Skip to main content

Meiotic Genes and Meiosis in Maize

  • Chapter
Handbook of Maize

Meiosis is the specialized cell division required to produce gametes with a haploid chromosome content in all eukaryotes with a sexual cycle. The cellular events that occur in meiosis are evolutionarily conserved, as are many of the proteins associated with meiosis, especially those required for homologous recombination. Maize stands out as one of the premier cytological model organisms for studying meiosis because of its large, well defined chromosomes, the ease in which meiotic stages can be identified cytologically, and its many genetics resources. Powerful forward genetics screens have led to the identification of a large number of maize meiotic mutants although only a few of them have been cloned. In this chapter, we describe the mutant collection, major findings associated with working with these mutants, and the promise of maize cytogenetics for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allers, T. and Lichten, M. (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Amagai, M., Ariizumi, T., Endo, M., Hatakeyama, K., Kuwata, C., Shibata, D., Toriyama, K. and Watanabe, M. (2003) Identification of anther-specific genes in a cruciferous model plant, arabidopsis thaliana, by using a combination of arabidopsis macroarray and mrna derived from brassica oleracea. Sexual Plant Reproduction 15, 213–220.

    CAS  Google Scholar 

  • Barrell, P. J. and Grossniklaus, U. (2005) Confocal microscopy of whole ovules for analysis of reproductive development: The elongate1 mutant affects meiosis II. Plant J. 43, 309–320.

    Article  PubMed  CAS  Google Scholar 

  • Bass, H. W., Marshall, W. F., Sedat, J. W., Agard, D. A. and Cande, W. Z. (1997) Telomeres cluster de novo before the initiation of synapsis: A three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J. Cell Biol. 137, 5–18.

    Article  PubMed  CAS  Google Scholar 

  • Bass, H. W., Riera-Lizarazu, O., Ananiev, E. V., Bordoli, S. J., Rines, H. W., Phillips, R. L., Seda, J. W., Agard, D. A. and Cande, W. Z. (2000) Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J. Cell Sci. 113, 1033–1042.

    PubMed  CAS  Google Scholar 

  • Bass, H. W. (2003) Telomere dynamics unique to meiotic prophase: Formation and significance of the bouquet. Cell Mol. Life Sci. 60, 2319–2324.

    Article  PubMed  CAS  Google Scholar 

  • Bass, H. W., Bordoli, S. J. and Foss, E. M. (2003) The desynaptic (dy) and desynaptic1 (dsy1) mutations in maize (zea mays l) cause distinct telomere-misplacement phenotypes during meiotic prophase. J. Exp. Bot. 54, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Beadle, G. W. (1929) A gene for supernumerary mitoses during spore development in zea mays. Science 70, 406–407.

    Article  PubMed  Google Scholar 

  • Beadle, G. W. (1930) Genetic and cytological studies of a mendelian asynaptic in zea mays. Cornell Agric. Exp. Sta. Mem. 129, 1–23.

    Google Scholar 

  • Beadle, G. W. (1932) Genes in maize for pollen sterility. Genetics 17, 413–431.

    PubMed  CAS  Google Scholar 

  • Beadle, G. W. (1937) Chromosome aberration and gene. Mutation in sticky chromosome plants of zea mays. Cytologia Fujii Jubilee, 43–56.

    Google Scholar 

  • Bishop, D. K. and Zickler, D. (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov, Y. F., Dadashev, S. Y. and Grishaeva, T. M. (2003) In silico search for functionally similar proteins involved in meiosis and recombination in evolutionarily distant organisms. In Silico Biol. 3, 173–185.

    CAS  Google Scholar 

  • Cai, X., Dong, F., Edelmann, R. E. and Makaroff, C. A. (2003) The arabidopsis syn1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J. Cell Sci. 116, 2999–3007.

    Article  PubMed  CAS  Google Scholar 

  • Canales, C., Bhatt, A. M., Scott, R. and Dickinson, H. (2002) Exs, a putative lrr receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in arabidopsis. Curr. Biol. 12, 1718–1727.

    Article  PubMed  CAS  Google Scholar 

  • Carlton, P., Ananiev, E. and Cande, W. Z. (1998) Centromere localization in maize meiocytes. Mol. Biol. of the Cell 9, 404A.

    Google Scholar 

  • Carlton, P. M. and Cande, W. Z. (2002) Telomeres act autonomously in maize to organize the meiotic bouquet from a semipolarized chromosome orientation. J. Cell Biol. 157, 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Carlton, P. M., Cowan, C. R. and Cande, W. Z. (2003) Directed motion of telomeres in the formation of the meiotic bouquet revealed by time course and simulation analysis. Mol. Biol. Cell 14, 2832–2843.

    Article  PubMed  CAS  Google Scholar 

  • Chan, A. and Cande, W. Z. (1998) Maize meiotic spindles assemble around chromatin and do not require paired chromosomes. J. Cell Sci. 111, 3507–3515.

    PubMed  CAS  Google Scholar 

  • Chikashige, Y., Ding, D.-Q., Imai, Y., Yamamoto, M., Haraguchi, T. and Hiraoka, Y. (1997) Meiotic nuclear reorganization: Switching the position of centromeres and telomeres in the fission yeast schizosaccharomyces pombe. EMBO J. 16, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Clark, F. J. (1940) Cytogenetic studies of divergent meiotic spindle formation in zea mays Amer. J. Bot. 27, 547–559.

    Article  Google Scholar 

  • Cowan, C. R. and Cande, W. Z. (2002) Meiotic telomere clustering is inhibited by colchicine but does not require cytoplasmic microtubules. J. Cell Sci. 115, 3747–3756.

    Article  PubMed  CAS  Google Scholar 

  • Dawe, R. K., Sedat, J. W., Agard, D. A. and Cande, W. Z. (1994) Meiotic chromosome pairing in maize is associated with a novel chromatin organization. Cell 76, 901–912.

    Article  PubMed  CAS  Google Scholar 

  • Dempsey, E. (1994) Traditional analysis of maize pachytene chromosomes. In: M. Freeling and V. Walbot (Eds.),The maize handbook, Springer, New York, pp. 432–441.

    Google Scholar 

  • Dernburg, A. F., Sedat, J. W., Cande, W. Z. and Bass, H. W. (1995) Cytology of telomeres. In: E. H. Blackburn and C. W. Greider (Eds.),Telomeres, Cold Spring Harbor Laboratory, Plainview, pp. 295–338.

    Google Scholar 

  • Dernburg, A. F., McDonald, K., Moulder, G., Barstead, R., Dresser, M. and Villeneuve, A. M. (1998) Meiotic recombination in c. Elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398.

    Article  PubMed  CAS  Google Scholar 

  • Endo, M., Matsubara, H., Kokubun, T., Masuko, H., Takahata, Y., Tsuchiya, T., Fukuda, H., Demura, T. and Watanabe, M. (2002) The advantages of cdna microarray as an effective tool for identification of reproductive organ-specific genes in a model legume, lotus japonicus. FEBS Lett 514, 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Endo, M., Tsuchiya, T., Saito, H., Matsubara, H., Hakozaki, H., Masuko, H., Kamada, M., Higashitani, A., Takahashi, H., Fukuda, H., Demura, T. and Watanabe, M. (2004) Identification and molecular characterization of novel anther-specific genes in oryza sativa l. By using cdna microarray. Genes Genet. Syst. 79, 213–226.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, A. E. and Cande, W. Z. (1998) Rad51 distribution is altered in desynaptic2, a maize meiotic mutant that has abnormal chromosome pairing. Mol. Biol. of the Cell 9, 404A.

    Google Scholar 

  • Franklin, A. E. and Cande, W. Z. (1999a) Nuclear organization and chromosome segregation. Plant Cell 11, 523–534.

    Article  CAS  Google Scholar 

  • Franklin, A. E., McElver, J., Sunjevaric, I., Rothstein, R., Bowen, B. and Cande, W. Z. (1999b) Three-dimensional microscopy of the rad51 recombination protein during meiotic prophase. Plant Cell 11, 809–824.

    Article  CAS  Google Scholar 

  • Franklin, A. E., Golubovskaya, I. N., Bass, H. W. and Cande, W. Z. (2003) Improper chromosome synapsis is associated with elongated rad51 structures in the maize desynaptic2 mutant. Chromosoma 112, 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Golubovskaya, I., Grebennikova, Z. K., Avalkina, N. A. and Sheridan, W. F. (1993) The role of the ameiotic1 gene in the initiation of meiosis and in subsequent meiotic events in maize. Genetics 135, 1151–1166.

    PubMed  CAS  Google Scholar 

  • Golubovskaya, I., Avalkina, N. and Sheridan, W. F. (1997a) New insights into the role of the maize ameiotic1 locus. Genetics 147, 1339–1350.

    CAS  Google Scholar 

  • Golubovskaya, I., Sheridan, W., Harper, L. and Cande, W. (2003) Novel meiotic mutants of maize identified frommutransposon and ems mutant screens. Maize Genet. Coop. Newsl. 77, 10–13.

    Google Scholar 

  • Golubovskaya, I. N. and Mashnenkov, A. S. (1975) Genetic control of meiosis. I. Meiotic mutation in corn (zea mays)afd, causing the elimination of the first meiotic division. Genetika (Russ) 11, 810–816.

    Google Scholar 

  • Golubovskaya, I. N. and Mashnenkov, A. S. (1976) Genetic control of meiosis: II a desynaptic mutant in maize induced by n-nitroso-n-methylurea. Genetika (Russ) 12, 7–14.

    Google Scholar 

  • Golubovskaya, I. N. (1979) Genetic control of meiosis. Int Rev Cytol 58, 247–290.

    Article  PubMed  CAS  Google Scholar 

  • Golubovskaya, I. N. (1989) Meiosis in maize: Mei genes and conception of genetic control of meiosis. Advanced Genetics 26, 149–192.

    Article  CAS  Google Scholar 

  • Golubovskaya, I. N., Grebennikova, Z. K., Auger, D. L. and Sheridan, W. F. (1997b) The maize desy- naptic1 mutation disrupts meiotic chromosome synapsis. Developmental Genetics 21, 146–159.

    Article  Google Scholar 

  • Golubovskaya, I. N., Harper, L. C., Pawlowski, W. P., Schichnes, D. and Cande, W. Z. (2002) The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (zea mays l.). Genetics 162, 1979–1993.

    PubMed  CAS  Google Scholar 

  • Golubovskaya, I. N., Hamant, O., Timofejeva, L., Wang, C. J., Braun, D., Meeley, R. and Cande, W. Z. (2006) Alleles of afd1 dissect rec8 functions during meiotic prophase I. J. Cell Sci. 119, 3306–3315.

    Article  PubMed  CAS  Google Scholar 

  • Golubovskaya, I. N. and Mashnenkov, A. S. (1977) Multiple disturbances of meiosis in corn are caused by a single recessive mutation pama-a344. Genetika (Russ) 13, 1910–1921.

    Google Scholar 

  • Gustafsson, M. G. (2005) Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086.

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson, M. G. L., Shao, L., Carlton, P. M., Wang, C.-J. R., Golubovskaya, I. N., Cande, W. Z., Agard, D. A. and Sedat, J. W. (2008) Three-dimensional resolution doubling in widefield fluorescence microscopy by structured illumination. Biophysical J. 94:4957–4970.

    Article  CAS  Google Scholar 

  • Hamant, O., Golubovskaya, I., Meeley, R., Fiume, E., Timofejeva, L., Schleiffer, A., Nasmyth, K. and Cande, W. Z. (2005) A rec8-dependent plant shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr. Biol. 15, 948–954.

    Article  PubMed  CAS  Google Scholar 

  • Hamant, O., Ma, H. and Cande, W. Z. (2006) Genetics of meiotic prophase I in plants. Annu Rev Plant Biol.

    Google Scholar 

  • Harper, L., Golubovskaya, I. and Cande, W. Z. (2004) A bouquet of chromosomes. J. Cell Sci. 117, 4025–4032.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, J. D., Sanchez-Moran, E., Armstrong, S. J., Jones, G. H. and Franklin, F. C. (2005) The arabidopsis synaptonemal complex protein zyp1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev. 19, 2488–2500.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, N. and Kleckner, N. (2001) The single-end invasion: An asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59–70.

    Article  PubMed  CAS  Google Scholar 

  • Kiburz, B. M., Reynolds, D. B., Megee, P. C., Marston, A. L., Lee, B. H., Lee, T. I., Levine, S. S., Young, R. A. and Amon, A. (2005) The core centromere and sgo1 establish a 50-kb cohesin- protected domain around centromeres during meiosis I. Genes Dev. 19, 3017–3030.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. Y. and Orr-Weaver, T. L. (2001) The molecular basis of sister-chromatid cohesion. Annu. Rev. Cell Dev. Biol. 17, 753–777.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Harper, L. C., Golubovskaya, I., Wang, C. R., Weber, D., Meeley, R. B., McElver, J., Bowen, B., Cande, W. Z. and Schnable, P. S. (2007) Functional analysis of maize rad51 in meiosis and double-strand break repair. Genetics 176, 1469–1482.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Chen, C., Markmann-Mulisch, U., Timofejeva, L., Schmelzer, E., Ma, H. and Reiss, B. (2004) The arabidopsis atrad51 gene is dispensable for vegetative development but required for meiosis. Proc. Natl. Acad. Sci. USA 101, 10596–10601.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Golubovskaya, I. and Cande, W. Z. (1993) Abnormal cytoskeletal and chromosome distribution in po, ms4 and ms6, mutant alleles of polymitotic that disrupt the cell cycle progression from meiosis to mitosis in maize. J. of Cell Sci. 106, 1169–1178.

    CAS  Google Scholar 

  • Mata, J., Lyne, R., Burns, G. and Bahler, J. (2002) The transcriptional program of meiosis and sporulation in fission yeast. Nat. Genet 32, 143–147.

    Article  PubMed  CAS  Google Scholar 

  • McKim, K. S., Green-Marroquin, B. L., Sekelsky, J. J., Chin, G., Steinberg, C., Khodosh, R. and Hawley, R. S. (1998) Meiotic synapsis in the absence of recombination. Science 279, 876–878.

    Article  PubMed  CAS  Google Scholar 

  • Moens, P. B., Kolas, N. K., Tarsounas, M., Marcon, E., Cohen, P. E. and Spyropoulos, B. (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J. Cell Sci. 115, 1611–1622.

    PubMed  CAS  Google Scholar 

  • Nelson, O. E. and Clary, G. B. (1952) Genetic control of semisterility in maize. J. Heredity 43, 205–210.

    Google Scholar 

  • Nonomura, K., Miyoshi, K., Eiguchi, M., Suzuki, T., Miyao, A., Hirochika, H. and Kurata, N. (2003) The msp1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15, 1728–1739.

    Article  PubMed  CAS  Google Scholar 

  • Nonomura, K., Nakano, M., Eiguchi, M., Suzuki, T. and Kurata, N. (2006) Pair2 is essential for homologous chromosome synapsis in rice meiosis I. J. Cell Sci. 119, 217–225.

    Article  PubMed  CAS  Google Scholar 

  • Ollinger, R., Alsheimer, M. and Benavente, R. (2005) Mammalian protein scp1 forms synaptonemal complex-like structures in the absence of meiotic chromosomes. Mol. Biol. Cell 16, 212–217.

    Article  PubMed  Google Scholar 

  • Osman, K., Sanchez-Moran, E., Higgins, J. D., Jones, G. H. and Franklin, F. C. (2006) Chromosome synapsis in arabidopsis: Analysis of the transverse filament protein zyp1 reveals novel functions for the synaptonemal complex. Chromosoma, 1–8.

    Google Scholar 

  • Palmer, R. G. (1971) Cytological studies of ameiotic and normal maize with reference to premei-otic pairing. Chromosoma 35, 233–246.

    Article  Google Scholar 

  • Paques, F. and Haber, J. E. (1999) Multiple pathways of recombination induced by double-strand breaks in saccharomyces cerevisiae. Microbiol. and Mol. Biol. Re. 63, 349–404.

    CAS  Google Scholar 

  • Pasierbek, P., Jantsch, M., Melcher, M., Schleiffer, A., Schweizer, D. and Loidl, J. (2001) A caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev. 15, 1349–1360.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, W. P., Golubovskaya, I. N. and Cande, W. Z. (2003) Altered nuclear distribution of recombination protein rad51 in maize mutants suggests the involvement of rad51 in meiotic homology recognition. Plant Cell 15, 1807–1816.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, W. P., Golubovskaya, I. N., Timofejeva, L., Meeley, R. B., Sheridan, W. F. and Cande, W. Z. (2004) Coordination of meiotic recombination, pairing, and synapsis by phs1. Science 303, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Petukhova, G. V., Pezza, R. J., Vanevski, F., Ploquin, M., Masson, J. Y. and Camerini-Otero, R. D. (2005) The hop2 and mnd1 proteins act in concert with rad51 and dmc1 in meiotic recombination. Nat. Struct. Mol. Biol. 12, 449–453.

    Article  PubMed  CAS  Google Scholar 

  • Pigozzi, M. I. and Solari, A. J. (2003) Differential immunolocalization of a putative rec8p in meiotic autosomes and sex chromosomes of triatomine bugs. Chromosoma 112, 38–47.

    Article  PubMed  CAS  Google Scholar 

  • Primig, M., Williams, R. M., Winzeler, E. A., Tevzadze, G. G., Conway, A. R., Hwang, S. Y., Davis, R. W. and Esposito, R. E. (2000) The core meiotic transcriptome in budding yeasts. Nat. Genet. 26, 415–423.

    Article  PubMed  CAS  Google Scholar 

  • Ramesh, M. A., Malik, S. B. and Logsdon, J. M., Jr. (2005) A phylogenomic inventory of meiotic genes; evidence for sex in giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191.

    PubMed  CAS  Google Scholar 

  • Reinke, V., Gil, I. S., Ward, S. and Kazmer, K. (2004) Genome-wide germline-enriched and sex-biased expression profiles in caenorhabditis elegans. Development 131, 311–323.

    Article  PubMed  CAS  Google Scholar 

  • Revenkova, E. and Jessberger, R. (2005) Keeping sister chromatids together: Cohesins in meiosis. Reproduction 130, 783–790.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, M. M. (1956) Genic control of chromosomal behavior. Maize Genet. Coop. Newsl. 30, 38–48.

    Google Scholar 

  • Rhoades, M. M. and Dempsey, E. (1966) Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54, 505–522.

    PubMed  Google Scholar 

  • Riley, R. and Chapman, V. (1964) Cytological determination of the homology of chromosomes of triticum aestivum. Nature 203, 156–158.

    Article  Google Scholar 

  • Riley, R., Chapman, V., Young, R. M. and Belfield, A. M. (1966) Control of meiotic chromosome pairing by the chromosomes of homoeologous group 5 of triticum aestivum. Nature 212, 1475–1477.

    Article  Google Scholar 

  • Rossi, P., Dolci, S., Sette, C., Capolunghi, F., Pellegrini, M., Loiarro, M., Di Agostino, S., Paronetto, M. P., Grimaldi, P., Merico, D., Martegani, E. and Geremia, R. (2004) Analysis of the gene expression profile of mouse male meiotic germ cells. Gene Expr Patterns 4, 267–281.

    Article  Google Scholar 

  • Sanchez-Moran, E., Mercier, R., Higgins, J. D., Armstrong, S. J., Jones, G. H. and Franklin, F. C. (2005) A strategy to investigate the plant meiotic proteome. Cytogenet. Genome Res. 109, 181–189.

    CAS  Google Scholar 

  • Schlecht, U., Demougin, P., Koch, R., Hermida, L., Wiederkehr, C., Descombes, P., Pineau, C., Jegou, B. and Primig, M. (2004) Expression profiling of mammalian male meiosis and game-togenesis identifies novel candidate genes for roles in the regulation of fertility. Mol. Biol. Cell 15, 1031–1043.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, W. F., Shamrov, N. A. V. A. I., Batygina, T. B. and Golubovskaya, I. N. (1996) The mac1 gene: Controlling the commitment to the meiotic pathway in maize. Genetics 142, 1009–1020.

    PubMed  CAS  Google Scholar 

  • Sheridan, W. F., Golubeva, E. A., Abrhamova, L. I. and Golubovskaya, I. N. (1999) The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics 153, 933–941.

    PubMed  CAS  Google Scholar 

  • Shinohara, A., Ogawa, H. and Ogawa, T. (1992) Rad51 protein involved in repair and recombination in s. Cerevisiae is a reca-like protein. Cell 69, 457–470.

    Article  PubMed  CAS  Google Scholar 

  • Staiger, C. J. and Cande, W. Z. (1990) Microtubule distribution in dv, a maize meiotic mutant defective in the prophase to metaphase transition. Dev. Biol. 138, 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Strich, R. (2004) Meiotic DNA replication. Curr. Top. Dev. Biol. 61, 29–60.

    Article  PubMed  CAS  Google Scholar 

  • Tsubouchi, T. and Roeder, G. S. (2005) A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308, 870–873.

    Article  PubMed  CAS  Google Scholar 

  • Vaur, S., Cubizolles, F., Plane, G., Genier, S., Rabitsch, P. K., Gregan, J., Nasmyth, K., Vanoosthuyse, V., Hardwick, K. G. and Javerzat, J. P. (2005) Control of shugoshin function during fission-yeast meiosis. Curr. Biol. 15, 2263–2270.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, Y. and Nurse, P. (1999) Cohesin rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, Y. (2004) Modifying sister chromatid cohesion for meiosis. J. Cell Sci. 117, 4017–4023.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Beasley, M. D., Warren, W. D., van der Horst, G. T. and McKay, M. J. (2005) Absence of mouse rec8 cohesin promotes synapsis of sister chromatids in meiosis. Dev. Cell 8, 949–961.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, D. Z., Wang, G. F., Speal, B. and Ma, H. (2002) The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the arabidopsis anther. Genes Dev. 16, 2021–2031.

    Article  PubMed  CAS  Google Scholar 

  • Zickler, D. and Kleckner, N. (1998) The leptotene-zygotene transition of meiosis. Annu. Rev. Genet. 32, 619–697.

    Article  PubMed  CAS  Google Scholar 

  • Zickler, D. and Kleckner, N. (1999) Meiotic chromosomes: Integrating structure and function. Annu. Rev. Genet. 33, 603–754.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Zacheus Cande or Lisa Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Cande, W.Z., Golubovskaya, I., Wang, C.J.R., Harper, L. (2009). Meiotic Genes and Meiosis in Maize. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_18

Download citation

Publish with us

Policies and ethics