The LTR-Retrotransposons of Maize

The maize genome comprises 150,000–250,000 long terminal repeat (LTR)-retrotransposons, mostly in nested clusters, intermingled with other transpos-able elements and, more rarely, genes. All told, the genomic landscape of maize is 50–80% retrotransposons. Myriad families exist but >80% of maize retrotransposons belong to the five largest: Opie-Ji, Cinful-Zeon, Huck, Prem1 and Grande. Closely related to animal retroviruses, retrotransposons utilize an RNA intermediate to initiate their transposition. Despite extensive proliferation they are nevertheless suppressed by a variety of mechanisms, including DNA methylation, conversion to heterochromatin and various types of recombinational deletion. Retrotransposons play a large role in the size, structure, gene function and haplotype variation of the maize genome.


Long Terminal Repeat Maize Genome Long Terminal Repeat Retrotransposons Target Site Duplication Retrotransposon Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ananiev, E. V., R. L. Phillips and H. W. Rines (1998a) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95: 13073–13078.CrossRefGoogle Scholar
  2. Ananiev, E. V., R. L. Phillips and H. W. Rines (1998b) Complex structure of knob DNA on maize chromosome 9: Retrotransposon invasion into heterochromatin. Genetics 149: 2025–2037.Google Scholar
  3. Arumuganathan, K. and E. Earle (1991) Nuclear DNA content of some important plant species.Plant Molecular Biology Reporter 9: 208–218.CrossRefGoogle Scholar
  4. Asami, Y., D. W. Jia, K. Tatebayashi, K. Yamagata, M. Tanokura and H. Ikeda (2002) Effect of the DNA topoisomerase II inhibitor VP-16 on illegitimate recombination in yeast chromosomes. Gene 291: 251–257.PubMedCrossRefGoogle Scholar
  5. Avramova, Z., P. SanMiguel, E. Georgieva and J. L. Bennetzen (1995) Matrix Attachment Regions and Transcribed Sequences within a Long Chromosomal Continuum Containing Maize Adh1.Plant Cell 7: 1667–1680.PubMedCrossRefGoogle Scholar
  6. Bender, J. (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55: 41–68.PubMedCrossRefGoogle Scholar
  7. Bennetzen, J. L., K. Schrick, P. S. Springer, W. E. Brown and P. SanMiguel (1994) Active Maize Genes Are Unmodified and Flanked by Diverse Classes of Modified, Highly Repetitive DNA.Genome 37: 565–576.PubMedCrossRefGoogle Scholar
  8. Brunner, S., K. Fengler, M. Morgante, S. Tingey and A. Rafalski (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17: 343–360.PubMedCrossRefGoogle Scholar
  9. Bureau, T. E., S. E. White and S. R. Wessler (1994) Transduction of a Cellular Gene by a Plant Retroelement. Cell 77: 479–480.PubMedCrossRefGoogle Scholar
  10. Coulondre, C., J. H. Miller, P. J. Farabaugh and W. Gilbert (1978) Molecular-Basis of Base Substitution Hotspots in Escherichia-Coli. Nature 274: 775–780.PubMedCrossRefGoogle Scholar
  11. Devos, K. M., J. K. M. Brown and J. L. Bennetzen (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12: 1075–1079.PubMedCrossRefGoogle Scholar
  12. Du, C. G., Z. Swigonova and J. Messing (2006) Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 6: 62.PubMedCrossRefGoogle Scholar
  13. Eichinger, D. J. and J. D. Boeke (1990) A Specific Terminal Structure Is Required for Ty1 Transposition. Gene Dev 4: 324–330.PubMedCrossRefGoogle Scholar
  14. Elrouby, N. and T. E. Bureau (2001) A novel hybrid open reading frame formed by multiple cellular gene transductions by a plant long terminal repeat retroelement. J Biol Chem 276: 41963–41968.PubMedCrossRefGoogle Scholar
  15. Emberton, J., J. X. Ma, Y. N. Yuan, P. SanMiguel and J. L. Bennetzen (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res 15:1441–1446.PubMedCrossRefGoogle Scholar
  16. Eyre-Walker, A., R. L. Gaut, H. Hilton, D. L. Feldman and B. S. Gaut (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA 95: 4441–4446.PubMedCrossRefGoogle Scholar
  17. Feng, Y.-X., S. P. Moore, D. J. Garfinkel and A. Rein (2000) The Genomic RNA in Ty1 Virus-Like Particles Is Dimeric. J Virol 74: 10819–10821.PubMedCrossRefGoogle Scholar
  18. Fu, H. H. and H. K. Dooner (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99: 9573–9578.PubMedGoogle Scholar
  19. Fu, H. H., W. K. Park, X. H. Yan, Z. W. Zheng, B. Z. Shen and H. K. Dooner (2001) The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc Natl Acad Sci USA 98: 8903–8908.PubMedCrossRefGoogle Scholar
  20. Fu, H. H., Z. W. Zheng and H. K. Dooner (2002) Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc Natl Acad Sci USA 99: 1082–1087.PubMedGoogle Scholar
  21. Garcia-Martinez, J. and J. A. Martinez-Izquierdo (2003) Study on the evolution of the Grande retrotransposon in the Zea genus. Mol Biol Evol 20: 831–841.PubMedCrossRefGoogle Scholar
  22. Garfinkel, D. J. (2005) Genome evolution mediated by Ty elements in Saccharomyces. Cytogenet Genome Res 110: 63–69.PubMedCrossRefGoogle Scholar
  23. Gaut, B. S., B. R. Morton, B. C. McCaig and M. T. Clegg (1996) Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93: 10274–10279.PubMedCrossRefGoogle Scholar
  24. Haberer, G., S. Young, A. K. Bharti, H. Gundlach, C. Raymond, G. Fuks, E. Butler, R. A. Wing, S. Rounsley, B. Birren, C. Nusbaum, K. F. X. Mayer and J. Messing (2005) Structure and architecture of the maize genome. Plant Physiol 139: 1612–1624.PubMedCrossRefGoogle Scholar
  25. Hamilton, A., O. Voinnet, L. Chappell and D. Baulcombe (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21: 4671–4679.PubMedCrossRefGoogle Scholar
  26. Hu, W. M., O. P. Das and J. Messing (1995) Zeon-1, a Member of a New Maize Retrotransposon Family. Molecular & General Genetics 248: 471–480.CrossRefGoogle Scholar
  27. Huettel, B., T. Kanno, L. Daxinger, E. Bucher, J. van der Winden, A. J. M. Matzke and M. Matzke (2007) RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants. Biochimica Et Biophysica Acta-Gene Structure and Expression 1769: 358–374.CrossRefGoogle Scholar
  28. Ilic, K., P. J. SanMiguel and J. L. Bennetzen (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA 100: 12265–12270.PubMedCrossRefGoogle Scholar
  29. Jin, Y. K. and J. L. Bennetzen (1989) Structure and Coding Properties of Bs1, a Maize Retrovirus-Like Transposon. Proc Natl Acad Sci USA 86: 6235–6239.PubMedCrossRefGoogle Scholar
  30. Jin, Y. K. and J. L. Bennetzen (1994) Integration and Nonrandom Mutation of a Plasma-Membrane Proton Atpase Gene Fragment within the Bs1 Retroelement of Maize. Plant Cell 6: 1177–1186.PubMedCrossRefGoogle Scholar
  31. Kashkush, K., M. Feldman and A. A. Levy (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33: 102–106.PubMedCrossRefGoogle Scholar
  32. Kim, A., C. Terzian, P. Santamaria, A. Pelisson, N. Prudhomme and A. Bucheton (1994) Retroviruses in Invertebrates - the Gypsy Retrotransposon Is Apparently an Infectious Retrovirus of Drosophila-Melanogaster. Proc Natl Acad Sci USA 91: 1285–1289.PubMedCrossRefGoogle Scholar
  33. Kumar, A. and J. L. Bennetzen (1999) Plant retrotransposons. Annu Rev Genet 33: 479–532.PubMedCrossRefGoogle Scholar
  34. Lamb, J. C., J. M. Meyer, B. Corcoran, A. Kato, F. P. Han and J. A. Birchler (2007) Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Research 15: 33–49.PubMedCrossRefGoogle Scholar
  35. Langham, R. J., J. Walsh, M. Dunn, C. Ko, S. A. Goff and M. Freeling (2004) Genomic duplication, fractionation and the origin of regulatory novelty. Genetics 166: 935–945.PubMedCrossRefGoogle Scholar
  36. Laten, H. M., A. Majumdar and E. A. Gaucher (1998) SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc Natl Acad Sci USA 95: 6897–6902.PubMedCrossRefGoogle Scholar
  37. Lim, J. K. and M. J. Simmons (1994) Gross Chromosome Rearrangements Mediated by Transposable Elements in Drosophila-Melanogaster. Bioessays 16: 269–275.PubMedCrossRefGoogle Scholar
  38. Lippman, Z., A. V. Gendrel, M. Black, M. W. Vaughn, N. Dedhia, W. R. McCombie, K. Lavine, V. Mittal, B. May, K. D. Kasschau, J. C. Carrington, R. W. Doerge, V. Colot and R. Martienssen (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430: 471–476.PubMedCrossRefGoogle Scholar
  39. Liu, R., C. Vitte, J. Ma, A. A. Mahama, T. Dhliwayo, M. Lee and J. L. Bennetzen (2007) A GeneTrek analysis of the maize genome. Proc Natl Acad Sci USA 104: 11844–11849.PubMedCrossRefGoogle Scholar
  40. Ma, J. X. and J. L. Bennetzen (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101: 12404–12410.PubMedCrossRefGoogle Scholar
  41. Ma, J. X., K. M. Devos and J. L. Bennetzen (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14: 860–869.PubMedCrossRefGoogle Scholar
  42. Ma, J. X., P. SanMiguel, J. S. Lai, J. Messing and J. L. Bennetzen (2005) DNA rearrangement in orthologous Orp regions of the maize, rice and sorghum genomes. Genetics 170: 1209–1220.PubMedCrossRefGoogle Scholar
  43. Marillonnet, S. and S. R. Wessler (1997) Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell 9: 967–978.PubMedCrossRefGoogle Scholar
  44. Martienssen, R. (1998) Transposons, DNA methylation and gene control. Trends Genet 14: 263–264.PubMedCrossRefGoogle Scholar
  45. Matsuoka, Y., Y. Vigouroux, M. M. Goodman, G. J. Sanchez, E. Buckler and J. Doebley (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99: 6080–6084.PubMedCrossRefGoogle Scholar
  46. Matzke, M., T. Kanno, B. Huettel, L. Daxinger and A. J. M. Matzke (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10: 512–519.PubMedCrossRefGoogle Scholar
  47. McClintock, B., Y. T. A. Kato and A. Blumenshein (1981) In: Chromosome Constitution of Races of Maize. Colegio do Postgraduados, Chapingo, Mexico.Google Scholar
  48. Messing, J., A. K. Bharti, W. M. Karlowski, H. Gundlach, H. R. Kim, Y. Yu, F. S. Wei, G. Fuks, C. A. Soderlund, K. F. X. Mayer and R. A. Wing (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101: 14349–14354.PubMedCrossRefGoogle Scholar
  49. Meyers, B. C., S. V. Tingley and M. Morgante (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11: 1660–1676.PubMedCrossRefGoogle Scholar
  50. Mieczkowski, P. A., F. J. Lemoine and T. D. Petes (2006) Recombination between retrotrans-posons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair 5: 1010–1020.PubMedCrossRefGoogle Scholar
  51. Miller, J. T., F. G. Dong, S. A. Jackson, J. Song and J. M. Jiang (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150: 1615–1623.PubMedGoogle Scholar
  52. Miller, W., J. McDonald and W. Pinsker (1997) Molecular domestication of mobile elements. Genetica 100: 261–270.PubMedCrossRefGoogle Scholar
  53. Monfort, A., C. M. Vicient, R. Raz, P. Puigdomenech and J. A. Martinez-Izquierdo (1995) Molecular Analysis of a Putative Transposable Retroelement from the Zea Genus with Internal Clusters of Tandem Repeats. DNA Res 2: 255–261.PubMedCrossRefGoogle Scholar
  54. Morgante, M., S. Brunner, G. Pea, K. Fengler, A. Zuccolo and A. Rafalski (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37: 997–1002.PubMedCrossRefGoogle Scholar
  55. Mroczek, R. J. and R. K. Dawe (2003) Distribution of retroelements in centromeres and neocen-tromeres of maize. Genetics 165: 809–819.PubMedGoogle Scholar
  56. Palmer, L. E., P. D. Rabinowicz, A. L. O'Shaughnessy, V. S. Balija, L. U. Nascimento, S. Dike, M. De la Bastide, R. A. Martienssen and W. R. McCombie (2003) Maize genome sequencing by methylation filtration. Science 302: 2115–2117.PubMedCrossRefGoogle Scholar
  57. Palmgren, M. G. (1994) Capturing of Host DNA by a Plant Retroelement — Bs1 Encodes Plasma-Membrane H+ -Atpase Domains. Plant Mol Biol 25: 137–140.PubMedCrossRefGoogle Scholar
  58. Petrov, D. A., T. A. Sangster, J. S. Johnston, D. L. Hartl and K. L. Shaw (2000) Evidence for DNA loss as a determinant of genome size. Science 287: 1060–1062.PubMedCrossRefGoogle Scholar
  59. Presting, G. G., L. Malysheva, J. Fuchs and I. Z. Schubert (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16: 721–728.PubMedCrossRefGoogle Scholar
  60. Quayle, T. J. A., J. W. S. Brown and G. Feix (1989) Analysis of Distal Flanking Regions of Maize 19-Kda Zein Genes. Gene 80: 249–257.PubMedCrossRefGoogle Scholar
  61. Ramakrishna, W., J. Emberton, M. Ogden, P. SanMiguel and J. L. Bennetzen (2002a) Structural analysis of the maize Rp1 complex reveals numerous sites and unexpected mechanisms of local rearrangement. Plant Cell 14: 3213–3223.CrossRefGoogle Scholar
  62. Ramakrishna, W., J. Emberton, P. SanMiguel, M. Ogden, V. Llaca, J. Messing and J. L. Bennetzen (2002b) Comparative sequence analysis of the sorghum Rph region and the maize Rp1 resistance gene complex. Plant Physiol 130: 1728–1738.CrossRefGoogle Scholar
  63. Rayburn, A. L., H. J. Price, J. D. Smith and J. R. Gold (1985) C-Band Heterochromatin and DNA Content in Zea mays. Am J Bot 72: 1610–1617.CrossRefGoogle Scholar
  64. Roeder, G. S. and G. R. Fink (1980) DNA Rearrangements Associated with a Transposable Element in Yeast. Cell 21: 239–249.PubMedCrossRefGoogle Scholar
  65. SanMiguel, P. and J. L. Bennetzen (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82: 37–44.CrossRefGoogle Scholar
  66. SanMiguel, P., B. S. Gaut, A. Tikhonov, Y. Nakajima and J. L. Bennetzen (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20: 43–45.PubMedCrossRefGoogle Scholar
  67. SanMiguel, P., A. Tikhonov, Y. K. Jin, N. Motchoulskaia, D. Zakharov, A. MelakeBerhan, P. S. Springer, K. J. Edwards, M. Lee, Z. Avramova and J. L. Bennetzen (1996) Nested retrotrans-posons in the intergenic regions of the maize genome. Science 274: 765–768.PubMedCrossRefGoogle Scholar
  68. Sanz-Alferez, S., P. SanMiguel, Y. K. Jin, P. S. Springer and J. L. Bennetzen (2003) Structure and evolution of the Cinful retrotransposon family of maize. Genome 46: 745–752.PubMedCrossRefGoogle Scholar
  69. Song, R. T., V. Llaca, E. Linton and J. Messing (2001) Sequence, regulation, and evolution of the maize 22-kD alpha zein in gene family. Genome Res 11: 1817–1825.PubMedGoogle Scholar
  70. Song, R. T. and J. Messing (2003) Gene expression of a gene family in maize based on noncol-linear haplotypes. Proc Natl Acad Sci USA 100: 9055–9060.PubMedCrossRefGoogle Scholar
  71. Song, S. U., T. Gerasimova, M. Kurkulos, J. D. Boeke and V. G. Corces (1994) An Env-Like Protein Encoded by a Drosophila Retroelement — Evidence That Gypsy Is an Infectious Retrovirus. Genes Dev 8: 2046–2057.PubMedCrossRefGoogle Scholar
  72. Springer, P. S., K. J. Edwards and J. L. Bennetzen (1994) DNA Class Organization on Maize Adh1 Yeast Artificial Chromosomes. Proc Natl Acad Sci USA 91: 863–867.PubMedCrossRefGoogle Scholar
  73. Swigonova, Z., J. L. Bennetzen and J. Messing (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169: 891–906.PubMedCrossRefGoogle Scholar
  74. Swigonova, Z., J. S. Lai, J. X. Ma, W. Ramakrishna, M. Llaca, J. L. Bennetzen and J. Messing (2004) On the tetraploid origin of the maize genome. Comp Funct Genomics 5: 281–284.PubMedCrossRefGoogle Scholar
  75. Tikhonov, A. P., P. J. SanMiguel, Y. Nakajima, N. M. Gorenstein, J. L. Bennetzen and Z. Avramova (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96: 7409–7414.PubMedCrossRefGoogle Scholar
  76. Turcich, M. P., A. Bokhari-Riza, D. A. Hamilton, C. P. He, W. Messier, C. B. Stewart and J. P. Mascarenhas (1996) PREM-2, a copia-type retroelement in maize is expressed preferentially in early microspores. Sexual Plant Reproduction 9: 65–74.CrossRefGoogle Scholar
  77. Turcich, M. P. and J. P. Mascarenhas (1994) PREM-1, a Putative Maize Retroelement Has LTR (Long Terminal Repeat) Sequences That Are Preferentially Transcribed in Pollen. Sexual Plant Reproduction 7: 2–11.Google Scholar
  78. Vitte, C. and J. L. Bennetzen (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103: 17638–17643.PubMedCrossRefGoogle Scholar
  79. Vitte, C. and O. Panaud (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20: 528–540.PubMedCrossRefGoogle Scholar
  80. Vitte, C., O. Panaud and H. Quesneville (2007) LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics 8: 218.PubMedCrossRefGoogle Scholar
  81. Wang, Q. H. and H. K. Dooner (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103: 17644–17649.PubMedCrossRefGoogle Scholar
  82. Wang, R. L., A. Stec, J. Hey, L. Lukens and J. Doebley (1999) The limits of selection during maize domestication. Nature 398: 236–239.PubMedCrossRefGoogle Scholar
  83. Wessler, S. R., T. E. Bureau and S. E. White (1995) LTR-Retrotransposons and Mites — Important Players in the Evolution of Plant Genomes. Curr Opin Genet Dev 5: 814–821.PubMedCrossRefGoogle Scholar
  84. White, S. E., L. F. Habera and S. R. Wessler (1994) Retrotransposons in the Flanking Regions of Normal Plant Genes — a Role for Copia-Like Elements in the Evolution of Gene Structure and Expression. Proc Natl Acad Sci USA 91: 11792–11796.PubMedCrossRefGoogle Scholar
  85. Whitelaw, C. A., W. B. Barbazuk, G. Pertea, A. P. Chan, F. Cheung, Y. Lee, L. Zheng, S. van Heeringen, S. Karamycheva, J. L. Bennetzen, P. SanMiguel, N. Lakey, J. Bedell, Y. Yuan, M. A. Budiman, A. Resnick, S. Van Aken, T. Utterback, S. Riedmuller, M. Williams, T. Feldblyum, K. Schubert, R. Beachy, C. M. Fraser and J. Quackenbush (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302: 2118–2120.PubMedCrossRefGoogle Scholar
  86. Wicker, T., F. Sabot, A. Hua-Van, J. L. Bennetzen, P. Capy, B. Chalhoub, A. Flavell, P. Leroy, M. Morgante, O. Panaud, E. Paux, P. SanMiguel and A. H. Schulman (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8: 973–982.PubMedCrossRefGoogle Scholar
  87. Wicker, T., N. Yahiaoui, R. Guyot, E. Schlagenhauf, Z. D. Liu, J. Dubcovsky and B. Keller (2003)Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A(m) genomes of wheat. Plant Cell 15: 1186–1197.PubMedCrossRefGoogle Scholar
  88. Wright, D. A. and D. F. Voytas (1998) Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins.Genetics 149: 703–715.PubMedGoogle Scholar
  89. Wright, D. A. and D. F. Voytas (2002) Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res 12: 122–131.PubMedCrossRefGoogle Scholar
  90. Xiong, Y. and T. H. Eickbush (1990) Origin and Evolution of Retroelements Based Upon Their Reverse-Transcriptase Sequences. EMBO J 9: 3353–3362.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Horticulture and Landscape ArchitecturePurdue UniversityCanada

Personalised recommendations