Meiotic Genes and Meiosis in Maize

  • W. Zacheus Cande
  • Inna Golubovskaya
  • C. J. Rachel Wang
  • Lisa Harper

Meiosis is the specialized cell division required to produce gametes with a haploid chromosome content in all eukaryotes with a sexual cycle. The cellular events that occur in meiosis are evolutionarily conserved, as are many of the proteins associated with meiosis, especially those required for homologous recombination. Maize stands out as one of the premier cytological model organisms for studying meiosis because of its large, well defined chromosomes, the ease in which meiotic stages can be identified cytologically, and its many genetics resources. Powerful forward genetics screens have led to the identification of a large number of maize meiotic mutants although only a few of them have been cloned. In this chapter, we describe the mutant collection, major findings associated with working with these mutants, and the promise of maize cytogenetics for future research.


Synaptonemal Complex Meiotic Prophase Meiotic Chromosome Sister Chromatid Cohesion Meiotic Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allers, T. and Lichten, M. (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57.PubMedCrossRefGoogle Scholar
  2. Amagai, M., Ariizumi, T., Endo, M., Hatakeyama, K., Kuwata, C., Shibata, D., Toriyama, K. and Watanabe, M. (2003) Identification of anther-specific genes in a cruciferous model plant, arabidopsis thaliana, by using a combination of arabidopsis macroarray and mrna derived from brassica oleracea. Sexual Plant Reproduction 15, 213–220.Google Scholar
  3. Barrell, P. J. and Grossniklaus, U. (2005) Confocal microscopy of whole ovules for analysis of reproductive development: The elongate1 mutant affects meiosis II. Plant J. 43, 309–320.PubMedCrossRefGoogle Scholar
  4. Bass, H. W., Marshall, W. F., Sedat, J. W., Agard, D. A. and Cande, W. Z. (1997) Telomeres cluster de novo before the initiation of synapsis: A three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J. Cell Biol. 137, 5–18.PubMedCrossRefGoogle Scholar
  5. Bass, H. W., Riera-Lizarazu, O., Ananiev, E. V., Bordoli, S. J., Rines, H. W., Phillips, R. L., Seda, J. W., Agard, D. A. and Cande, W. Z. (2000) Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J. Cell Sci. 113, 1033–1042.PubMedGoogle Scholar
  6. Bass, H. W. (2003) Telomere dynamics unique to meiotic prophase: Formation and significance of the bouquet. Cell Mol. Life Sci. 60, 2319–2324.PubMedCrossRefGoogle Scholar
  7. Bass, H. W., Bordoli, S. J. and Foss, E. M. (2003) The desynaptic (dy) and desynaptic1 (dsy1) mutations in maize (zea mays l) cause distinct telomere-misplacement phenotypes during meiotic prophase. J. Exp. Bot. 54, 39–46.PubMedCrossRefGoogle Scholar
  8. Beadle, G. W. (1929) A gene for supernumerary mitoses during spore development in zea mays. Science 70, 406–407.PubMedCrossRefGoogle Scholar
  9. Beadle, G. W. (1930) Genetic and cytological studies of a mendelian asynaptic in zea mays. Cornell Agric. Exp. Sta. Mem. 129, 1–23.Google Scholar
  10. Beadle, G. W. (1932) Genes in maize for pollen sterility. Genetics 17, 413–431.PubMedGoogle Scholar
  11. Beadle, G. W. (1937) Chromosome aberration and gene. Mutation in sticky chromosome plants of zea mays. Cytologia Fujii Jubilee, 43–56.Google Scholar
  12. Bishop, D. K. and Zickler, D. (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15.PubMedCrossRefGoogle Scholar
  13. Bogdanov, Y. F., Dadashev, S. Y. and Grishaeva, T. M. (2003) In silico search for functionally similar proteins involved in meiosis and recombination in evolutionarily distant organisms. In Silico Biol. 3, 173–185.Google Scholar
  14. Cai, X., Dong, F., Edelmann, R. E. and Makaroff, C. A. (2003) The arabidopsis syn1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J. Cell Sci. 116, 2999–3007.PubMedCrossRefGoogle Scholar
  15. Canales, C., Bhatt, A. M., Scott, R. and Dickinson, H. (2002) Exs, a putative lrr receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in arabidopsis. Curr. Biol. 12, 1718–1727.PubMedCrossRefGoogle Scholar
  16. Carlton, P., Ananiev, E. and Cande, W. Z. (1998) Centromere localization in maize meiocytes. Mol. Biol. of the Cell 9, 404A.Google Scholar
  17. Carlton, P. M. and Cande, W. Z. (2002) Telomeres act autonomously in maize to organize the meiotic bouquet from a semipolarized chromosome orientation. J. Cell Biol. 157, 231–242.PubMedCrossRefGoogle Scholar
  18. Carlton, P. M., Cowan, C. R. and Cande, W. Z. (2003) Directed motion of telomeres in the formation of the meiotic bouquet revealed by time course and simulation analysis. Mol. Biol. Cell 14, 2832–2843.PubMedCrossRefGoogle Scholar
  19. Chan, A. and Cande, W. Z. (1998) Maize meiotic spindles assemble around chromatin and do not require paired chromosomes. J. Cell Sci. 111, 3507–3515.PubMedGoogle Scholar
  20. Chikashige, Y., Ding, D.-Q., Imai, Y., Yamamoto, M., Haraguchi, T. and Hiraoka, Y. (1997) Meiotic nuclear reorganization: Switching the position of centromeres and telomeres in the fission yeast schizosaccharomyces pombe. EMBO J. 16, 193–200.PubMedCrossRefGoogle Scholar
  21. Clark, F. J. (1940) Cytogenetic studies of divergent meiotic spindle formation in zea mays Amer. J. Bot. 27, 547–559.CrossRefGoogle Scholar
  22. Cowan, C. R. and Cande, W. Z. (2002) Meiotic telomere clustering is inhibited by colchicine but does not require cytoplasmic microtubules. J. Cell Sci. 115, 3747–3756.PubMedCrossRefGoogle Scholar
  23. Dawe, R. K., Sedat, J. W., Agard, D. A. and Cande, W. Z. (1994) Meiotic chromosome pairing in maize is associated with a novel chromatin organization. Cell 76, 901–912.PubMedCrossRefGoogle Scholar
  24. Dempsey, E. (1994) Traditional analysis of maize pachytene chromosomes. In: M. Freeling and V. Walbot (Eds.),The maize handbook, Springer, New York, pp. 432–441.Google Scholar
  25. Dernburg, A. F., Sedat, J. W., Cande, W. Z. and Bass, H. W. (1995) Cytology of telomeres. In: E. H. Blackburn and C. W. Greider (Eds.),Telomeres, Cold Spring Harbor Laboratory, Plainview, pp. 295–338.Google Scholar
  26. Dernburg, A. F., McDonald, K., Moulder, G., Barstead, R., Dresser, M. and Villeneuve, A. M. (1998) Meiotic recombination in c. Elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398.PubMedCrossRefGoogle Scholar
  27. Endo, M., Matsubara, H., Kokubun, T., Masuko, H., Takahata, Y., Tsuchiya, T., Fukuda, H., Demura, T. and Watanabe, M. (2002) The advantages of cdna microarray as an effective tool for identification of reproductive organ-specific genes in a model legume, lotus japonicus. FEBS Lett 514, 229–237.PubMedCrossRefGoogle Scholar
  28. Endo, M., Tsuchiya, T., Saito, H., Matsubara, H., Hakozaki, H., Masuko, H., Kamada, M., Higashitani, A., Takahashi, H., Fukuda, H., Demura, T. and Watanabe, M. (2004) Identification and molecular characterization of novel anther-specific genes in oryza sativa l. By using cdna microarray. Genes Genet. Syst. 79, 213–226.PubMedCrossRefGoogle Scholar
  29. Franklin, A. E. and Cande, W. Z. (1998) Rad51 distribution is altered in desynaptic2, a maize meiotic mutant that has abnormal chromosome pairing. Mol. Biol. of the Cell 9, 404A.Google Scholar
  30. Franklin, A. E. and Cande, W. Z. (1999a) Nuclear organization and chromosome segregation. Plant Cell 11, 523–534.CrossRefGoogle Scholar
  31. Franklin, A. E., McElver, J., Sunjevaric, I., Rothstein, R., Bowen, B. and Cande, W. Z. (1999b) Three-dimensional microscopy of the rad51 recombination protein during meiotic prophase. Plant Cell 11, 809–824.CrossRefGoogle Scholar
  32. Franklin, A. E., Golubovskaya, I. N., Bass, H. W. and Cande, W. Z. (2003) Improper chromosome synapsis is associated with elongated rad51 structures in the maize desynaptic2 mutant. Chromosoma 112, 17–25.PubMedCrossRefGoogle Scholar
  33. Golubovskaya, I., Grebennikova, Z. K., Avalkina, N. A. and Sheridan, W. F. (1993) The role of the ameiotic1 gene in the initiation of meiosis and in subsequent meiotic events in maize. Genetics 135, 1151–1166.PubMedGoogle Scholar
  34. Golubovskaya, I., Avalkina, N. and Sheridan, W. F. (1997a) New insights into the role of the maize ameiotic1 locus. Genetics 147, 1339–1350.Google Scholar
  35. Golubovskaya, I., Sheridan, W., Harper, L. and Cande, W. (2003) Novel meiotic mutants of maize identified frommutransposon and ems mutant screens. Maize Genet. Coop. Newsl. 77, 10–13.Google Scholar
  36. Golubovskaya, I. N. and Mashnenkov, A. S. (1975) Genetic control of meiosis. I. Meiotic mutation in corn (zea mays)afd, causing the elimination of the first meiotic division. Genetika (Russ) 11, 810–816.Google Scholar
  37. Golubovskaya, I. N. and Mashnenkov, A. S. (1976) Genetic control of meiosis: II a desynaptic mutant in maize induced by n-nitroso-n-methylurea. Genetika (Russ) 12, 7–14.Google Scholar
  38. Golubovskaya, I. N. (1979) Genetic control of meiosis. Int Rev Cytol 58, 247–290.PubMedCrossRefGoogle Scholar
  39. Golubovskaya, I. N. (1989) Meiosis in maize: Mei genes and conception of genetic control of meiosis. Advanced Genetics 26, 149–192.CrossRefGoogle Scholar
  40. Golubovskaya, I. N., Grebennikova, Z. K., Auger, D. L. and Sheridan, W. F. (1997b) The maize desy- naptic1 mutation disrupts meiotic chromosome synapsis. Developmental Genetics 21, 146–159.CrossRefGoogle Scholar
  41. Golubovskaya, I. N., Harper, L. C., Pawlowski, W. P., Schichnes, D. and Cande, W. Z. (2002) The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (zea mays l.). Genetics 162, 1979–1993.PubMedGoogle Scholar
  42. Golubovskaya, I. N., Hamant, O., Timofejeva, L., Wang, C. J., Braun, D., Meeley, R. and Cande, W. Z. (2006) Alleles of afd1 dissect rec8 functions during meiotic prophase I. J. Cell Sci. 119, 3306–3315.PubMedCrossRefGoogle Scholar
  43. Golubovskaya, I. N. and Mashnenkov, A. S. (1977) Multiple disturbances of meiosis in corn are caused by a single recessive mutation pama-a344. Genetika (Russ) 13, 1910–1921.Google Scholar
  44. Gustafsson, M. G. (2005) Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086.PubMedCrossRefGoogle Scholar
  45. Gustafsson, M. G. L., Shao, L., Carlton, P. M., Wang, C.-J. R., Golubovskaya, I. N., Cande, W. Z., Agard, D. A. and Sedat, J. W. (2008) Three-dimensional resolution doubling in widefield fluorescence microscopy by structured illumination. Biophysical J. 94:4957–4970.CrossRefGoogle Scholar
  46. Hamant, O., Golubovskaya, I., Meeley, R., Fiume, E., Timofejeva, L., Schleiffer, A., Nasmyth, K. and Cande, W. Z. (2005) A rec8-dependent plant shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr. Biol. 15, 948–954.PubMedCrossRefGoogle Scholar
  47. Hamant, O., Ma, H. and Cande, W. Z. (2006) Genetics of meiotic prophase I in plants. Annu Rev Plant Biol.Google Scholar
  48. Harper, L., Golubovskaya, I. and Cande, W. Z. (2004) A bouquet of chromosomes. J. Cell Sci. 117, 4025–4032.PubMedCrossRefGoogle Scholar
  49. Higgins, J. D., Sanchez-Moran, E., Armstrong, S. J., Jones, G. H. and Franklin, F. C. (2005) The arabidopsis synaptonemal complex protein zyp1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev. 19, 2488–2500.PubMedCrossRefGoogle Scholar
  50. Hunter, N. and Kleckner, N. (2001) The single-end invasion: An asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59–70.PubMedCrossRefGoogle Scholar
  51. Kiburz, B. M., Reynolds, D. B., Megee, P. C., Marston, A. L., Lee, B. H., Lee, T. I., Levine, S. S., Young, R. A. and Amon, A. (2005) The core centromere and sgo1 establish a 50-kb cohesin- protected domain around centromeres during meiosis I. Genes Dev. 19, 3017–3030.PubMedCrossRefGoogle Scholar
  52. Lee, J. Y. and Orr-Weaver, T. L. (2001) The molecular basis of sister-chromatid cohesion. Annu. Rev. Cell Dev. Biol. 17, 753–777.PubMedCrossRefGoogle Scholar
  53. Li, J., Harper, L. C., Golubovskaya, I., Wang, C. R., Weber, D., Meeley, R. B., McElver, J., Bowen, B., Cande, W. Z. and Schnable, P. S. (2007) Functional analysis of maize rad51 in meiosis and double-strand break repair. Genetics 176, 1469–1482.PubMedCrossRefGoogle Scholar
  54. Li, W., Chen, C., Markmann-Mulisch, U., Timofejeva, L., Schmelzer, E., Ma, H. and Reiss, B. (2004) The arabidopsis atrad51 gene is dispensable for vegetative development but required for meiosis. Proc. Natl. Acad. Sci. USA 101, 10596–10601.PubMedCrossRefGoogle Scholar
  55. Liu, Q., Golubovskaya, I. and Cande, W. Z. (1993) Abnormal cytoskeletal and chromosome distribution in po, ms4 and ms6, mutant alleles of polymitotic that disrupt the cell cycle progression from meiosis to mitosis in maize. J. of Cell Sci. 106, 1169–1178.Google Scholar
  56. Mata, J., Lyne, R., Burns, G. and Bahler, J. (2002) The transcriptional program of meiosis and sporulation in fission yeast. Nat. Genet 32, 143–147.PubMedCrossRefGoogle Scholar
  57. McKim, K. S., Green-Marroquin, B. L., Sekelsky, J. J., Chin, G., Steinberg, C., Khodosh, R. and Hawley, R. S. (1998) Meiotic synapsis in the absence of recombination. Science 279, 876–878.PubMedCrossRefGoogle Scholar
  58. Moens, P. B., Kolas, N. K., Tarsounas, M., Marcon, E., Cohen, P. E. and Spyropoulos, B. (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J. Cell Sci. 115, 1611–1622.PubMedGoogle Scholar
  59. Nelson, O. E. and Clary, G. B. (1952) Genetic control of semisterility in maize. J. Heredity 43, 205–210.Google Scholar
  60. Nonomura, K., Miyoshi, K., Eiguchi, M., Suzuki, T., Miyao, A., Hirochika, H. and Kurata, N. (2003) The msp1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15, 1728–1739.PubMedCrossRefGoogle Scholar
  61. Nonomura, K., Nakano, M., Eiguchi, M., Suzuki, T. and Kurata, N. (2006) Pair2 is essential for homologous chromosome synapsis in rice meiosis I. J. Cell Sci. 119, 217–225.PubMedCrossRefGoogle Scholar
  62. Ollinger, R., Alsheimer, M. and Benavente, R. (2005) Mammalian protein scp1 forms synaptonemal complex-like structures in the absence of meiotic chromosomes. Mol. Biol. Cell 16, 212–217.PubMedCrossRefGoogle Scholar
  63. Osman, K., Sanchez-Moran, E., Higgins, J. D., Jones, G. H. and Franklin, F. C. (2006) Chromosome synapsis in arabidopsis: Analysis of the transverse filament protein zyp1 reveals novel functions for the synaptonemal complex. Chromosoma, 1–8.Google Scholar
  64. Palmer, R. G. (1971) Cytological studies of ameiotic and normal maize with reference to premei-otic pairing. Chromosoma 35, 233–246.CrossRefGoogle Scholar
  65. Paques, F. and Haber, J. E. (1999) Multiple pathways of recombination induced by double-strand breaks in saccharomyces cerevisiae. Microbiol. and Mol. Biol. Re. 63, 349–404.Google Scholar
  66. Pasierbek, P., Jantsch, M., Melcher, M., Schleiffer, A., Schweizer, D. and Loidl, J. (2001) A caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev. 15, 1349–1360.PubMedCrossRefGoogle Scholar
  67. Pawlowski, W. P., Golubovskaya, I. N. and Cande, W. Z. (2003) Altered nuclear distribution of recombination protein rad51 in maize mutants suggests the involvement of rad51 in meiotic homology recognition. Plant Cell 15, 1807–1816.PubMedCrossRefGoogle Scholar
  68. Pawlowski, W. P., Golubovskaya, I. N., Timofejeva, L., Meeley, R. B., Sheridan, W. F. and Cande, W. Z. (2004) Coordination of meiotic recombination, pairing, and synapsis by phs1. Science 303, 89–92.PubMedCrossRefGoogle Scholar
  69. Petukhova, G. V., Pezza, R. J., Vanevski, F., Ploquin, M., Masson, J. Y. and Camerini-Otero, R. D. (2005) The hop2 and mnd1 proteins act in concert with rad51 and dmc1 in meiotic recombination. Nat. Struct. Mol. Biol. 12, 449–453.PubMedCrossRefGoogle Scholar
  70. Pigozzi, M. I. and Solari, A. J. (2003) Differential immunolocalization of a putative rec8p in meiotic autosomes and sex chromosomes of triatomine bugs. Chromosoma 112, 38–47.PubMedCrossRefGoogle Scholar
  71. Primig, M., Williams, R. M., Winzeler, E. A., Tevzadze, G. G., Conway, A. R., Hwang, S. Y., Davis, R. W. and Esposito, R. E. (2000) The core meiotic transcriptome in budding yeasts. Nat. Genet. 26, 415–423.PubMedCrossRefGoogle Scholar
  72. Ramesh, M. A., Malik, S. B. and Logsdon, J. M., Jr. (2005) A phylogenomic inventory of meiotic genes; evidence for sex in giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191.PubMedGoogle Scholar
  73. Reinke, V., Gil, I. S., Ward, S. and Kazmer, K. (2004) Genome-wide germline-enriched and sex-biased expression profiles in caenorhabditis elegans. Development 131, 311–323.PubMedCrossRefGoogle Scholar
  74. Revenkova, E. and Jessberger, R. (2005) Keeping sister chromatids together: Cohesins in meiosis. Reproduction 130, 783–790.PubMedCrossRefGoogle Scholar
  75. Rhoades, M. M. (1956) Genic control of chromosomal behavior. Maize Genet. Coop. Newsl. 30, 38–48.Google Scholar
  76. Rhoades, M. M. and Dempsey, E. (1966) Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54, 505–522.PubMedGoogle Scholar
  77. Riley, R. and Chapman, V. (1964) Cytological determination of the homology of chromosomes of triticum aestivum. Nature 203, 156–158.CrossRefGoogle Scholar
  78. Riley, R., Chapman, V., Young, R. M. and Belfield, A. M. (1966) Control of meiotic chromosome pairing by the chromosomes of homoeologous group 5 of triticum aestivum. Nature 212, 1475–1477.CrossRefGoogle Scholar
  79. Rossi, P., Dolci, S., Sette, C., Capolunghi, F., Pellegrini, M., Loiarro, M., Di Agostino, S., Paronetto, M. P., Grimaldi, P., Merico, D., Martegani, E. and Geremia, R. (2004) Analysis of the gene expression profile of mouse male meiotic germ cells. Gene Expr Patterns 4, 267–281.CrossRefGoogle Scholar
  80. Sanchez-Moran, E., Mercier, R., Higgins, J. D., Armstrong, S. J., Jones, G. H. and Franklin, F. C. (2005) A strategy to investigate the plant meiotic proteome. Cytogenet. Genome Res. 109, 181–189.Google Scholar
  81. Schlecht, U., Demougin, P., Koch, R., Hermida, L., Wiederkehr, C., Descombes, P., Pineau, C., Jegou, B. and Primig, M. (2004) Expression profiling of mammalian male meiosis and game-togenesis identifies novel candidate genes for roles in the regulation of fertility. Mol. Biol. Cell 15, 1031–1043.PubMedCrossRefGoogle Scholar
  82. Sheridan, W. F., Shamrov, N. A. V. A. I., Batygina, T. B. and Golubovskaya, I. N. (1996) The mac1 gene: Controlling the commitment to the meiotic pathway in maize. Genetics 142, 1009–1020.PubMedGoogle Scholar
  83. Sheridan, W. F., Golubeva, E. A., Abrhamova, L. I. and Golubovskaya, I. N. (1999) The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics 153, 933–941.PubMedGoogle Scholar
  84. Shinohara, A., Ogawa, H. and Ogawa, T. (1992) Rad51 protein involved in repair and recombination in s. Cerevisiae is a reca-like protein. Cell 69, 457–470.PubMedCrossRefGoogle Scholar
  85. Staiger, C. J. and Cande, W. Z. (1990) Microtubule distribution in dv, a maize meiotic mutant defective in the prophase to metaphase transition. Dev. Biol. 138, 231–242.PubMedCrossRefGoogle Scholar
  86. Strich, R. (2004) Meiotic DNA replication. Curr. Top. Dev. Biol. 61, 29–60.PubMedCrossRefGoogle Scholar
  87. Tsubouchi, T. and Roeder, G. S. (2005) A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308, 870–873.PubMedCrossRefGoogle Scholar
  88. Vaur, S., Cubizolles, F., Plane, G., Genier, S., Rabitsch, P. K., Gregan, J., Nasmyth, K., Vanoosthuyse, V., Hardwick, K. G. and Javerzat, J. P. (2005) Control of shugoshin function during fission-yeast meiosis. Curr. Biol. 15, 2263–2270.PubMedCrossRefGoogle Scholar
  89. Watanabe, Y. and Nurse, P. (1999) Cohesin rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464.PubMedCrossRefGoogle Scholar
  90. Watanabe, Y. (2004) Modifying sister chromatid cohesion for meiosis. J. Cell Sci. 117, 4017–4023.PubMedCrossRefGoogle Scholar
  91. Xu, H., Beasley, M. D., Warren, W. D., van der Horst, G. T. and McKay, M. J. (2005) Absence of mouse rec8 cohesin promotes synapsis of sister chromatids in meiosis. Dev. Cell 8, 949–961.PubMedCrossRefGoogle Scholar
  92. Zhao, D. Z., Wang, G. F., Speal, B. and Ma, H. (2002) The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the arabidopsis anther. Genes Dev. 16, 2021–2031.PubMedCrossRefGoogle Scholar
  93. Zickler, D. and Kleckner, N. (1998) The leptotene-zygotene transition of meiosis. Annu. Rev. Genet. 32, 619–697.PubMedCrossRefGoogle Scholar
  94. Zickler, D. and Kleckner, N. (1999) Meiotic chromosomes: Integrating structure and function. Annu. Rev. Genet. 33, 603–754.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeley

Personalised recommendations