Skip to main content

Homologous Recombination in Maize

  • Chapter
Handbook of Maize

We have divided this chapter into two major sections: somatic and meiotic recombination. Somatic recombination in plants has been mostly monitored with artificial recombination substrates in transgenic systems. Although, in this area, maize has lagged behind other plants that can be more easily transformed, excellent progress has been achieved recently, as detailed in the first section. Specific topics discussed in this section are site-specific and targeted recombination. Research on meiotic recombination, particularly intragenic recombination, has been historically strong in maize relative to other plants, principally because the maize endosperm provides distinct advantages as an experimental unit of observation for recombination studies. It is, at the same time, large enough so that many traits can be scored and small enough so that many kernels can be screened. Many of the genes utilized in meiotic recombi-national analyses affect anthocyanin pigmentation in the aleurone layer of the endosperm, as will be evident in the second section. In this section we discuss the distribution of recombination junctions at the genomic, regional, and genic levels, as well as modifiers that affect that distribution. We consider the special case of tandem duplications and gene families as recombination substrates and discuss how recombination has been used as a tool in the genetic analysis of paramutation and disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, H., Dale, E.C., Lee, E., and Ow, D.W. (1995). Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7, 649–659.

    PubMed  CAS  Google Scholar 

  • Anderson, L.K., Salameh, N., Bass, H.W., Harper, L.C., Cande, W.Z., Weber, G., and Stack, S.M. (2004). Integrating genetic linkage maps with pachytene chromosome structure in maize. Genetics 166, 1923–1933.

    PubMed  CAS  Google Scholar 

  • Anderson, L.K., Doyle, G.G., Brigham, B., Carter, J., Hooker, K.D., Lai, A., Rice, M., and Stack, S.M. (2003). High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165, 849–865.

    PubMed  CAS  Google Scholar 

  • Araki, H., Jearnpipatkul, A., Tatsumi, H., Sakurai, T., Ushio, K., Muta, T., and Oshima, Y. (1985). Molecular and functional organization of yeast plasmid pSR1. J. Mol. Biol. 182, 191–203.

    PubMed  CAS  Google Scholar 

  • Athma, P., and Peterson, T. (1991). Ac induces homologous recombination at the maize P locus. Genetics 128, 163–173.

    PubMed  CAS  Google Scholar 

  • Bass, H.W., Bordoli, S.J., and Foss, E.M. (2003). The desynaptic (dy) and desynaptic1 (dsy1) mutations in maize (Zea mays L) cause distinct telomere-misplacement phenotypes during meiotic prophase. J. Exp. Bot. 54, 39–46.

    PubMed  CAS  Google Scholar 

  • Beavis, W.D., and Grant, D. (1991). A linkage map based on information from four F2 populations of maize (Zea mays L.). Theor. Appl. Genet. 82.

    Google Scholar 

  • Beckett, E.B., Burnham, C.R., Coe, E.H., Maguire, M.P., Patterson, E.B., and Phillips, R.L. (1978). Cytogenetic working map. Maize Genet. Newslet. 52, 129–145.

    Google Scholar 

  • Beetham, P.R., Kipp, P.B., Sawycky, X.L., Arntzen, C.J., and May, G.D. (1999). A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc. Natl. Acad. Sci. USA 96, 8774–8778.

    PubMed  CAS  Google Scholar 

  • Broach, J.R., Guarascio, V.R., and Jayaram, M. (1982). Recombination within the yeast plasmid 2um circle is site-specific. Cell 29, 227–234.

    PubMed  CAS  Google Scholar 

  • Brown, J., and Sundaressan, V. (1991). A recombinational hotspot in the maize A1 intragenic region. Theor. Appl. Genet. 81, 185–188.

    Google Scholar 

  • Chawla, R., Ariza-Nieto, M., Wilson, A.J., Moore, S.K., and Srivastava, V. (2006). Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnol. J. 4, 209–218.

    PubMed  CAS  Google Scholar 

  • Civardi, L., Xia, Y., Edwards, K.J., Schnable, P.S., and Nikolau, B.J. (1994). The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc. Natl. Acad. Sci. USA 91, 8268–8272.

    CAS  Google Scholar 

  • Collins, N., Drake, J., Ayliffe, M., Sun, Q., Ellis, J., Hulbert, S., and Pryor, T. (1999). Molecular charac- terization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11, 1365–1376.

    PubMed  CAS  Google Scholar 

  • Copenhaver, G.P., Keith, K.C., and Preuss, D. (2000). Tetrad analysis in higher plants. A budding technology. Plant Physiol 124, 7–16.

    PubMed  CAS  Google Scholar 

  • Coppoolse, E.R., de Vroomen, M.J., van Gennip, F., Hersmus, B.J., and van Haaren, M.J. (2005). Size does matter: cre-mediated somatic deletion efficiency depends on the distance between the target lox-sites. Plant Mol. Biol. 58, 687–698.

    PubMed  CAS  Google Scholar 

  • Coppoolse, E.R., de Vroomen, M.J., Roelofs, D., Smit, J., van Gennip, F., Hersmus, B.J., Nijkamp, H.J., and van Haaren, M.J. (2003). Cre recombinase expression can result in pheno- typic aberrations in plants. Plant Mol. Biol. 51, 263–279.

    PubMed  CAS  Google Scholar 

  • Darbani, B., Eimanifar, A., Stewart, C.N., Jr., and Camargo, W.N. (2007). Methods to produce marker-free transgenic plants. Biotechnol. J. 2, 83–90.

    PubMed  CAS  Google Scholar 

  • Das, O.P., Poliak, E., Ward, K., and Messing, J. (1991). A new allele of the duplicated 27kD zein locus of maize generated by homologous recombination. Nucleic Acids Res. 19, 3325–3330.

    PubMed  CAS  Google Scholar 

  • Davis, G.L., McMullen, M.D., Baysdorfer, C., Musket, T., Grant, D., Staebell, M., Xu, G., Polacco, M., Koster, L., Melia-Hancock, S., Houchins, K., Chao, S., and Coe, E.H., Jr. (1999). A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152, 1137–1172.

    PubMed  CAS  Google Scholar 

  • Djukanovic, V., Orczyk, W., Gao, H., Sun, X., Garrett, N., Zhen, S., Gordon-Kamm, W., Barton, J., and Lyznik, L.A. (2006). Gene conversion in transgenic maize plants expressing FLP/FRT and Cre/loxP site-specific recombination systems. Plant Biotechnol. J. 4, 345–357.

    PubMed  CAS  Google Scholar 

  • Dooner, H.K. (1986). Genetic fine structure of the bronze locus in maize. Genetics 113, 1021–1036.

    PubMed  CAS  Google Scholar 

  • Dooner, H.K. (2002). Extensive interallelic polymorphisms drive meiotic recombination into a crossover pathway. Plant Cell 14, 1173–1183.

    PubMed  CAS  Google Scholar 

  • Dooner, H.K., and Kermicle, J.L. (1971). Structure of the R-r tandem duplication in maize. Genetics 67, 437–454.

    PubMed  CAS  Google Scholar 

  • Dooner, H.K., and Kermicle, J.L. (1974). Reconstitution of the R-r compound allele in maize. Genetics 78, 691–701.

    PubMed  Google Scholar 

  • Dooner, H.K., and Kermicle, J.L. (1986). The transposable element Ds affects the pattern of intra- genic recombination at the bz and R loci in maize. Genetics 113, 135–143.

    PubMed  CAS  Google Scholar 

  • Dooner, H.K., and Ralston, E. (1990). Effect of the Mu1 insertion on intragenic recombination at the bz locus in maize. Maydica 35, 333–337.

    Google Scholar 

  • Dooner, H.K., and Martínez-Férez, I.M. (1997a). Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell 9, 1633–1646.

    CAS  Google Scholar 

  • Dooner, H.K., and Martínez-Férez, I.M. (1997b). Germinal excisions of the maize transposon activator do not stimulate meiotic recombination or homology-dependent repair at the bz locus. Genetics 147, 1923–1932.

    CAS  Google Scholar 

  • Dooner, H.K., Weck, E., Adams, S., Ralston, E., Favreau, M., and English, J. (1985). A molecular genetic analysis of insertion mutations in the bronze locus in maize. Mol. Gen. Genet. 200, 240–246.

    CAS  Google Scholar 

  • Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M.H., and Chandrasegaran, S. (2005). Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33, 5978–5990.

    PubMed  CAS  Google Scholar 

  • Eggleston, W.B., Alleman, M., and Kermicle, J.L. (1995). Molecular organization and germinal instability of R-stippled maize. Genetics 141, 347–360.

    PubMed  CAS  Google Scholar 

  • Emrich, S.J., Li, L., Wen, T.J., Yandeau-Nelson, M.D., Fu, Y., Guo, L., Chou, H.H., Aluru, S., Ashlock, D.A., and Schnable, P.S. (2007). Nearly identical paralogs: implications for maize (Zea mays L.) genome evolution. Genetics 175, 429–439.

    PubMed  CAS  Google Scholar 

  • Esch, E., Szymaniak, J.M., Yates, H., Pawlowski, W.P., and Buckler, E.S. (2007). Using crossover breakpoints in recombinant inbred lines to identify quantitative trait loci controlling the global recombination frequency. Genetics, 177, 1851–1858.

    PubMed  CAS  Google Scholar 

  • Fatmi, A., Poneleit, C.G., and Pfeiffer, T.W. (1993). Variability of recombination frequencies in the Iowa Stiff Stalk Synthetic (Zea mays L.). Theor Appl. Genet. 86, 859–866.

    Google Scholar 

  • Franklin, A.E., Golubovskaya, I.N., Bass, H.W., and Cande, W.Z. (2003). Improper chromosome synapsis is associated with elongated RAD51 structures in the maize desynaptic2 mutant. Chromosoma 112, 17–25.

    PubMed  CAS  Google Scholar 

  • Freeling, M. (1976). Intragenic recombination in maize: pollen analysis methods and the effect of parental Adh1 alleles. Genetics 83, 707–719.

    Google Scholar 

  • Freeling, M. (1977). Allelic variation at the level of intragenic recombination. Genetics 89, 505–509.

    Google Scholar 

  • Freeling, M., and Bennett, D.C. (1985). Maize Adh1. Annu. Rev. Genet. 19, 297–323.

    PubMed  CAS  Google Scholar 

  • Fu, H., and Dooner, H.K. (2002). Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl. Acad. Sci. USA 99, 9573–9578.

    PubMed  CAS  Google Scholar 

  • Fu, H., Zheng, Z., and Dooner, H.K. (2002). Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc. Natl. Acad. Sci. USA 99, 1082–1087.

    PubMed  CAS  Google Scholar 

  • Hanin, M., and Paszkowski, J. (2003). Plant genome modification by homologous recombination. Curr. Opin. Plant Biol. 6, 157–162.

    PubMed  CAS  Google Scholar 

  • Harper, L.C., and Cande, W.Z. (2000). Mapping a new frontier; development of integrated cytoge- netic maps in plants. Funct. Integr. Genomics 1, 89–98.

    PubMed  CAS  Google Scholar 

  • He, L., and Dooner, H.K. (2007). Recombination in a 100-kb genic interval containing Helitrons and retrotransposons. In 49th Annual Maize Genet. Conf. Abstracts (St. Charles, IL), pp. 99.

    Google Scholar 

  • Hulbert, S.H., and Bennetzen, J.L. (1991). Recombination at the Rp1 locus of maize. Mol. Gen. Genet. 226, 377–382.

    PubMed  CAS  Google Scholar 

  • Hulbert, S.H., Sudupak, M.A., and Hong, K.S. (1993). Genetic relationships between alleles of the Rp1 rust resistance locus in maize. Mol. Plant-Microbe Int. 6, 387–392.

    CAS  Google Scholar 

  • Igoucheva, O., Alexeev, V., and Yoon, K. (2004). Oligonucleotide-directed mutagenesis and tar- geted gene correction: a mechanistic point of view. Curr Mol Med 4, 445–463.

    PubMed  CAS  Google Scholar 

  • Iida, S., and Terada, R. (2005). Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol. Biol. 59, 205–219.

    PubMed  CAS  Google Scholar 

  • Ji, Y., Stelly, D.M., De Donato, M., Goodman, M.M., and Williams, C.G. (1999). A candidate recombination modifier gene for Zea mays L. Genetics 151, 821–830.

    PubMed  CAS  Google Scholar 

  • Kerbach, S., Lorz, H., and Becker, D. (2005). Site-specific recombination in Zea mays. Theor. Appl. Genet. 111, 1608–1616.

    PubMed  CAS  Google Scholar 

  • Kermicle, J.L. (1970). Somatic and meiotic Instability of R-stippled, an aleurone spotting factor in maize. Genetics 64, 247–258.

    PubMed  Google Scholar 

  • Kermicle, J.L. (1984). Recombination between Components of a Mutable Gene System in Maize. Genetics 107, 489–500.

    PubMed  CAS  Google Scholar 

  • Kermicle, J.L., Eggleston, W.B., and Alleman, M. (1995). Organization of paramutagenicity in R-stippled maize. Genetics 141, 361–372.

    PubMed  CAS  Google Scholar 

  • Kochevenko, A., and Willmitzer, L. (2003). Chimeric RNA/DNA oligonucleotide-based site- specific modification of the tobacco acetolactate syntase gene. Plant Physiol 132, 174–184.

    PubMed  CAS  Google Scholar 

  • Kotani, H., Germann, M.W., Andrus, A., Vinayak, R., Mullah, B., and Kmiec, E.B. (1996). RNA facilitates RecA-mediated DNA pairing and strand transfer between molecules bearing limited regions of homology. Mol. Gen. Genet. 250, 626–634.

    PubMed  CAS  Google Scholar 

  • Koumbaris, G.L., and Bass, H.W. (2003). A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Plant J. 35, 647–659.

    PubMed  CAS  Google Scholar 

  • Laughnan, J.R. (1952). The action of allelic forms of the gene A in maize. IV. On the compound nature of A and the occurrence and action of Its a derivatives. Genetics 37, 375–395.

    CAS  Google Scholar 

  • Lawrence, C.J., Seigfried, T.E., Bass, H.W., and Anderson, L.K. (2006). Predicting chromosomal locations of genetically mapped loci in maize using the Morgan2McClintock Translator. Genetics 172, 2007–2009.

    PubMed  CAS  Google Scholar 

  • Li, J., Wen, T.J., and Schnable, P.S. (2007a). The role of RAD51 in the repair of MuDR-induced DSBs in Zea mays L. Genetics, 178, 57–66.

    Google Scholar 

  • Li, J., Harper, L.C., Golubovskaya, I., Wang, C.R., Weber, D., Meeley, R.B., McElver, J., Bowen, B., Cande, W.Z., and Schnable, P.S. (2007b). Functional analysis of maize RAD51 in meiosis and double-strand break repair. Genetics 176, 1469–1482.

    CAS  Google Scholar 

  • Li, Y., Bernot, J.P., Illingworth, C., Lison, W., Bernot, K.M., Eggleston, W.B., Fogle, K.J., DiPaola, J.E., Kermicle, J., and Alleman, M. (2001). Gene conversion within regulatory sequences generates maize r alleles with altered gene expression. Genetics 159, 1727–1740.

    PubMed  CAS  Google Scholar 

  • Lloyd, A., Plaisier, C.L., Carroll, D., and Drews, G.N. (2005). Targeted mutagenesis using zinc- finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102, 2232–2237.

    PubMed  CAS  Google Scholar 

  • Lowe, B., Mathern, J., and Hake, S. (1992). Active Mutator elements suppress the knotted pheno- type and increase recombination at the Kn1-O tandem duplication. Genetics 132, 813–822.

    PubMed  CAS  Google Scholar 

  • Lyznik, L.A., Rao, K.V., and Hodges, T.K. (1996). FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res. 24, 3784–3789.

    PubMed  CAS  Google Scholar 

  • Lyznik, L.A., Gordon-Kamm, W.J., and Tao, Y. (2003). Site-specific recombination for genetic engineering in plants. Plant Cell Rep. 21, 925–932.

    PubMed  CAS  Google Scholar 

  • Lyznik, L.A., Mitchell, J.C., Hirayama, L., and Hodges, T.K. (1993). Activity of yeast FLP recom- binase in maize and rice protoplasts. Nucleic Acids Res. 21, 969–975.

    PubMed  CAS  Google Scholar 

  • Lyznik, L.A., Hirayama, L., Rao, K.V., Abad, A., and Hodges, T.K. (1995). Heat-inducible expression of FLP gene in maize cells. Plant J. 8, 177–186.

    PubMed  CAS  Google Scholar 

  • Mani, M., Smith, J., Kandavelou, K., Berg, J.M., and Chandrasegaran, S. (2005). Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem. Biophys. Res. Commun. 334, 1191–1197.

    PubMed  CAS  Google Scholar 

  • Matzke, A.J., and Matzke, M.A. (1998). Position effects and epigenetic silencing of plant trans- genes. Curr. Opin. Plant Biol. 1, 142–148.

    PubMed  CAS  Google Scholar 

  • Messing, J., and Dooner, H.K. (2006). Organization and variability of the maize genome. Curr. Opin. Plant Biol. 9, 157–163.

    PubMed  CAS  Google Scholar 

  • Messing, J., Bharti, A.K., Karlowski, W.M., Gundlach, H., Kim, H.R., Yu, Y., Wei, F., Fuks, G., Soderlund, C.A., Mayer, K.F., and Wing, R.A. (2004). Sequence composition and genome organization of maize. Proc. Natl. Acad. Sci. USA 101, 14349–14354.

    PubMed  CAS  Google Scholar 

  • Mezard, C. (2006). Meiotic recombination hotspots in plants. Biochem. Soc. Trans. 34, 531–534.

    PubMed  CAS  Google Scholar 

  • Nelson, O.E. (1962). The waxy locus in maize. I. Intralocus recombination frequency estimates by pollen and by conventional analysis. Genetics 47, 737–742.

    PubMed  CAS  Google Scholar 

  • Nelson, O.E. (1968). The waxy locus in maize. II. The location of the controlling element alleles. Genetics 60, 507–524.

    PubMed  Google Scholar 

  • Okagaki, R.J., and Weil, C.F. (1997). Analysis of recombination sites within the maize waxy locus. Genetics 147, 815–821.

    PubMed  CAS  Google Scholar 

  • Okuzaki, A., and Toriyama, K. (2004). Chimeric RNA/DNA oligonucleotide-directed gene target- ing in rice. Plant Cell Rep. 22, 509–512.

    PubMed  CAS  Google Scholar 

  • Osborne, B.I., Wirtz, U., and Baker, B. (1995). A system for insertional mutagenesis and chromo- somal rearrangement using the Ds transposon and Cre-lox. Plant J. 7, 687–701.

    PubMed  CAS  Google Scholar 

  • Ow, D.W. (2007). GM maize from site-specific recombination technology, what next? Curr. Opin. Biotechnol. 18, 115–120.

    CAS  Google Scholar 

  • Paques, F., and Haber, J.E. (1999). Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microb. Mol. Biol. Rev. 63, 349–404.

    CAS  Google Scholar 

  • Patterson, G.I., Kubo, K.M., Shroyer, T., and Chandler, V.L. (1995). Sequences required for par-amutation of the maize b gene map to a region containing the promoter and upstream sequences. Genetics 140, 1389–1406.

    PubMed  CAS  Google Scholar 

  • Petes, T.D. (2001). Meiotic recombination hot spots and cold spots. Nat Rev Genet 2, 360–369.

    PubMed  CAS  Google Scholar 

  • Petes, T.D., Malone, R.E., and Symington, L.E. (1991). Recombination in yeast. In The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis and Energetics. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), pp. 407–521.

    Google Scholar 

  • Puchta, H. (2002). Gene replacement by homologous recombination in plants. Plant Mol. Biol. 48, 173–182.

    PubMed  CAS  Google Scholar 

  • Puchta, H. (2003). Towards the ideal GMP: homologous recombination and marker gene excision. J. Plant Physiol. 160, 743–754.

    PubMed  CAS  Google Scholar 

  • Puchta, H., Dujon, B., and Hohn, B. (1993). Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 21, 5034–5040.

    PubMed  CAS  Google Scholar 

  • Ramakrishna, W., Emberton, J., Ogden, M., SanMiguel, P., and Bennetzen, J.L. (2002). Structural analysis of the maize rp1 complex reveals numerous sites and unexpected mechanisms of local rearrangement. Plant Cell 14, 3213–3223.

    PubMed  CAS  Google Scholar 

  • Ream, T.S., Strobel, J., Roller, B., Auger, D.L., Kato, A., Halbrook, C., Peters, E.M., Theuri, J., Bauer, M.J., Addae, P., Dioh, W., Staub, J.M., Gilbertson, L.A., and Birchler, J.A. (2005). A test for ectopic exchange catalyzed by Cre recombinase in maize. Theor. Appl. Genet. 111, 378–385.

    PubMed  Google Scholar 

  • Richter, T.E., Pryor, T.J., Bennetzen, J.L., and Hulbert, S.H. (1995). New rust resistance specifici- ties associated with recombination in the Rp1 complex in maize. Genetics 141, 373–381.

    PubMed  CAS  Google Scholar 

  • Robbins, T.P., Walker, E.L., Kermicle, J.L., Alleman, M., and Dellaporta, S.L. (1991). Meiotic instability of the R-r complex arising from displaced intragenic exchange and intrachromo-somal rearrangement. Genetics 129, 271–283.

    PubMed  CAS  Google Scholar 

  • Ruiter, R., van den Brande, I., Stals, E., Delaure, S., Cornelissen, M., and D'Halluin, K. (2003). Spontaneous mutation frequency in plants obscures the effect of chimeraplasty. Plant Mol. Biol. 53, 675–689.

    PubMed  CAS  Google Scholar 

  • Sadder, T., and Weber, G. (2002). Comparison between genetic and physical maps in Zea mays L. of molecular markers linked to resistance against Diatraea spp. Theor. Appl. Genet. 104, 908–915.

    PubMed  CAS  Google Scholar 

  • SanMiguel, P., and Bennetzen, J.L. (1998). Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Botany 82, 37–44.

    CAS  Google Scholar 

  • SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z., and Bennetzen, J.L. (1996). Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768.

    PubMed  CAS  Google Scholar 

  • Schultes, N.P., and Szostak, J.W. (1990). Decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus in yeast. Genetics 126, 813–822.

    PubMed  CAS  Google Scholar 

  • Smith, J., Bibikova, M., Whitby, F.G., Reddy, A.R., Chandrasegaran, S., and Carroll, D. (2000). Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369.

    PubMed  CAS  Google Scholar 

  • Srivastava, V., and Ow, D.W. (2001). Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol. Biol. 46, 561–566.

    PubMed  CAS  Google Scholar 

  • Srivastava, V., Ariza-Nieto, M., and Wilson, A.J. (2004). Cre-mediated site-specific gene integra- tion for consistent transgene expression in rice. Plant Biotechnol. J. 2, 169–179.

    PubMed  CAS  Google Scholar 

  • Stack, S.M., and Anderson, L.K. (2002). Crossing over as assessed by late recombination nodules is related to the pattern of synapsis and the distribution of early recombination nodules in maize. Chromosome Res. 10, 329–345.

    PubMed  CAS  Google Scholar 

  • Stadler, L.J. (1926). The variability of crossing over in maize. Genetics 11, 1–37.

    PubMed  CAS  Google Scholar 

  • Stadler, L.J., and Neuffer, M.G. (1953). Problems of gene structure. II. Separation of R-r elements (S) and (P) by unequal crossing over. Science 117, 471–472.

    Google Scholar 

  • Stam, M., Belele, C., Dorweiler, J.E., and Chandler, V.L. (2002a). Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev 16, 1906–1918.

    CAS  Google Scholar 

  • Stam, M., Belele, C., Ramakrishna, W., Dorweiler, J.E., Bennetzen, J.L., and Chandler, V.L. (2002b). The regulatory regions required for B′ paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162, 917–930.

    CAS  Google Scholar 

  • Sternberg, N., and Hamilton, D. (1981). Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol Biol 150, 467–486.

    PubMed  CAS  Google Scholar 

  • Stinard, P.S., Robertson, D.S., and Schnable, P.S. (1993). Genetic isolation, cloning, and analysis of a Mutator-induced, dominant antimorph of the maize amylose extender1 locus. Plant Cell 5, 1555–1566.

    PubMed  CAS  Google Scholar 

  • Sturtevant, A.H. (1925). The effects of unequal crossing over at the Bar locus in Drosophila. Genetics 10, 117–147.

    PubMed  CAS  Google Scholar 

  • Sudupak, M.A., Bennetzen, J.L., and Hulbert, S.H. (1993). Unequal exchange and meiotic insta- bility of disease-resistance genes in the Rp1 region of maize. Genetics 133, 119–125.

    PubMed  CAS  Google Scholar 

  • Sun, Q., Collins, N.C., Ayliffe, M., Smith, S.M., Drake, J., Pryor, T., and Hulbert, S.H. (2001). Recombination between paralogues at the Rp1 rust resistance locus in maize. Genetics 158, 423–438.

    PubMed  CAS  Google Scholar 

  • Thuriaux, P. (1977). Is recombination confined to structural genes on the eukaryotic genome? Nature 268, 460–462.

    PubMed  CAS  Google Scholar 

  • Timmermans, M.C., Das, O.P., and Messing, J. (1996). Characterization of a meiotic crossover in maize identified by a restriction fragment length polymorphism-based method. Genetics 143, 1771–1783.

    PubMed  CAS  Google Scholar 

  • Timmermans, M.C., Das, O.P., Bradeen, J.M., and Messing, J. (1997). Region-specific cis- and trans-acting factors contribute to genetic variability in meiotic recombination in maize. Genetics 146, 1101–1113.

    PubMed  CAS  Google Scholar 

  • Tulsieram, L., Compton, W.A., Morris, R., Thomas-Compton, M., and Eskridge, K. (1992). Analysis of genetic recombination in maize populations using molecular markers. Theor. Appl. Genet. 84, 65–72.

    CAS  Google Scholar 

  • Vergunst, A.C., and Hooykaas, P.J. (1998). Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Mol. Biol. 38, 393–406.

    PubMed  CAS  Google Scholar 

  • Walker, E.L., Robbins, T.P., Bureau, T.E., Kermicle, J., and Dellaporta, S.L. (1995). Transposon- mediated chromosomal rearrangements and gene duplications in the formation of the maize R-r complex. EMBO journal 14, 2350–2363.

    PubMed  CAS  Google Scholar 

  • Wang, C.J., Harper, L., and Cande, W.Z. (2006). High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18, 529–544.

    PubMed  CAS  Google Scholar 

  • Wang, Q., and Dooner, H.K. (2006). Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc. Natl. Acad. Sci. USA 103, 17644–17649.

    PubMed  CAS  Google Scholar 

  • Webb, C.A., Richter, T.E., Collins, N.C., Nicolas, M., Trick, H.N., Pryor, T., and Hulbert, S.H. (2002). Genetic and molecular characterization of the maize rp3 rust resistance locus. Genetics 162, 381–394.

    PubMed  CAS  Google Scholar 

  • Wessler, S., and Varagona, R. (1985). Molecular basis of mutations at the waxy locus of maize: correlation with the fine structure genetic map. Proc. Natl. Acad. Sci. USA 82, 4177–4181.

    PubMed  CAS  Google Scholar 

  • Williams, C.G., Goodman, M.M., and Stuber, C.W. (1995). Comparative recombination distances among Zea mays L. inbreds, wide crosses and interspecific hybrids. Genetics 141, 1573–1581.

    PubMed  CAS  Google Scholar 

  • Woody, S.T., Austin-Phillips, S., Amasino, R.M., and Krysan, P.J. (2007). The WiscDsLox T-DNA collection: an Arabidopsis community resource generated by using an improved high- throughput T-DNA sequencing pipeline. J. Plant Res 120, 157–165.

    PubMed  CAS  Google Scholar 

  • Wright, D.A., Townsend, J.A., Winfrey, R.J., Jr., Irwin, P.A., Rajagopal, J., Lonosky, P.M., Hall, B.D., Jondle, M.D., and Voytas, D.F. (2005). High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705.

    PubMed  CAS  Google Scholar 

  • Wu, J., Kandavelou, K., and Chandrasegaran, S. (2007). Custom-designed zinc finger nucleases: What is next? Cell. Mol. Life Sci.1420–682X.

    Google Scholar 

  • Xiao, Y.L., and Peterson, T. (2000). Intrachromosomal homologous recombination in Arabidopsis induced by a maize transposon. Mol. Gen. Genet. 263, 22–29.

    PubMed  CAS  Google Scholar 

  • Xiao, Y.L., Li, X., and Peterson, T. (2000). Ac insertion site affects the frequency of transposon- induced homologous recombination at the maize p1 locus. Genetics 156, 2007–2017.

    PubMed  CAS  Google Scholar 

  • Xu, X., Hsia, A.P., Zhang, L., Nikolau, B.J., and Schnable, P.S. (1995). Meiotic recombination break points resolve at high rates at the 5′ end of a maize coding sequence. Plant Cell 7, 2151–2161.

    PubMed  CAS  Google Scholar 

  • Yandeau-Nelson, M.D., Nikolau, B.J., and Schnable, P.S. (2006a). Effects of trans-acting genetic modifiers on meiotic recombination across the a1-sh2 interval of maize. Genetics 174, 101–112.

    CAS  Google Scholar 

  • Yandeau-Nelson, M.D., Xia, Y., Li, J., Neuffer, M.G., and Schnable, P.S. (2006b). Unequal sister chromatid and homolog recombination at a tandem duplication of the A1 locus in maize. Genetics 173, 2211–2226.

    CAS  Google Scholar 

  • Yandeau-Nelson, M.D., Zhou, Q., Yao, H., Xu, X., Nikolau, B.J., and Schnable, P.S. (2005). MuDR transposase increases the frequency of meiotic crossovers in the vicinity of a Mu insertion in the maize a1 gene. Genetics 169, 917–929.

    PubMed  CAS  Google Scholar 

  • Yao, H., and Schnable, P.S. (2005). Cis-effects on meiotic recombination across distinct a1-sh2 intervals in a common Zea genetic background. Genetics 170, 1929–1944.

    PubMed  CAS  Google Scholar 

  • Yao, H., Zhou, Q., Li, J., Smith, H., Yandeau, M., Nikolau, B.J., and Schnable, P.S. (2002). Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc. Natl. Acad. Sci. USA 99, 6157–6162.

    PubMed  CAS  Google Scholar 

  • Zeng, Z., and Sachs, M.M. (1994). Intragenic recombination among alleles of the Adh1 gene in maize. Maydica 39, 265–272.

    Google Scholar 

  • Zhang, W., Subbarao, S., Addae, P., Shen, A., Armstrong, C., Peschke, V., and Gilbertson, L. (2003). Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor. Appl. Genet. 107, 1157–1168.

    PubMed  CAS  Google Scholar 

  • Zhu, T., Mettenburg, K., Peterson, D.J., Tagliani, L., and Baszczynski, C.L. (2000). Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol. 18, 555–558.

    PubMed  CAS  Google Scholar 

  • Zhu, T., Peterson, D.J., Tagliani, L., St Clair, G., Baszczynski, C.L., and Bowen, B. (1999). Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci U S A 96, 8768–8773.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo K. Dooner , An-Ping Hsia or Patrick S. Schnable .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Dooner, H.K., Hsia, AP., Schnable, P.S. (2009). Homologous Recombination in Maize. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_19

Download citation

Publish with us

Policies and ethics