Skip to main content

Chromatin, DNA Methylation, RNAi and Epigenetic Regulation

  • Chapter
Handbook of Maize
  • 4164 Accesses

Transcriptional and post-transcriptional control of maize gene expression is proving to be important in many aspects of maize biology. The dramatic growth of research in this area has yielded exciting new discoveries which have enhanced our understanding of gene regulation in maize, and have linked previously diverse phenomena to central underlying mechanisms. In this review, I provide a summary of genes considered to function in chromatin-based transcriptional control of gene expression, in post-transcriptional gene silencing, and which link RNA molecules to heritable states of expression. Information from maize, or most relevant to maize, is cataloged according to gene families and groups. The topic area is too broad to provide a thorough synthesis for any gene family or pathway, but the review should allow the reader an entry point to access most maize information on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alleman, M., and Doctor, J. (2000) Genomic imprinting in plants: observations and evolutionary implications. Plant Mol. Biol. 43,147–161.

    Article  PubMed  CAS  Google Scholar 

  • Alleman, M., Sidorenko, L., McGinnis, K., Seshadri, V., Dorweiler, J.E., White, J., Sikkink, K., and Chandler, V.L. (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442,295–298.

    Article  PubMed  CAS  Google Scholar 

  • Amedeo, P., Habu, Y., Afsar, K., Mittelsten Scheid, O., and Paszkowski, J. (2000) Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature 405,203–206.

    Article  PubMed  CAS  Google Scholar 

  • Banks, J.A., Masson, P., and Federoff, N. (1988) Molecular mechanisms in the developmental regulation of the Suppressor-mutator maize transposable element system. Genes Devel. 2,1364–1380.

    Article  PubMed  CAS  Google Scholar 

  • Bhat, R.A., Borst, J.W., Riehl, M., and Thompson, R.D. (2004) Interaction of maize Opaque-2 and the transcriptional co-activators GCN5 and ADA2, in the modulation of transcriptional activity. Plant Molec. Biol. 55,239–252.

    Article  CAS  Google Scholar 

  • Bhat, R.A., Riehl, M., Santandrea, G., Velasco, R., Slocombe, S., Donn, G., Steinbiss, H-H., Thompson, R.D., and Becker, H-A. (2003) Alteration of GCN5 levels in maize reveals dynamic responses to manipulating histone acetylation. Plant J. 33,455–469.

    Article  PubMed  CAS  Google Scholar 

  • Brosch, G., Lusser, A., Goralik-Schramel, M., and Loidl, P. (1996) Purification and characterization of a high molecular weight histone deacetylase complex (HD2) of maize embryos. Biochem. 35,15907–15914.

    Article  CAS  Google Scholar 

  • Cao, X., Springer, N.M., Muszynski, M.G., Phillips, R.L., Kaeppler, S.M., and Jacobsen, S.E. (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc. Nat'l. Acad. Sci. USA 97,4979–4984.

    Article  CAS  Google Scholar 

  • Casati, P., Stapleton, A.E., Blum, J.E., Walbot, V. (2006) Genome wide analysis of high-altitude maize and gene knock-down stocks implicates chromatin remodeling proteins in response to UV-B. Plant J. 46,613–627.

    Article  PubMed  CAS  Google Scholar 

  • Chuck, G., Cigan, A.M., Saeteum, K., and Hake, S. (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genet. 39,544–549.

    Article  PubMed  CAS  Google Scholar 

  • Chadhuri, S., and Messing, J. (1994) Allele-specific imprinting of dzr1, a post-transcriptional regulator of zein accumulation. Proc. Nat'l. Acad. Sci. USA. 91,4867–4871.

    Article  Google Scholar 

  • Chuck, G., Cigan, A.M., Saeteurn, K., and Hake, S. (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem repeat microRNA. Nature Genet. 39,544–549.

    Article  PubMed  CAS  Google Scholar 

  • Cigan, A.M., Unger-Wallace, E., and Haug-Collet, K. (2005) Transcriptional gene silencing as a tool for uncovering gene function in maize. Plant J. 43,929–940.

    Article  PubMed  CAS  Google Scholar 

  • Cocciolone, S.M., and Cone, K.C. (1993) Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation. Genetics 135,575–588.

    PubMed  CAS  Google Scholar 

  • Danilevskaya, O.N., Hermon, P., Hantke, S., Muszynski, M.G., Kollipara, K., Ananiev, E.V. (2003) Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell 15,425–438.

    Article  PubMed  CAS  Google Scholar 

  • Das, P. and Messing, J. (1994) Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. Genetics 136,1121–1141.

    PubMed  CAS  Google Scholar 

  • Dorweiler, J.E., Carey, C.C., Kubo, K.M., Hollick, J.B., Kermicle, J.L., and Chandler, V.L. (2000) mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple loci. Plant Cell 12,2101–2118.

    Article  PubMed  CAS  Google Scholar 

  • Earley, K.W., Shook, M.S., Brower-Toland, B., Hicks, L., Pikaard, C. (2007) In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J. 52:615–626.

    Article  PubMed  CAS  Google Scholar 

  • Emberton, J., J. Ma, Y. Yuan and J.L. Bennetzen (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res. 15:1441–1446.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, J., Demidov, D., Houben, A., and Schubert, I. (2006) Chromosomal histone modification patterns — from conservation to diversity. Trends Plant Sci. 11,199–208.

    Article  PubMed  CAS  Google Scholar 

  • Grasser, K.D. (2003) Chromatin-associated HMGA and HMGB proteins: versatile co-regulators of DNA-dependent processes. Plant Molec. Biol. 53,281–295.

    Article  CAS  Google Scholar 

  • Grasser, K.D., Launholt, D., and Grasser, M. (2007) High mobility group proteins of the plant HMGB family: dynamic modulators of chromatin. Biochim. Biophys. Acta 1769,346–357.

    PubMed  CAS  Google Scholar 

  • Gutierrez-Marcos, J.F., Costa, L.M., Pra, M.D., Scholten, S., Kranz, E., Perez, P., and Dickinson, H.G. (2007) Epigenetic asymmetry of imprinted genes in plant gametes. Nat. Genet. 38,876–878.

    Article  Google Scholar 

  • Hale, C.J., Stonaker, J.L., Gross, S.M., and Hollick, J.B. (2007) A novel SNF2 protein maintains transgenerational regulatory states established by paramutation in maize. PLoS Biology (In Press)

    Google Scholar 

  • Haun, W.J., Laoueille-Duprat, S., O'Connell, M.J., Spillane, C., Grossniklaus, U., Phillips, A.R., Kaeppler, S.M., and Springer, N.M. (2007) Genomic imprinting, methylation and molecular evolution of maize Enhancer of Zeste (Mez) homologs. Plant J. 49, 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, I.R. and Jobsen, S.E. (2007) Epigenetic inheritance in plants. Nature 447, 418–424.

    Article  PubMed  CAS  Google Scholar 

  • Hermon, P., Srilunchang, K.O., Zou, J., Dresselhaus, T., Danilevskaya, O.N. (2007) Activation of the imprinted Polycomb Group Fie1 gene in maize endosperm requires demethylation of the maternal allele. Plant Mol. Biol. 64, 387–395.

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga, O.A., Muszynski, M.G., and Cone, K.C. (2000) Developmental patterns of chromatin structure and DNA methylation responsible for epigenetic expression of a maize regulatory gene. Genetics 155,1889–1902.

    PubMed  CAS  Google Scholar 

  • Hollick, J.B., and Chandler, V.L. (2001) Genetic factors required to maintain repression of a paramutagenic maize pl1 allele. Genetics 157,369–378.

    PubMed  CAS  Google Scholar 

  • Hollick, J.B., Patterson, G.K., Coe, Jr. E.H., Cone, K.C., and Chandler, V.L. (1995) Allelic interactions heritably influence the activity of a metastable maize pl allele. Genetics 141,709–719.

    PubMed  CAS  Google Scholar 

  • Huettel, B. Kanno, T., Daxinger, L., Bucher, E., van der Winden, J., Matzke, A.J.M., and Matzke, M. (2007) RNA-directed DNA methylation mediated by DRD1 and PolIVb: A versatile pathway for transcriptional gene silencing in plants. Bioch. Bioph. Acta 1769, 358–374.

    CAS  Google Scholar 

  • Ito, T., Bulger, M., Kobayashi, R., and Kadonaga, J.T. (1996) Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol. Cell. Biol. 16,3112–3124.

    PubMed  CAS  Google Scholar 

  • Johnson, L.M., Bostick, M., Zhang, X., Kraft, E., Henderson, I., Callis, J., and Jacobsen, S.E. (2007) The SRA methyl-cytosine-binding domain links DNA and histone methylation. Current Biol. 17,379–384.

    Article  CAS  Google Scholar 

  • Juarez M.T., Kui, J.S., Thomas, J., Heller, B.A., Timmermans, M.C. (2004) microRNA repression of rolled leaf1 specifies maize leaf polarity. Nature 428,84–88.

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler, S.M., Kaeppler, H.F., and Rhee. Y. (2000) Epigenetic aspects of somaclonal variation in plants. Plant Molec. Biol. 43,179–188.

    Article  CAS  Google Scholar 

  • Kanno, T., Mette, M.F., Kreil, D.P., Aufsatz, W., Matzke, M., and Matzke, A.J.M. (2004) Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Current Biology 14,801–805.

    Article  PubMed  CAS  Google Scholar 

  • Kanno, T., Aufsatz, W., Jaligot, E., Mette, M.F., Matzke, M., and Matzke, A.J.M. (2005) A SNF2-like protein facilitates dynamic control of DNA methylation. EMBO 6,649–655.

    Article  CAS  Google Scholar 

  • Kermicle, J.L., Eggelston, W.B., and Alleman, M. (1995) Organization of paramutagenecity in R-stippled maize. Genetics 141,361–372.

    PubMed  CAS  Google Scholar 

  • Kidner, C.A, and Martienssen, R.A. (2005) The developmental role of microRNA in plants. Curr. Opin. Plant Biol. 8, 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Kolle, D., Brosch, G., Lechner, T., Pipal, A., Helliger, W., Taplick, J., and Loidl, P. (1999) Different types of maize histone deacetylases are distinguished by a highly complex substrate and site specificity. Biochem. 38,6769–6773.

    Article  CAS  Google Scholar 

  • Lauria, M., Rupe, M., Guo, M., Kranz, E., Pirona, R., Viotti, A., and Lund, G. (2004) Extensive DNA hypomethylation in the endosperm of Zea mays. Plant Cell 16,510–522.

    Article  PubMed  CAS  Google Scholar 

  • Lauter, M., Kampani, A., Carlson, S., Goebel, M., and Moose, S.P. (2005) microRNA 172 down-regulates glossy15 to promote vegetative phase change in maize. Proc. Nat'l. Acad. Sci. 102,9412–9417.

    Article  CAS  Google Scholar 

  • Lechner, T., Lusser, A., Pipal, A., Brosch, G., Loidl, A., Goralik-Schramel, M., Sendra, R., Wegener, S., Walton, J.D., and Loidl, P. (2000) RPD3-type histone deacetylases in maize embryos. Biochem. 39,1683–1692.

    Article  CAS  Google Scholar 

  • Lopez-Rodas, G., Georgieva, E.K., Sendra, R., and Loidl, P. (1991) Histone acetylation in Zea mays I: activities of histone acetyltransferases and histone deacetylases. J. Biol. Chem. 266,18745–18750.

    Google Scholar 

  • Lusser, A., Brosch, G., Loidl, A., Haas, H., and Loidl, P. (1997) Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science 277,88–91.

    Article  PubMed  CAS  Google Scholar 

  • Makarevitch, I., Stupar, R.M., Iniguez, A.L., Haun, W.J., Barbazuk, W.B., Kaeppler, S.M., and Spinger, N.M. (2007) Natural variation for alleles under epigenetic control by the maize chro-momethylase zmet 2. Genetics 177,1–12.

    Article  Google Scholar 

  • Mallory, C.A., and Vaucheret, H. (2006) Functions of microRNAs and related small RNAs in plants. Nat. Genet. 38,S31–S36.

    Article  PubMed  CAS  Google Scholar 

  • Marian, C.O., Bordoli, S.J., Goltz, M., Santarella, R.A., Jackson, L.P., Danilevskaya, O., Beckstette, M., Meeley, R., and Bass, H.W. (2003) The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA repeats in vitro. Plant Physiol. 133,1336–1350.

    Article  PubMed  CAS  Google Scholar 

  • Martienssen, R. and Baron, A. (1994) Coordinate suppression of mutations caused by Robertson's mutator transposons in maize. Genetics 136,1157–1170.

    PubMed  CAS  Google Scholar 

  • McGinnis, K.M., Chandler, V., Cone, K., Kaeppler, H., Kaeppler, S., Kerschen, A., Pikaard, C., Richards, E., Sidorenko, L., Smith, T., Springer, N., and Wulan, T. (2006a) Transgene-induced RNA interference as a tool for plant functional genomics. Meth. Enzymol. 392,1–24.

    Article  Google Scholar 

  • McGinnis, K.M., Springer, C., Lin, Y., Carey, C.C., and Chandler, V. (2006b) Transcriptionally silenced transgenes in maize are activated by three mutations defective in paramutation. Genetics 173,1627–1647.

    Article  Google Scholar 

  • McGinnis, K.M., Murphy, N., Carlson, A.R., Akula, A., Akula, C., Basinger, H., Carlson, M., Hermanson, P., Kovacevic, N., McGill, M.A., Seshadri, V., Yoyokie, J., Cone, K., Kaeppler, H.F., Kaeppler, S.M., and Springer, N.M. (2007) Assessing the efficiency of RNA interference for maize functional genomics. Plant Physiol. 143,1441–1451.

    Article  PubMed  CAS  Google Scholar 

  • Ng, D.W-K., Want, T., Chandrasekharan, M.B., Aramayo, R., Kertbundit, S., and Hall, T.C. (2007) Plant SET domain-containing proteins: structure, function, and regulation. Biochim. Biophys. Acta 1769,316–329.

    PubMed  CAS  Google Scholar 

  • Nogueira, F.T., Madi, S., Chitwood, D.H., Juarez M.T., and Timmermans, M.C. (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Devel. 21,750–755.

    Article  PubMed  CAS  Google Scholar 

  • Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg, R.B., Fischer, R.L. (1999) Mutations in RIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11,407–416.

    Article  PubMed  CAS  Google Scholar 

  • Papa, C.M., Springer, N.M., Muszynski, M.G., Meeley, R., and Kaeppler, S.M. (2001) Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation. Plant Cell 13,1919–1928.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, R., Muller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., and Jorgenson, R.A. (2002) Analysis of histone acetyltransferase and histone deacetylase families in Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucl. Acids Res. 30,5036–5055.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, W.C., Gross, S.M., and Hollick, J.B. (2007) Maize sex determination and abaxial leaf fates are canalized by a factor that maintains repressed epigenetic states. Dev. Biol. 308,462–473.

    Article  PubMed  CAS  Google Scholar 

  • Pavlopoulou, A. and Kossida, S. (2007) Plant cytosine-5 DNA methyltransferases: Structure, function, and molecular evolution. Genomics 90,530–541.

    Article  PubMed  CAS  Google Scholar 

  • Phelps-Durr, T.L., Thomas, J., Vahab, P., and Timmermans, M.C.P. (2005) Maize rough sheath 2 and its Arabidopsis ortholog ASYMMETRIC LEAVES 1 interact with HIRA, a predicted histone chaperone, to maintain knox, gene silencing and determinacy during organogenesis. Plant Cell 17,2886–2898.

    Article  Google Scholar 

  • Pikaard, C.S. (2006) Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. Cold Spring Harbor Symp. Quant. Biol. 71:473–480.

    Article  PubMed  CAS  Google Scholar 

  • Pipal, A., Goralik-Schramel, M., Lusser, A., Lanzanova, C., Sarg, B., Loidl, A., Lindner, H., Rossi, V., Loidl, P. (2003) Regulation and processing of maize histone deacetylase Hda1 by limited proteolysis. Plant Cell 15,1904–1917.

    Article  PubMed  CAS  Google Scholar 

  • Pressman, S., Bei, Y., and Carthew, R. (2007). Snapshot: Posttranscriptional gene silencing. Cell 130:570.

    Article  PubMed  Google Scholar 

  • Rabinowicz, P.D., Citek, R., Budiman, M.A., Nunberg, A., Bedell, J.A., Lakey, N., O'Shaughnessy, A.L., Nascimento, L.U., McCombie, W.R., and Martienssen, R.A. (2005) Differential methylation of genes and repeats in land plants. Genome Res. 15,1431–1440.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, V., Locatelli, S., Lanzanova, C., Boniotti, M.B., Varotto, S., Pipal, A., Goralik-Schramel, M., Lusser, A., Gatz, C., Guttierrez, C., and Motto, M. (2003) A maize histone deacetylase and retinoblastoma-related protein physically interact and cooperate in repressing gene function. Plant Molec. Biol. 51,401–413.

    Article  CAS  Google Scholar 

  • Rossi, V., Locatelli, S., Varotto, S., Donn, G., Pirona, R., Henderson, D.A., Hartings, H., and Motto, M. (2007) Maize histone deacetylase hda101 is involved in plant development, gene transcription, and sequence-specific modulation of histone modification of genes and repeats. Plant Cell 19,1145–1162.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, V., Varotto, S., Locatelli, S., Lanzanova, C., Lauria, M., Zanotti, E., Hartings, H., and Motto, M. (2001) The maize WD-repeat gene ZmRbAp1 encodes a member of the MSI/RbAp sub-family and is differentially expressed during endosperm development. Mol. Genet. Genomics 265,576–584.

    Article  PubMed  CAS  Google Scholar 

  • Rudenko, G.N., Ono, A., and Walbot, V. (2003) Initiation of silencing of maize MuDR/Mu transposable elements. Plant J. 33,1013–1025.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, D. (1989) Gene-controlled cytosine demethylation in the promoter region of the Ac element of maize. Proc. Nat'l. Acad. Sci. USA 86,2789–2793.

    Article  CAS  Google Scholar 

  • Segal, G., Song, R., and Messing, J. (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165,387–397.

    PubMed  CAS  Google Scholar 

  • Sekhon, R.S., Peterson, T., and Chopra, S. (2007) Epigenetic modifications of distinct sequences of the pl regulatory gene specify tissue-specific expression patterns in maize. Genetics 175,1059–1070.

    Article  PubMed  CAS  Google Scholar 

  • Shi, J. and Dawe, R.K. (2006) Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 173,1571–1583.

    Article  PubMed  CAS  Google Scholar 

  • Sidorenko, L.V. and Peterson, T. (2001) Transgene-induced silencing identifies sequences involved in the establishment of paramutation of the maize p1 gene. Plant Cell 13,319–335.

    Article  PubMed  CAS  Google Scholar 

  • Slotkin, R.K., Freeling, M., and Lisch, D. (2003) Mu killer causes the heritable inactivation of the Mutator family of elements in Zea mays. Genetics 165,781–797.

    PubMed  CAS  Google Scholar 

  • Smith, L.M., Pontes, O., Searle, I., Yelina, N., Yousafzai, F.K., Herr, A.J., Pikaard, C.S., and Baulcombe, D.C. (2007) An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19:1507–1521.

    Article  PubMed  CAS  Google Scholar 

  • Spector, M.S., Raff, A., DeSilva, H., Lee, K., and Osley, M.A. (1997) Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cereviseae cell cycle. Mol. Cell. Biol. 17,545–552.

    PubMed  CAS  Google Scholar 

  • Springer, N.M., Danilevskaya, O.N., Hermon, P., Helentjaris, T.G., Phillips, R.L., Kaeppler, H.F., and Kaeppler, S.M. (2002) Sequence relationships, conserved domains, and expression patterns for maize homologs of the polycomb group genes E(z), esc, and E(Pc). Plant Physiol. 128,1332–1345.

    Article  PubMed  CAS  Google Scholar 

  • Springer, N.M., and Kaeppler, S.M. (2005) Evolutionary divergence of monocot and dicot methyl- CpG-binding domain proteins. Plant Physiol. 138,92–104.

    Article  PubMed  CAS  Google Scholar 

  • Springer, N.M., Napoli, C.A., Selinger, D.A., Pandey, R., Cone, K.C., Chandler, V.L., Kaeppler, H.F., and Kaeppler, S.M. (2003) Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol. 132,907–925.

    Article  PubMed  CAS  Google Scholar 

  • Stam, M., Belele, C., Dorweiler, J.E., and Chandler, V.L. (2002) Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Develop. 16,1906–1912.

    Article  PubMed  CAS  Google Scholar 

  • Steward, N., Ito, M., Yamaguchi, Y., Koizumi, N., and Sano, H. (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J. Biol. Chem. 277, 37741–37746.

    Article  PubMed  CAS  Google Scholar 

  • Steward, N., Kusano, T., and Sano, H. (2000) Expression of ZmMet1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucl. Acids Res. 28,3250–3259.

    Article  PubMed  CAS  Google Scholar 

  • Sunkar, R., Viswanathan, C., Zhu, J., and Zhu, J-K. (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science 12, 301–309.

    Article  PubMed  CAS  Google Scholar 

  • Varotto, S., Locatelli, S., Canova, S., Pipal, A., Motto, M., and Rossi, V. (2003) Expression profile and cellular localization of maize Rpd3-type histone deacetylases during plant development. Plant Physiol. 133,606–617.

    Article  PubMed  CAS  Google Scholar 

  • Vongs, A., Kakutani, T., Martienssen, R.A., and Richards, E.J. (1993) Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928.

    Article  PubMed  CAS  Google Scholar 

  • Walker, E.L. (1998) Paramutation of the r1 locus of maize is associated with increased cytosine methylation. Genetics 148,1973–1981.

    PubMed  CAS  Google Scholar 

  • Walker, E.L. and Panavas, T. (2001) Structural features and methylation patterns associated with paramutation at the r1 locus of Zea mays. Genetics 159,1201–1215.

    PubMed  CAS  Google Scholar 

  • Woo, H.R., Pontes, O., Pikaard, C.S., and Richards, E.J. (2007) VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Develop. 21,267–277.

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse, M.R., Freeling, M., and Lisch, D. (2006a) Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol. 4,e339.

    Article  Google Scholar 

  • Woodhouse, M.R., Freeling, M., and Lisch, D. (2006b) The mop1 (mediator of paramutation1) mutant progressively reactivates one of the two genes encoded by the MuDR transposon in maize. Genetics 172,579–592.

    Article  CAS  Google Scholar 

  • Zemach, A. and Grafi, G. (2007) Methyl-CpG-binding domain proteins in plants: interpreters of DNA methylation. Trends Plant Sci. 12,80–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Kaeppler, S. (2009). Chromatin, DNA Methylation, RNAi and Epigenetic Regulation. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_22

Download citation

Publish with us

Policies and ethics