Advertisement

Paramutation: Heritable in TransEffects

  • Maike Stam
  • Marieke Louwers

Paramutation is the heritable transfer of epigenetic information from one allele of a gene to another allele of the same gene. In general, the consequence of this trans-communication is a change in gene expression. Paramutation has been observed in plants, fungi and mammals, but is most extensively studied in maize thanks to the long-standing history of maize genetics. For decades, paramutation has been a mystery, but recent progress has shed light on the mechanisms underlying this phenomenon. The identification of MOP1 as an RNA-dependent RNA polymerase shows that RNA plays a crucial role in the trans-inactivation process. RNA however appears not the only player in the paramutation process. In this chapter, potential mechanisms will be discussed in light of characteristics that the various paramutation phenomena have in common.

Keywords

Histone Modification Chromatin Structure H3K27 Methylation Epigenetic State Transcriptional Gene Silence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alleman, M., Sidorenko, L., McGinnis, K., Seshadri, V., Dorweiler, J.E., White, J., Sikkink, K., and Chandler, V.L. (2006). An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298.PubMedCrossRefGoogle Scholar
  2. Athma, P., Grotewold, E., and Peterson, T. (1992). Insertional mutagenesis of the maize Pgene by intragenic transposition of Ac. Genetics 131, 199–209.PubMedGoogle Scholar
  3. Bacher, C.P., Guggiari, M., Brors, B., Augui, S., Clerc, P., Avner, P., Eils, R., and Heard, E. (2006). Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8, 293–299.PubMedCrossRefGoogle Scholar
  4. Bantignies, F., and Cavalli, G. (2006). Cellular memory and dynamic regulation of polycomb group proteins. Curr Opin Cell Biol 18, 275–283.PubMedCrossRefGoogle Scholar
  5. Bantignies, F., Grimaud, C., Lavrov, S., Gabut, M., and Cavalli, G. (2003). Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Gene Develop 17, 2406–2420.CrossRefGoogle Scholar
  6. Bateson, W., and Pellew, C. (1915). On the genetics of ‘rogues’ among culinairy peas (Pisumsativum). Journal of Genetics 5, 15–36.CrossRefGoogle Scholar
  7. Brink, R., and Weyers, W.H. (1957). Invariable genetic change in maize plants heterozygous for marbled aleurone. Proc. Natl. Acad. Sci. U.S. 43, 1053–1060.CrossRefGoogle Scholar
  8. Brink, R.A. (1958). Paramutation at the R locus in maize. Cold Spring Harbor Symp. Quant. Biol. 23, 379–391.PubMedGoogle Scholar
  9. Brown, D., and Brink, R. (1960). Paramutagenic action of paramutant R-r and R-g alleles in maize. Genetics 45, 1313–1316.PubMedGoogle Scholar
  10. Chan, S.W., Zhang, X., Bernatavichute, Y.V., and Jacobsen, S.E. (2006a). Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol 4, e363.CrossRefGoogle Scholar
  11. Chan, S.W., Zilberman, D., Xie, Z., Johansen, L.K., Carrington, J.C., and Jacobsen, S.E. (2004). RNA silencing genes control de novo DNA methylation. Science 303, 1336.PubMedCrossRefGoogle Scholar
  12. Chan, S.W., Henderson, I.R., Zhang, X., Shah, G., Chien, J.S., and Jacobsen, S.E. (2006b). RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in arabidopsis. PLoS Genet 2, e83.CrossRefGoogle Scholar
  13. Chandler, V.L. (2007). Paramutation: From maize to mice. Cell 128, 641–645.PubMedCrossRefGoogle Scholar
  14. Chandler, V.L., and Stam, M. (2004). Chromatin conversations: mechanisms and implications of paramutation. Nat Rev Genet 5, 532–544.PubMedCrossRefGoogle Scholar
  15. Chandler, V.L., Eggleston, W.B., and Dorweiler, J.E. (2000). Paramutation in maize. Plant Mol Biol 43, 121–145.PubMedCrossRefGoogle Scholar
  16. Chen, Z.J. (2007). Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58, 377–406.PubMedCrossRefGoogle Scholar
  17. Chopra, S., Athma, P., and Peterson, T. (1996). Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements. Plant Cell 8, 1149–1158.PubMedCrossRefGoogle Scholar
  18. Chopra, S., Athma, P., Li, X.G., and Peterson, T. (1998). A maize Myb homolog is encoded by a multicopy gene complex. Mol Gen Genet 260, 372–380.PubMedCrossRefGoogle Scholar
  19. Coe, E.H.J. (1959). A regular and continuing conversion-type phenomenon at b locus in maize. Maydica 24, 49–58.Google Scholar
  20. Coe, E.H.J. (1966). The properties, origin and mechanism of conversion-type inheritance at the b locus in maize. Genetics 53, 1035–1063.PubMedGoogle Scholar
  21. D'Alessio, A.C., and Szyf, M. (2006). Epigenetic tete-a-tete: the bilateral relationship between chromatin modifications and DNA methylation. Biochem Cell Biol 84, 463–476.PubMedCrossRefGoogle Scholar
  22. Das, P., and Messing, J. (1994). Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. Genetics 136, 1121–1141.PubMedGoogle Scholar
  23. Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311.PubMedCrossRefGoogle Scholar
  24. Dieguez, M.J., Vaucheret, H., Paszkowski, J., and Mittelsten Scheid, O. (1998). Cytosine methylation at CG and CNG sites is not a prerequisite for the initiation of transcrip-tional gene silencing in plants, but it is required for its maintenance. Mol Gen Genet 259, 207–215.PubMedCrossRefGoogle Scholar
  25. Dorweiler, J.E., Carey, C.C., Kubo, K.M., Hollick, J.B., Kermicle, J.L., and Chandler, V.L. (2000). Mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci. Plant Cell 12, 2101–2118.PubMedCrossRefGoogle Scholar
  26. Duvillie, B., Bucchini, D., Tang, T., Jami, J., and Paldi, A. (1998). Imprinting at the mouse Ins2 locus: evidence for cis- and trans-allelic interactions. Genomics 47, 52–57.PubMedCrossRefGoogle Scholar
  27. Eggleston, W.B., Alleman, M., and Kermicle, J.L. (1995). Molecular organization and germinal instability of R-stippled maize. Genetics 141, 347–360.PubMedGoogle Scholar
  28. English, J.J., and Jones, J.D.G. (1998). Epigenetic instability and trans-silencing interactions associated with an SPT:Ac T-DNA locus in tobacco. Genetics 148, 457–469.PubMedGoogle Scholar
  29. Finnegan, E.J., Sheldon, C.C., Jardinaud, F., Peacock, W.J., and Dennis, E.S. (2004). A cluster of Arabidopsis genes with a coordinate response to an environmental stimulus. Curr Biol 14, 911–916.PubMedCrossRefGoogle Scholar
  30. Forne, T., Oswald, J., Dean, W., Saam, J.R., Bailleul, B., Dandolo, L., Tilghman, S.M., Walter, J., and Reik, W. (1997). Loss of the maternal H19 gene induces changes in Igf2 methylation in both cis and trans. Proc Nat Acad Sci Usa 94, 10243–10248.PubMedCrossRefGoogle Scholar
  31. Grewal, S.I.S., and Moazed, D. (2003). Heterochromatin and epigenetic control of gene expression. Science 301, 798–802.PubMedCrossRefGoogle Scholar
  32. Grewal, S.I.S., and Jia, S.T. (2007). Heterochromatin revisited. Nature Reviews Genetics 8, 35–46.PubMedCrossRefGoogle Scholar
  33. Grewal, S.I.S., and Elgin, S.C.R. (2007). Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406.PubMedCrossRefGoogle Scholar
  34. Grimaud, C., Bantignies, F., Pal-Bhadra, M., Ghana, P., Bhadra, U., and Cavalli, G. (2006). RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124, 957–971.PubMedCrossRefGoogle Scholar
  35. Gross, S.M., and Hollick, J.B. (2007). Multiple trans-sensing interactions affect meiotically heritable epigenetic states at the maize pl1 locus. Genetics 176, 829–839.PubMedCrossRefGoogle Scholar
  36. Guo, M., Davis, D., and Birchler, J.A. (1996). Dosage effects on gene expression in a maize ploidy series. Genetics 142, 1349–1355.PubMedGoogle Scholar
  37. Hagemann, R. (1993). Studies towards a genetic and molecular analysis of paramutation at the sulfurea locus of Lycopersicon esculentum Mill. (Lancaster-Basel: Technomic publishing company, Inc.).Google Scholar
  38. Hagemann, R., and Berg, W. (1978). Paramutation at the sulfurealocus of Lycopersicon esculentumMill. VII. Determination of the time of occurrence of paramutation by the quantitative evaluation of the variegation. Theoretical and Applied Genetics 53, 113–123.CrossRefGoogle Scholar
  39. Hale, C.J., Stonaker, J.L., Gross, S.M., and Hollick, J.B. (2007). A Novel Snf2 Protein Maintains trans-Generational Regulatory States Established by Paramutation in Maize. PLoS Biol 5, e275.PubMedCrossRefGoogle Scholar
  40. Hall, I.M., Noma, K., and Grewal, S.I.S. (2003). RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Nat Acad Sci Usa 100, 193–198.PubMedCrossRefGoogle Scholar
  41. Haring, M., Offermann, S., Danker, T., Horst, I., Peterhaensel, C., and Stam, M. (2007). Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3, 11.PubMedCrossRefGoogle Scholar
  42. Harrison, B.J., and Carpenter, R. (1973). A comparison of the instabilities at the Niveaand Pallidaloci in Antirrhinum majus. Heredity 31, 309–323.CrossRefGoogle Scholar
  43. Hatada, I., Nabetani, A., Arai, Y., Ohishi, S., Suzuki, M., Miyabara, S., Nishimune, Y., and Mukai, T. (1997). Aberrant methylation of an imprinted gene U2af1-rs1(SP2) caused by its own transgene. Journal of Biological Chemistry 272, 9120–9122.PubMedCrossRefGoogle Scholar
  44. Henderson, I.R., and Jacobsen, S.E. (2007). Epigenetic inheritance in plants. Nature 447, 418–424.PubMedCrossRefGoogle Scholar
  45. Henikoff, S., and Ahmad, K. (2005). Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21, 133–153.PubMedCrossRefGoogle Scholar
  46. Hollick, J.B., and Chandler, V.L. (1998). Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action. Genetics 150, 891–897.PubMedGoogle Scholar
  47. Hollick, J.B., and Chandler, V.L. (2001). Genetic factors required to maintain repression of a paramutagenic maize pl1 allele. Genetics 157, 369–378.PubMedGoogle Scholar
  48. Hollick, J.B., Kermicle, J.L., and Parkinson, S.E. (2005). Rmr6 maintains meiotic inheritance of paramutant states in Zea mays. Genetics 171, 725–740.PubMedCrossRefGoogle Scholar
  49. Hollick, J.B., Patterson, G.I., Asmundsson, I.M., and Chandler, V.L. (2000). Paramutation alters regulatory control of the maize pl locus. Genetics 154, 1827–1838.PubMedGoogle Scholar
  50. Hollick, J.B., Patterson, G.I., Coe, E.H., Jr., Cone, K.C., and Chandler, V.L. (1995). Allelic interactions heritably alter the activity of a metastable maize pl allele. Genetics 141, 709–719.PubMedGoogle Scholar
  51. Jacobsen, S.E., and Meyerowitz, E.M. (1997). Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1100–1103.PubMedCrossRefGoogle Scholar
  52. Jones, L., Ratcliff, F., and Baulcombe, D.F. (2001). RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol 11, 747–757.PubMedCrossRefGoogle Scholar
  53. Kermicle, J.L., Eggleston, W.B., and Alleman, M. (1995). Organization of paramutagenicity in R-stippled maize. Genetics 141, 361–372.PubMedGoogle Scholar
  54. Klose, R.J., and Bird, A.P. (2006). Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31, 89–97.PubMedCrossRefGoogle Scholar
  55. Lavigne, M., Francis, N.J., King, I.F., and Kingston, R.E. (2004). Propagation of silencing; recruitment and repression of naive chromatin in trans by polycomb repressed chromatin. Mol Cell 13, 415–425.PubMedCrossRefGoogle Scholar
  56. Lee, A.M., and Wu, C.T. (2006). Enhancer-promoter communication at the yellow gene of Drosophila melanogaster: diverse promoters participate in and regulate trans interactions. Genetics 174, 1867–1880.PubMedCrossRefGoogle Scholar
  57. Lee, D.W., Seong, K.Y., Pratt, R.J., Baker, K., and Aramayo, R. (2004). Properties of unpaired DNA required for efficient silencing in Neurospora crassa. Genetics 167, 131–150.PubMedCrossRefGoogle Scholar
  58. Lee, H.S., and Chen, Z.J. (2001). Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Nat Acad Sci Usa 98, 6753–6758.PubMedCrossRefGoogle Scholar
  59. Lei, E.P., and Corces, V.G. (2006). RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet 38, 936–941.PubMedCrossRefGoogle Scholar
  60. Liu, Y., Taverna, S.D., Muratore, T.L., Shabanowitz, J., Hunt, D.F., and Allis, C.D. (2007). RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev 21, 1530–1545.PubMedCrossRefGoogle Scholar
  61. Lomvardas, S., Barnea, G., Pisapia, D.J., Mendelsohn, M., Kirkland, J., and Axel, R. (2006).Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413.PubMedCrossRefGoogle Scholar
  62. Louwers, M., Haring, M., and Stam, M. (2005). When alleles meet: Paramutation. In Plant Epigenetics, P. Meyer, ed (Oxford, UK: Blackwell Publishing Ltd), pp. 134–173.CrossRefGoogle Scholar
  63. Luff, B., Pawlowski, L., and Bender, J. (1999). An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol Cell 3, 505–511.PubMedCrossRefGoogle Scholar
  64. Martienssen, R.A. (2003). Maintenance of heterochromatin by RNA interference of tandem repeats. Nat Genet 35, 213–214.PubMedCrossRefGoogle Scholar
  65. Martin, C., and Zhang, Y. (2007). Mechanisms of epigenetic inheritance. Curr Opin Cell Biol 19, 266–272.PubMedCrossRefGoogle Scholar
  66. Matzke, M., Kanno, T., Huettel, B., Daxinger, L., and Matzke, A.J. (2007). Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10, 512–519.PubMedCrossRefGoogle Scholar
  67. Matzke, M.A., and Birchler, J.A. (2005). RNAi-mediated pathways in the nucleus. Nat Rev Genet 6, 24–35.PubMedCrossRefGoogle Scholar
  68. Mello, C.C., and Conte, D. (2004). Revealing the world of RNA interference. Nature 431, 338–342. Meyer, P., Heidmann, I., and Niedenhof, I. (1993). Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J 4, 89–100.PubMedCrossRefGoogle Scholar
  69. Meyer, P., Heidmann, I., and Niedenhof, I. (1993). Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J 4, 89–100.PubMedCrossRefGoogle Scholar
  70. Meyer, P., Linn, F., Heidmann, I., Meyer, H., Niedenhof, I., and Saedler, H. (1992). Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231, 345–352.PubMedCrossRefGoogle Scholar
  71. Mittelsten Scheid, O., Afsar, K., and Paszkowski, J. (2003). Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana. Nat Genet 34, 450–454.CrossRefGoogle Scholar
  72. Panavas, T., Weir, J., and Walker, E.L. (1999). The structure and paramutagenicity of the R-marbled haplotype of Zea mays. Genetics 153, 979–991.PubMedGoogle Scholar
  73. Park, Y.D., Papp, I., Moscone, E.A., Iglesias, V.A., Vaucheret, H., Matzke, A.J.M., and Matzke, M.A. (1996). Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant Journal 9, 183–194.PubMedCrossRefGoogle Scholar
  74. Patterson, G.I., Thorpe, C.J., and Chandler, V.L. (1993). Paramutation, an allelic interaction, is associated with a stable and heritable reduction of transcription of the maize b regulatory gene. Genetics 135, 881–894.PubMedGoogle Scholar
  75. Pecinka, A., Kato, N., Meister, A., Probst, A.V., Schubert, I., and Lam, E. (2005). Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. J Cell Sci 118, 3751–3758.PubMedCrossRefGoogle Scholar
  76. Peters, A.H.F.M., and Schubeler, D. (2005). Methylation of histones: playing memory with DNA. Curr Opin Cell Biol 17, 230–238.PubMedCrossRefGoogle Scholar
  77. Qin, H., and von Arnim, A.G. (2002). Epigenetic history of an Arabidopsis trans-silencer locus and a test for relay of trans-silencing activity. BMC Plant Biol 2, 11.PubMedCrossRefGoogle Scholar
  78. Qin, H., Dong, Y., and von Arnim, A.G. (2003). Epigenetic interactions between Arabidopsis transgenes: characterization in light of transgene integration sites. Plant Mol Biol 52, 217–231.PubMedCrossRefGoogle Scholar
  79. Rassoulzadegan, M., Magliano, M., and Cuzin, F. (2002). Transvection effects involving DNA methylation during meiosis in the mouse. Embo J 21, 440–450.PubMedCrossRefGoogle Scholar
  80. Rassoulzadegan, M., Grandjean, V., Gounon, P., Vincent, S., Gillot, I., and Cuzin, F. (2006). RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474.PubMedCrossRefGoogle Scholar
  81. Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E., and Chang, H.Y. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323.PubMedCrossRefGoogle Scholar
  82. Santos, J.L., Alfaro, D., Sanchez-Moran, E., Armstrong, S.J., Franklin, F.C., and Jones, G.H. (2003). Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165, 1533–1540.PubMedGoogle Scholar
  83. Sidorenko, L., Li, X., Tagliani, L., Bowen, B., and Peterson, T. (1999). Characterization of the regulatory elements of the maize P-rr gene by transient expression assays. Plant Mol Biol 39, 11–19.PubMedCrossRefGoogle Scholar
  84. Sidorenko, L.V., and Peterson, T. (2001). Transgene-induced silencing identifies sequences involved in the establishment of paramutation of the maize p1gene. Plant Cell 13, 319–335.PubMedCrossRefGoogle Scholar
  85. Sidorenko, L.V., Li, X., Cocciolone, S.M., Chopra, S., Tagliani, L., Bowen, B., Daniels, M., and Peterson, T. (2000). Complex structure of a maize Mybgene promoter: functional analysis in transgenic plants. Plant J 22, 471–482.PubMedCrossRefGoogle Scholar
  86. Slotkin, R.K., and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics 8, 272–285.PubMedCrossRefGoogle Scholar
  87. Soppe, W.J., Jacobsen, S.E., Alonso-Blanco, C., Jackson, J.P., Kakutani, T., Koornneef, M., and Peeters, A.J. (2000). The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6, 791–802.PubMedCrossRefGoogle Scholar
  88. Spilianakis, C.G., Lalioti, M.D., Town, T., Lee, G.R., and Flavell, R.A. (2005). Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645.PubMedCrossRefGoogle Scholar
  89. Stam, M., and Scheid, O.M. (2005). Paramutation: an encounter leaving a lasting impression. Trends Plant Sci 10, 283–290.PubMedCrossRefGoogle Scholar
  90. Stam, M., Belele, C., Dorweiler, J.E., and Chandler, V.L. (2002). Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Gene Develop 16, 1906–1918.CrossRefGoogle Scholar
  91. Stokes, T.L., Kunkel, B.N., and Richards, E.J. (2002). Epigenetic variation in Arabidopsis disease resistance. Gene Develop 16, 171–182.CrossRefGoogle Scholar
  92. Styles, E.D., and Brink, R.A. (1966). The metastable nature of paramutable R alleles in maize. I. Heritable enhancement in level of standard R r action. Genetics 54, 433–439.PubMedGoogle Scholar
  93. Styles, E.D., and Brink, R.A. (1967). The metastable nature of paramutable Ralleles in maize. III. Heritable changes in level of Raction in heterozygotes carrying different paramutable R alleles. Genetics 55, 411–422.PubMedGoogle Scholar
  94. Tariq, M., and Paszkowski, J. (2004). DNA and histone methylation in plants. Trends Genet 20, 244–251.PubMedCrossRefGoogle Scholar
  95. Ting, A.H., Schuebel, K.E., Herman, J.G., and Baylin, S.B. (2005). Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat Genet 37, 906–910.PubMedCrossRefGoogle Scholar
  96. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., and deLaat, W. (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10, 1453–1465.PubMedCrossRefGoogle Scholar
  97. van West, P., Kamoun, S., van't Klooster, J.W., and Govers, F. (1999). Internuclear gene silencing in Phytophthora infestans. Mol Cell 3, 339–348.PubMedCrossRefGoogle Scholar
  98. vanBlokland, R., tenLohuis, M., and Meyer, P. (1997). Condensation of chromatin in transcriptional regions of an inactivated plant transgene: evidence for an active role of transcription in gene silencing. Molecular & General Genetics 257, 1–13.CrossRefGoogle Scholar
  99. vanHouwelingen, A., Souer, E., Mol, J., and Koes, R. (1999). Epigenetic interactions among three dTph1 transposons in two homologous chromosomes activate a new excision-repair mechanism in petunia. Plant Cell 11, 1319–1336.PubMedCrossRefGoogle Scholar
  100. Vaucheret, H. (2006). Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Gene Develop 20, 759–771.CrossRefGoogle Scholar
  101. Walker, E.L. (1998). Paramutation of the r1 locus of maize is associated with increased cytosine methylation. Genetics 148, 1973–1981.PubMedGoogle Scholar
  102. Walker, E.L., and Panavas, T. (2001). Structural features and methylation patterns associated with paramutation at the r1 locus of Zea mays. Genetics 159, 1201–1215.PubMedGoogle Scholar
  103. Watanabe, K., Pecinka, A., Meister, A., Schubert, I., and Lam, E. (2005). DNA hypomethylation reduces homologous pairing of inserted tandem repeat arrays in somatic nuclei of Arabidopsis thaliana. Plant J 44, 531–540.PubMedCrossRefGoogle Scholar
  104. Weinberg, M.S., Villeneuve, L.M., Ehsani, A., Amarzguioui, M., Aagaard, L., Chen, Z.X., Riggs, A.D., Rossi, J.J., and Morris, K.V. (2006). The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. Rna 12, 256–262.PubMedCrossRefGoogle Scholar
  105. Weiss, H., and Maluszynska, J. (2000). Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133, 255–261.PubMedCrossRefGoogle Scholar
  106. Wisman, S., Ramanna, M.S., and Koornneef, M. (1983). Isolation of a new paramutagenic allele of the sulfurea locus in the tomato cultivar Moneymaker following in vitro culture. Theor. Appl. Genet. 87, 289–294.CrossRefGoogle Scholar
  107. Woodhouse, M.R., Freeling, M., and Lisch, D. (2006). Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol 4, e339.PubMedCrossRefGoogle Scholar
  108. Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, K.D., Lellis, A.D., Zilberman, D., Jacobsen, S.E., and Carrington, J.C. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2, E104.PubMedCrossRefGoogle Scholar
  109. Xu, N., Tsai, C.L., and Lee, J.T. (2006). Transient homologous chromosome pairing marks the onset of X inactivation. Science 311, 1149–1152.PubMedCrossRefGoogle Scholar
  110. Zaratiegui, M., Irvine, D.V., and Martienssen, R.A. (2007). Noncoding RNAs and gene silencing. Cell 128, 763–776.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Swammerdam Institute for Life SciencesUniversity of AmsterdamThe Netherlands

Personalised recommendations