Lisch (2003)Mukiller causes the heritable inactivation of theMutatorfamily of transposable elements in Zea mays.Genetics165:781–97.PubMedGoogle Scholar
  58. Suzuki, M., A. Mark Settles, C. W. Tseung, Q. B. Li, S. Latshaw, S. Wu, T. G. Porch, E. A. Schmelz, M. G. James and D. R. McCarty (2006) The maizeviviparous15locus encodes the molybdopterin synthase small subunit.Plant J45: 264–74.PubMedCrossRefGoogle Scholar
  59. Till, B. J., S. H. Reynolds, C. Weil, N. Springer, C. Burtner, K. Young, E. Bowers, C. A. Codomo, L. C. Enns, A. R. Odden, E. A. Greene, L. Comai and S. Henikoff (2004) Discovery of induced point mutations in maize genes by TILLING.BMC Plant Biol4:12.PubMedCrossRefGoogle Scholar
  60. Walbot, V. (2000) Saturation mutagenesis using maize transposons.Curr Opin Plant Biol3:103–7.PubMedCrossRefGoogle Scholar
  61. Yamazaki, M., H. Tsugawa, A. Miyao, M. Yano, J. Wu, S. Yamamoto, T. Ma-tsumoto, T. Sasaki and H. Hirochika (2001) The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets.Mol Genet Genomics265:336–44.PubMedCrossRefGoogle Scholar
  62. Yuan, Y., P. J. SanMiguel and J. L. Bennetzen (2003) High-Cot sequence analysis of the maize genome.Plant J34:249–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Donald R. McCarty
    • 1
  • Robert B. Meeley
    • 2
  1. 1.University of FloridaGainesville
  2. 2.Pioneer—A DuPont CompanyJohnston

Personalised recommendations