Skip to main content

Mitochondria and Chloroplasts

  • Chapter
Book cover Handbook of Maize

This chapter will summarize what is currently known about mitochondrial and chloroplast genomes and their expression in maize. For maize mitochondria, most of the studies have concentrated on genome plasticity and its consequences. In contrast, relatively little variation in maize chloroplast genomes has been reported and most of the published work has focused on the control of chloroplast gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc. Natl. Acad. Sci. USA 100, 5968–5973.

    PubMed  CAS  Google Scholar 

  • Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Lin GN, Meyer L, Sun H, Kim K, Wang C, Du F, Xu D, Gibson M, Cifrese J, Clifton SW, Newton KJ (2007) Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177, 1173–1192.

    PubMed  CAS  Google Scholar 

  • Backert S, Meissner K, Börner T (1997) Unique features of the mitochondrial rolling circle-plasmid mp1 from the higher plant Chenopodium album (L.). Nucleic Acids Res. 25, 582–589.

    PubMed  CAS  Google Scholar 

  • Baker RF, Newton KJ (1995) Analysis of defective leaf sectors and aborted kernels in NCS2 mutant maize plants. Maydica 40, 89–98.

    Google Scholar 

  • Barkan A (1988) Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs. EMBO J 7, 2637–2644.

    PubMed  CAS  Google Scholar 

  • Barkan A (1989) Tissue-dependent plastid RNA splicing in maize: transcripts from four plastid genes are predominantly unspliced in leaf meristems and roots. Plant Cell 1, 437–445.

    PubMed  CAS  Google Scholar 

  • Barkan A, Walker M, Nolasco M, Johnson D (1994) A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms. EMBO J 13, 3170–3181.

    PubMed  CAS  Google Scholar 

  • Beardslee TA, Roy-Chowdhury S, Jaiswal P, Buhot L, Lerbs-Mache S, Stern DB, Allison LA (2002) A nucleus-encoded maize protein with sigma factor activity accumulates in mitochondria and chloroplasts. Plant J 31, 199–209.

    PubMed  CAS  Google Scholar 

  • Beckett JB (1971) Classification of male-sterile cytoplasms in maize (Zea mays L.). Crop Sci. 11, 724–727.

    Google Scholar 

  • Bedinger P, de Hostos EL, Leon P, Walbot V (1986) Cloning and characterization of a linear 2.3 kb mitochondrial plasmid of maize. Mol. Gen. Genet. 205, 206–212.

    PubMed  CAS  Google Scholar 

  • Bendich AJ (1996) Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J Mol. Biol. 255, 564–588.

    PubMed  CAS  Google Scholar 

  • Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16, 1661–1666.

    PubMed  CAS  Google Scholar 

  • Bohne AV, Ruf S, Börner T, Bock R (2007) Faithful transcription initiation from a mitochondrial promoter in transgenic plastids. Nucleic Acids Res. in press.

    Google Scholar 

  • Braun CJ, Sisco PH, Sederoff RR, Levings CS III (1986) Characterization of inverted repeats from plasmid-like DNAs and the maize mitochondrial genome. Curr. Genet. 10, 625–630.

    PubMed  CAS  Google Scholar 

  • Brown WL, Duvick DN (1958) An extreme nuclear-cytoplasmic interaction. Maize Genet. Coop. Newsl. 32, 120–121 (cited with permission).

    Google Scholar 

  • Buchert JG (1961) The stage of the genome-plasmon interaction in the restoration of fertility to cytoplasmically pollen-sterile maize. Proc. Natl. Acad. Sci. USA 47, 1436–1440.

    Google Scholar 

  • Cahoon AB, Cunningham KA, Bollenbach TJ, Stern DB (2003a) Maize BMS cultured cell lines survive with massive plastid gene loss. Curr. Genet. 44, 104–113.

    CAS  Google Scholar 

  • Cahoon AB, Cunningham KA, Stern DB (2003b) The plastid clpPgene may not be essential for plant cell viability. Plant Cell Physiol. 44, 93–95.

    CAS  Google Scholar 

  • Cahoon AB, Harris FM, Stern DB (2004) Analysis of developing maize plastids reveals two mRNA stability classes correlating with RNA polymerase type. EMBO Rep. 5, 801–806.

    PubMed  CAS  Google Scholar 

  • Cahoon AB, Takacs EM, Sharpe RM, Stern DB (2007) Nuclear, chloroplast, and mitochondrial transcript abundance along a maize leaf developmental gradient. Plant Mol. Biol. in press.

    Google Scholar 

  • Chang CC, Sheen J, Bligny M, Niwa Y, Lerbs-Mache S, Stern DB (1999) Functional analysis of two maize cDNAs encoding T7-like RNA polymerases. Plant Cell 11, 911–926.

    PubMed  CAS  Google Scholar 

  • Chase CD, Gabay-Laughnan S (2003) Exploring mitochondrial-nuclear genome interactions with S male-sterile maize. In: S.G. Pangali (ed) Recent Res. Dev. Genet. Research Signpost, Kerala, pp 31–41.

    Google Scholar 

  • Chase CD, Gabay-Laughnan S (2004) Cytoplasmic male sterility and fertility restoration by nuclear genes. In: H. Daniell and C.D. Chase (eds) Molecular Biology and Biotechnology of Plant Organelles. Springer, The Netherlands, pp 593–622.

    Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 23, 81–90.

    PubMed  CAS  Google Scholar 

  • Clifton SW, Minx P, Fauron CM, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol. 136, 3486–3503.

    PubMed  CAS  Google Scholar 

  • Coe E (1983) Maternally inherited abnormal plant types in maize. Maydica 28, 151–167.

    Google Scholar 

  • Dewey R, Levings CS III, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44, 439–449.

    PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1987) A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc. Natl. Acad. Sci. USA 84, 5374–5378.

    PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1991) Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr. Genet. 20, 475–482.

    PubMed  CAS  Google Scholar 

  • Doebley JF, Ma DP, Renfroe WT (1987) Insertion/deletion mutations in the Zeachloroplast genome. Curr. Genet. 11, 617–624.

    PubMed  CAS  Google Scholar 

  • Duvick DN (1965) Cytoplasmic pollen sterility in corn. Adv. Genet. 13, 1–56.

    Google Scholar 

  • Escote LJ, Gabay-Laughnan SJ, Laughnan JR (1985) Cytoplasmic reversion to fertility in cms-S maize need not involve loss of linear mitochondrial plasmids. Plasmid 14, 264–267.

    PubMed  CAS  Google Scholar 

  • Fauron C, Casper M (1994) A second type of normal maize mitochondrial genome: an evolutionary link. Genetics 137, 875–882.

    PubMed  CAS  Google Scholar 

  • Fisk DG, Walker MB, Barkan A (1999) Molecular cloning of the maize gene crp1reveals similarity between regulators of mitochondrial and chloroplast gene expression. EMBO J 18, 2621–2630.

    PubMed  CAS  Google Scholar 

  • Gabay-Laughnan S., Laughnan JR (1990) Correlation of tassel and ear reversion events in cms-S. Maize Genet. Coop. Newsl. 64, 114–115.

    Google Scholar 

  • Gabay-Laughnan S, Zabala G, Laughnan JR (1995) S-type cytoplasmic male sterility in maize. In: C.S. Levings, III and I.K. Vasil (eds) Advances in Cellular and Molecular Biology of Plants, Vol. 2: The Molecular Biology of Plant Mitochondria. Kluwer Academic, Dordrecht, The Netherlands, pp 395–432.

    Google Scholar 

  • Gabay-Laughnan S, Newton KJ (2005) Mitochondrial mutants in maize. Maydica 50, 349–359.

    Google Scholar 

  • Gagliardi D, Leaver CJ (1999) Polyadenylation accelerates the degradation of the mitochondrial mRNA associated with cytoplasmic male sterility in sunflower. EMBO J 18, 3757–3766.

    PubMed  CAS  Google Scholar 

  • Gagliardi D, Gualberto JM (2004) Gene expression in higher plant mitochondria. In: H.A. D.A. Day and J.W. Millar (eds) Plant Mitochondria: From Genome to Function. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 121–142.

    Google Scholar 

  • Galinat WC (1959) The phytomer in relation to the floral homologies in the American Maydea. Bot. Mus. Leaflets, Harvard U. 19, 1–32.

    Google Scholar 

  • Grace KS, Allen JO, Newton KJ (1994) R-type plasmids in mitochondria from a single source of Zea luxuriansteosinte. Curr. Genet. 25, 258–264.

    PubMed  CAS  Google Scholar 

  • Haff LA, Bogorad L (1976) Poly(adenylic acid)-containing RNA from plastids of maize. Biochemistry 15, 4110–4115.

    PubMed  CAS  Google Scholar 

  • Halter CP, Peeters NM, Hanson MR (2004) RNA editing in ribosome-less plastids of iojapmaize. Curr. Genet. 45, 331–337.

    PubMed  CAS  Google Scholar 

  • Han C, Patrie W, Polacco M, Coe EH (1993) Aberrations in plastid transcripts and deficiency of plastid DNA in striped and albino mutants in maize. Planta 191, 552–563.

    CAS  Google Scholar 

  • Hanaoka M, Kanamaru K, Fujiwara M, Takahashi H, Tanaka K (2005) Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep. 6, 545–550.

    PubMed  CAS  Google Scholar 

  • Handa H (2007) Linear plasmids in plant mitochondria: Peaceful coexistences or malicious invasions? Mitochondrion in press.

    Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16 Suppl, S154–169.

    PubMed  CAS  Google Scholar 

  • Hayes ML, Reed ML, Hegeman CE, Hanson MR (2006) Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivoand in vitro. Nucleic Acids Res. 34, 3742–3754.

    PubMed  CAS  Google Scholar 

  • Hayes ML, Hanson MR (2007) Assay of editing of exogenous RNAs in chloroplast extracts of Arabidopsis, maize, pea, and tobacco. Methods Enzymol. 424, 459–482.

    PubMed  CAS  Google Scholar 

  • Hazle T, Bonen L (2007) Comparative analysis of sequences preceding protein-coding mitochondrial genes in flowering plants. Mol. Biol. Evol. 24, 1101–1112.

    PubMed  CAS  Google Scholar 

  • Heinhorst S, Cannon GC. (1993) DNA-replication in chloroplasts. J Cell Sci. 104, 1–9.

    CAS  Google Scholar 

  • Herrin DL, Nickelsen J (2004) Chloroplast RNA processing and stability. Photosynth. Res. 82, 301–314.

    PubMed  CAS  Google Scholar 

  • Hoch B, Maier RM, Appel K, Igloi GL, Kössel H (1991) Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353, 178–180.

    PubMed  CAS  Google Scholar 

  • Hochholdinger F, Guo L, Schnable PS (2004) Cytoplasmic regulation of the accumulation of nuclear-encoded proteins in the mitochondrial proteome of maize. Plant J 37, 199–208.

    PubMed  CAS  Google Scholar 

  • Holec S, Lange H, Kuhn K, Alioua M, Börner T, Gagliardi D (2006) Relaxed transcription in Arabidopsismitochondria is counterbalanced by RNA stability control mediated by polyadenyla-tion and polynucleotide phosphorylase. Mol. Cell Biol. 26, 2869–2876.

    PubMed  CAS  Google Scholar 

  • Hu J, Bogorad L (1990) Maize chloroplast RNA polymerase: the 180-, 120-, and 38-kilodalton polypeptides are encoded in chloroplast genes. Proc. Natl. Acad. Sci. USA 87, 1531–1535.

    PubMed  CAS  Google Scholar 

  • Hunt MD, Newton KJ (1991) The NCS3 mutation: genetic evidence for the expression of ribosomal protein genes in Zea maysmitochondria. EMBO J 10, 1045–1052.

    PubMed  CAS  Google Scholar 

  • Ishige T, Storey KK, Gengenbach BG (1985) Cytoplasmic fertile revertants possessing S1 and S2 DNAs in S male-sterile maize. Japan J Breed. 35, 285–291.

    Google Scholar 

  • Jenkins BD, Kulhanek DJ, Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9, 283–296.

    PubMed  CAS  Google Scholar 

  • Jenkins BD, Barkan A (2001) Recruitment of a peptidyl-tRNA hydrolase as a facilitator of group II intron splicing in chloroplasts. EMBO J 20, 872–879.

    PubMed  CAS  Google Scholar 

  • Karpova OV, Kuzmin E V, Elthon TE, Newton KJ (2002) Differential expression of alternative oxidase genes in maize mitochondrial mutants. Plant Cell 14, 3271–3284.

    PubMed  CAS  Google Scholar 

  • Kemble RJ, Bedbrook JR (1980) Low molecular weight circular and linear DNA in mitochondria from normal and male-sterile Zea mayscytoplasm. Nature 284, 565-566.

    CAS  Google Scholar 

  • Kemble RJ, Thompson RD (1982) S1 and S2, the linear mitochondrial DNAs present in a male sterile line of maize, possess terminally attached proteins. Nucleic Acids Res. 10, 8181–8190.

    PubMed  CAS  Google Scholar 

  • Kemble RJ, Gunn RE, Flavell RB (1983) Mitochondrial DNA variation in races of maize indigenous to Mexico. Theor. Appl. Genet. 65, 129–144.

    CAS  Google Scholar 

  • Kemble RJ, Mans RJ (1983) Examination of the mitochondrial genome of revertant progeny from S cms maize with cloned S-1 and S-2 hybridization probes. J Mol. Appl. Genet. 2, 161–171.

    PubMed  CAS  Google Scholar 

  • Kim BD, Mans RJ, Conde MF, Pring DR, Levings CS III (1982) Physical mapping of homologous segments of mitochondrial episomes from S male-sterile maize. Plasmid 7, 1–14.

    PubMed  CAS  Google Scholar 

  • Kubo T, Newton KJ (2007) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8, 5–14.

    PubMed  Google Scholar 

  • Kuhn K, Bohne AV, Liere K, Weihe A, Börner T (2007) Arabidopsisphage-type RNA polymerases: accurate in vitro transcription of organellar genes. Plant Cell 19, 959–971.

    PubMed  Google Scholar 

  • Kuzmin EV, Levchenko IV (1987) S1 plasmid from cms-S-maize mitochondria encodes a viral type DNA-polymerase. Nucleic Acids Res. 15, 6758.

    PubMed  CAS  Google Scholar 

  • Kuzmin EV, Levchenko IV, Zaitseva GN (1988) S2 plasmid from cms-S-maize mitochondria potentially encodes a specific RNA polymerase. Nucleic Acids Res. 16, 4177.

    PubMed  CAS  Google Scholar 

  • Kuzmin E V, Karpova OV, Elthon TE, Newton KJ (2004) Mitochondrial respiratory deficiencies signal up-regulation of genes for heat shock proteins. J Biol. Chem. 279, 20672–20677.

    PubMed  CAS  Google Scholar 

  • Kuzmin EV, Duvick DN, Newton KJ (2005) A mitochondrial mutator system in maize. Plant Physiol. 137.

    Google Scholar 

  • Lahiri SD, Yao J, McCumbers C, Allison LA (1999) Tissue-specific and light-dependent expression within a family of nuclear-encoded sigma-like factors from Zea mays. Mol. Cell. Biol. Res. Commun. 1, 14–20.

    PubMed  CAS  Google Scholar 

  • Lauer M, Knudsen C, Newton KJ, Gabay-Laughnan S, Laughnan JR (1990) A partially deleted mitochondrial cytochrome oxidase gene in the NCS6 abnormal growth mutant of maize. New Biol. 2, 179–186.

    PubMed  CAS  Google Scholar 

  • Laughnan JR, Gabay SJ (1973) Mutations leading to nuclear restoration of fertility in S male-sterile cytoplasm in maize. Theor. Appl. Genet. 43, 109–116.

    Google Scholar 

  • Laughnan JR, Gabay SJ (1978) Nuclear and cytoplasmic nuclear gene Rf3affects the expression of the mitochondrial mutations to fertility in S male-sterile maize. In: D.B. Walden (ed) Maize Breeding and Genetics. John Wiley&Sons, New York, pp 427–446.

    Google Scholar 

  • Laughnan JR, Gabay-Laughnan SJ, Carlson JE (1981) Characteristics of cms-S reversion to male fertility in maize. Stadler Symp. 13, 93–114.

    CAS  Google Scholar 

  • Laughnan JR, Gabay-Laughnan S (1983) Cytoplasmic male sterility in maize. Ann. Rev. Genet. 17, 27–48.

    PubMed  CAS  Google Scholar 

  • Lee S-LJ, Gracen VE, Earle ED (1979) The cytology of pollen abortion in C-cytoplasmic male-sterile corn anthers. Amer. J. Bot. 66, 656–667.

    Google Scholar 

  • Lee S-LJ, Earle ED, Gracen VE (1980) The cytology of pollen abortion in S cytoplasmic male-sterile corn anthers. Amer. J. Bot. 67, 237–245.

    Google Scholar 

  • Leister D, Schneider A (2003) From genes to photosynthesis in Arabidopsis thaliana. Int. Rev. Cytol. 228, 31–83.

    PubMed  CAS  Google Scholar 

  • Lemke CA, Gracen VE, Everett HL (1985) A new source of cytoplasmic male sterility in maize induced by the nuclear gene, iojap. Theor. Appl. Genet. 71, 481–485.

    Google Scholar 

  • Lemke CA, Gracen VE, Everett HL (1988) A second source of cytoplasmic male sterility in maize induced by the nuclear gene Iojap. J Heredity 79, 459–464.

    Google Scholar 

  • Leon P, Walbot V, Bedinger P (1989) Molecular analysis of the linear 2.3 kb plasmid of maize mitochondria: apparent capture of tRNA genes. Nucleic Acids Res. 17, 4089–4099.

    PubMed  CAS  Google Scholar 

  • Levings CS III, Kim BG, Pring DR, Conde MF, Mans RJ, Laughnan JR, Gabay-Laughnan SJ (1980) Cytoplasmic reversion of cms-S in maize: association with a transpositional event. Science 209, 1021–1023.

    PubMed  CAS  Google Scholar 

  • Levings CS, Sederoff RR (1983) Nucleotide sequence of the S-2 mitochondrial DNA from the S cytoplasm of maize. Proc. Natl. Acad. Sci. USA 80, 4055–4059.

    PubMed  CAS  Google Scholar 

  • Liere K, Börner T (2007) Transcription and transcriptional regulation in plastids. In: R. Bock (ed) Topics in Current Genetics: Cell and Molecular Biology of Plastids. Springer, Berlin/ Heikelberg, pp 121–173.

    Google Scholar 

  • Lonsdale DM (1987) Cytoplasmic male sterility: a molecular perspective. Plant Physiol. Biocehm. 25, 265–271.

    CAS  Google Scholar 

  • Lupold DS, Caoile AG, Stern DB (1999) Polyadenylation occurs at multiple sites in maize mitochondrial cox2mRNA and is independent of editing status. Plant Cell 11, 1565–1578.

    PubMed  CAS  Google Scholar 

  • Maier R.M, Neckermann K, Igloi GL, Kössel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol. Biol. 251, 614–628.

    PubMed  CAS  Google Scholar 

  • Maloney AP, Walbot V (1990) Structural analysis of mature and dicistronic transcripts from the 18 S and 5 S ribosomal RNA genes of maize mitochondria. J Mol. Biol. 213, 633–649.

    PubMed  CAS  Google Scholar 

  • Marienfeld JR, Newton KJ (1994) The maize NCS2 abnormal growth mutant has a chimeric nad4-nad7 gene and is associated with reduced complex I function. Genetics 138, 855–863.

    PubMed  CAS  Google Scholar 

  • McCormac DJ, Barkan A (1999) A nuclear gene in maize required for the translation of the chloroplast atpB/EmRNA. Plant Cell 11, 1709–1716.

    PubMed  CAS  Google Scholar 

  • McNay JW, Pring DR, Lonsdale DM (1983) Polymorphism of mitochondrial DNA ‘S’ regions among normal cytoplasms of maize. Plant Mol. Biol. 2, 177–187.

    CAS  Google Scholar 

  • Meinhardt F, Kempken F, Kamper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr. Genet. 17, 89–95.

    PubMed  CAS  Google Scholar 

  • Meinhardt F, Schaffrath R, Larsen M (1997) Microbial linear plasmids. Appl. Microbial. Biotechnol. 47, 329–336.

    CAS  Google Scholar 

  • Meyer LJ (2004) ORF analysis and tissue-specific differential gene expression in maize mitochondria. M. S. Thesis, University of Missouri, Columbia, MO.

    Google Scholar 

  • Momcilovic I, Ristic Z (2007) Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J Plant Physiol. 164, 90–99.

    PubMed  CAS  Google Scholar 

  • Nakajima Y, Mulligan RM (2001) Heat stress results in incomplete C-to-U editing of maize chloroplast mRNAs and correlates with changes in chloroplast transcription rate. Curr. Genet. 40, 209–213.

    PubMed  CAS  Google Scholar 

  • Newton KJ, Walbot V (1985) Molecular analysis of mitochondria from a fertility restorer line of maize. Plant Mol. Biol. 4, 247–252.

    CAS  Google Scholar 

  • Newton KJ, Coe EH (1986) Mitochondrial DNA changes in abnormal growth (nonchromosomal stripe) mutants of maize. Proc. Natl. Acad. Sci. USA 83, 7363–7366.

    PubMed  CAS  Google Scholar 

  • Newton KJ, Coe EH, Gabay-Laughnan S, Laughnan JR (1989) Abnormal growth phenotypes and mitochondrial mutants in maize. Maydica 34, 291–296.

    Google Scholar 

  • Newton KJ, Knudsen C, Gabay-Laughnan S, Laughnan JR (1990) An abnormal growth mutant in maize has a defective mitochondrial cytochrome oxidase gene. Plant Cell 2, 107–113.

    PubMed  CAS  Google Scholar 

  • Newton KJ (1994) Analysis of cytoplasmically inherited mutants. In: M. Freeling and V. Walbot (eds) The Maize Handbook. Springer-Verlag, New York, pp 413–417.

    Google Scholar 

  • Newton KJ (1995) Aberrant growth phenotypes associated with mitochondrial genome rearrangements in higher plants. In: C.S. Levings, III and I.K. Vasil (eds) The Molecular Biology of Plant Mitochondria. Kluwer Academic, Dordrecht, pp 585–596.

    Google Scholar 

  • Newton KJ, Mariano JM, Gibson CM, Kuzmin E, Gabay-Laughnan S (1996) Involvement of S2 episomal sequences in the generation of NCS4 deletion mutation in maize mitochondria. Dev. Genet. 19, 277–286.

    PubMed  CAS  Google Scholar 

  • Newton KJ, Gabay-Laughnan S, DePaepe R (2004) Mitochondrial mutations in plants. In: H.A. D.A. Day and J.W. Millar (eds) Plant Mitochondria: From Genome to Function. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 121–142.

    Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu. Rev. Plant Biol. 57, 739–759.

    PubMed  CAS  Google Scholar 

  • Oeser B (1988) S2 plasmid from Zea maysencodes a specific RNA polymerase: an alternative alignment. Nucleic Acids Res. 16, 8729.

    PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2004) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol. Biol. 335, 953–970.

    PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Rowan BA, Zhao L, Walcher CL, Schleh M, Bendich AJ (2006) Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype. Planta 225, 41–55.

    PubMed  CAS  Google Scholar 

  • Ostheimer GJ, Williams-Carrier R, Belcher S, Osborne E, Gierke J, Barkan A (2003) Group II intron splicing factors derived by diversification of an ancient RNA-binding domain. EMBO J 22, 3919–3929.

    PubMed  CAS  Google Scholar 

  • Ostheimer GJ, Hadjivassiliou H, Kloer DP, Barkan A, Matthews BW (2005) Structural analysis of the group II intron splicing factor CRS2 yields insights into its protein and RNA interaction surfaces. J Mol. Biol. 345, 51–68.

    PubMed  CAS  Google Scholar 

  • Ostheimer GJ, Rojas M, Hadjivassiliou H, Barkan A (2006) Formation of the CRS2-CAF2 group II intron splicing complex is mediated by a 22-amino acid motif in the COOH-terminal region of CAF2. J Biol. Chem. 281, 4732–4738.

    PubMed  CAS  Google Scholar 

  • Paillard M, Sederoff RR, Levings CS (1985) Nucleotide sequence of the S-1 mitochondrial DNA from the S cytoplasm of maize. EMBO J 4, 1125–1128.

    PubMed  CAS  Google Scholar 

  • Peeters NM, Hanson MR (2002) Transcript abundance supercedes editing efficiency as a factor in developmental variation of chloroplast gene expression. RNA 8, 497–511.

    PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Ogrzewalla K, Baginsky S, Sickmann A, Meyer HE, Link G (2000) The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). Integration of a prokaryotic core into a larger complex with organelle-specific functions. Eur. J Biochem. 267, 253–261.

    PubMed  CAS  Google Scholar 

  • Pring DR, Levings CS, Hu WW, Timothy DH (1977) Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc. Natl. Acad. Sci. USA 74, 2904–2908.

    PubMed  CAS  Google Scholar 

  • Pring DR, Levings CS (1978) Heterogeneity of maize cytoplasmic genomes among male-sterile cytoplasms. Genetics 89, 121–136.

    PubMed  CAS  Google Scholar 

  • Pring DR, Smith AG (1985) Distribution of minilinear and minicircular mtDNA sequences within Zea. Maize Genet. Coop. Newsl. 59, 49–50 (cited with permission).

    Google Scholar 

  • Reed ML, Hanson MR (1997) A heterologous maize rpoBediting site is recognized by transgenic tobacco chloroplasts. Mol. Cell. Biol. 17, 6948–6952.

    PubMed  CAS  Google Scholar 

  • Rhoades MM (1950) Gene induced mutation of a heritable cytoplasmic factor producing male sterility in maize. Proc. Natl. Acad. Sci. USA 36, 634–635.

    PubMed  CAS  Google Scholar 

  • Rhoads DM, Subbaiah CC (2007) Mitochondrial retrograde regulation in plants. Mitochondrion 7, 177–194.

    PubMed  CAS  Google Scholar 

  • Rodermel SR, Bogorad L (1985) Maize plastid photogenes: mapping and photoregulation of transcript levels during light-induced development. J Cell Biol. 100, 463–476.

    PubMed  CAS  Google Scholar 

  • Sask C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolorand Agrostis stolonifera, and comparative analyses with other grass genomes. Theor. Appl Genet. 115, 571–590.

    Google Scholar 

  • Scanlon MJ (2003) The polar auxin transport inhibitor N-1-Naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol. 133, 597–605.

    PubMed  CAS  Google Scholar 

  • Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 310, 292–296.

    CAS  Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell 43, 361–368.

    PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17, 2791–2804.

    PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12pre-mRNA. Plant Cell 18, 2650–2663.

    PubMed  CAS  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3, 175–180.

    Google Scholar 

  • Sekine K, Fujiwara M, Nakayama M, Takao T, Hase T, Sato N (2007) DNA binding and partial nucleoid localization of the chloroplast stromal enzyme ferredoxin:sulfite reductase. FEBS J 274, 2054–2069.

    PubMed  CAS  Google Scholar 

  • Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224, 72–82.

    PubMed  CAS  Google Scholar 

  • Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) Plastid RNA polymerases, promoters, and transcription regulators in higher plants. Int. Rev. Cytol. 244, 1–68.

    PubMed  CAS  Google Scholar 

  • Shikanai T (2006) RNA editing in plant organelles: machinery, physiological function and evolution. Cell. Mol. Life Sci. 63, 698–708.

    PubMed  CAS  Google Scholar 

  • Shumway LK, Bauman LF (1967) Nonchromosomal stripe of maize. Genetics 55, 33–38.

    PubMed  Google Scholar 

  • Silhavy D, Maliga P (1998) Mapping of promoters for the nucleus-encoded plastid RNA polymerase (NEP) in the iojapmaize mutant. Curr. Genet. 33, 340–344.

    PubMed  CAS  Google Scholar 

  • Skibbe DS, Schnable PS (2005) Male sterility in maize. Maydica 50, 367–376.

    Google Scholar 

  • Slomovic S, Portnoy V, Liveanu V, Schuster G (2006) RNA polyadenylation in prokaryotes and organelles; Different tails tell different tales. Crit. Rev. Plant Sci. 25, 65–77.

    CAS  Google Scholar 

  • Small ID, Isaac PG, Leaver CJ (1987) DNA binding and partial nucleoid localization of the chloroplast stromal enzyme ferredoxin:sulfite reductase. EMBO J 6, 865–869.

    PubMed  CAS  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 25, 46–47.

    PubMed  CAS  Google Scholar 

  • Smith AG, Pring DR (1987) Nucleotide sequence and molecular characterization of a maize mitochondrial plasmid-like DNA. Curr. Genet. 12, 617–623.

    PubMed  CAS  Google Scholar 

  • Stern DB, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299, 698–702.

    PubMed  CAS  Google Scholar 

  • Stern DB, Hanson MR, Barkan A (2004) Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci. 9, 293–301.

    PubMed  CAS  Google Scholar 

  • Suzuki J Y, Ytterberg AJ, Beardslee TA, Allison LA, Wijk KJ, Maliga P (2004) Affinity purification of the tobacco plastid RNA polymerase and in vitroreconstitution of the holoenzyme. Plant J 40, 164–172.

    PubMed  CAS  Google Scholar 

  • Tadege M, Kuhlemeier C (1997) Aerobic fermentation during tobacco pollen development. Plant Mol. Biol. 35, 343–354.

    PubMed  CAS  Google Scholar 

  • Tadege M, Dupuis II, Kuhlemeier C (1999) Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci. 4, 320–325.

    PubMed  Google Scholar 

  • Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A (2007) The process of RNA editing in plant mitochondria. Mitochondrion in press.

    Google Scholar 

  • Tan S, Troxler RF (1999) Characterization of two chloroplast RNA polymerase sigma factors from Zea mays:photoregulation and differential expression. Proc. Natl. Acad. Sci. USA 96, 5316-5321.

    PubMed  CAS  Google Scholar 

  • Till B, Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2001) CRS1 is a novel group II intron splicing factor that was derived from a domain of ancient origin. RNA 7, 1227-1238.

    PubMed  CAS  Google Scholar 

  • Tillich M, Schmitz-Linneweber C, Hermann R, Maier RM (2001) The plastid chromosome of maize (Zea mays):Update of the complete sequence and transcript editing sites. Maize Genet. Coop. Newsl. 75, 425–44.

    Google Scholar 

  • Timothy DH, Levings CS III, Hu WW, Goodman MM (1983) Plasmid-like mitochondrial DNAs in diploperenial teosinte. Maydica 28, 139–149.

    Google Scholar 

  • Walter M, Kilian J, Kudla J (2002) PNPase activity determines the efficiency of mRNA 3′-end processing, the degradation of tRNA and the extent of polyadenylation in chloroplasts. EMBO J 21, 6905–6914.

    PubMed  CAS  Google Scholar 

  • Ward CG (1995) The Texas male-sterile cytoplasm of maize. In: C.S. Levings, III and I.K. Vasil (eds) The Molecular Biology of Plant Mitochondria. Kluwer Academic, Dordrecht, pp 433–459.

    Google Scholar 

  • Watkins KP, Kroeger TS, Cooke AM, Williams-Carrier RE, Friso G, Belcher SE, van Wijk KJ, Barkan A (2007) A ribonuclease III domain protein functions in group II intron splicing in maize chloroplasts. Plant Cell 19, 2606–2623.

    PubMed  CAS  Google Scholar 

  • Weissinger AK, Timothy DH, Levings CS, Hu WW, Goodman MM (1982) Unique plasmid-like mitochondrial DNAs from indigenous maize races of Latin America. Proc. Natl. Acad. Sci. USA 79, 1–5.

    PubMed  CAS  Google Scholar 

  • Weissinger AK, Timothy DH, Levings CS, Goodman MM (1983) Patterns of mitochondrial DNA variation in indigenous maize races of Latin America. Genetics 104, 365–379.

    PubMed  CAS  Google Scholar 

  • Wen L, Ruesch KL, Ortega VM, Kamps TL, Gabay-Laughnan S, Chase CD (2003) A nuclear restorer-of-fertilitymutation disrupts accumulation of mitochondrial ATP synthase subunit a in developing pollen of S male-sterile maize. Genetics 165, 771–779.

    PubMed  CAS  Google Scholar 

  • Wise RP, Fliss AE, Pring DR, Gengenbach BG (1987a) Urf-13-Tof T cytoplasm maize mitochondria encodes a 13 KD polypeptide. Plant Mol. Biol. 9, 121–126.

    CAS  Google Scholar 

  • Wise RP, Pring DR, Gengenbach BG (1987b) Mutation to male fertility and toxin insensitivity in Texas (T)-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc. Natl. Acad. Sci. USA 84, 2858–2862.

    CAS  Google Scholar 

  • Yao J, Roy-Chowdhury S, Allison LA (2003) AtSig5 is an essential nucleus-encoded Arabidopsisσ-like factor. Plant Physiol 132, 739–747.

    PubMed  CAS  Google Scholar 

  • Zabala G, Gabay-Laughnan S, Laughnan JR (1997) The nuclear gene Rf3affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 147, 847–860.

    PubMed  CAS  Google Scholar 

  • Zaitlin D, Hu J, Bogorad L (1989) Binding and transcription of relaxed DNA templates by fractions of maize chloroplast extracts. Proc. Natl. Acad. Sci. USA 86, 876–880.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Newton, K.J., Stern, D.B., Gabay-Laughnan, S. (2009). Mitochondria and Chloroplasts. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_24

Download citation

Publish with us

Policies and ethics