Mutator and MULE transposons

  • Damon Lisch
  • Ning Jiang

Because it is highly mutagenic and relatively non-specific, the Mutator system of transposons has proved to be an extraordinarily useful tool for maize geneticists. It has also proved to be a valuable model system for understanding the basic biology of transposons in higher eukaryotes, particularly the means by which transposons are epigenetically silenced by their hosts. Further, the wide distribution and remarkable variety of Mu-like elements (MULEs) among plant species has illuminated the role that transposons can play in the evolution of genomes. This chapter will provide an overview of the biology and evolution of this highly active and diverse family of transposable elements.


Transposable Element Mutator Activity Antisense Transcript Deletion Derivative Somatic Excision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, A., Eastman, Q.M., and Schatz, D.G. (1998). Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751.PubMedGoogle Scholar
  2. Alleman, M., and Freeling, M. (1986). The Mu transposable elements of maize: evidence for transposition and copy number regulation during development. Genetics 112, 107–119.PubMedGoogle Scholar
  3. Alleman, M., Sidorenko, L., McGinnis, K., Seshadri, V., Dorweiler, J.E., White, J., Sikkink, K., and Chandler, V.L. (2006). An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298.PubMedGoogle Scholar
  4. Babu, M.M., Iyer, L.M., Balaji, S., and Aravind, L. (2006). The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res 34, 6505–6520.PubMedGoogle Scholar
  5. Barkan, A., and Martienssen, R.A. (1991). Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. Proc Natl Acad Sci U S A 88, 3502–3506.Google Scholar
  6. Bender, J. (2004). DNA methylation and epigenetics. Annu Rev Plant Biol 55, 41–68.PubMedGoogle Scholar
  7. Benito, M.I., and Walbot, V. (1997). Characterization of the maize Mutator transposable element MURA transposase as a DNA-binding protein. Mol Cell Biol 17, 5165–5175.PubMedGoogle Scholar
  8. Bennetzen, J.L. (1984). Transposable element Mu1 is found in multiple copies only in Robertson's Mutator maize lines. J Mol Appl Genet 2, 519–524.PubMedGoogle Scholar
  9. Bennetzen, J.L. (1987). Covalent DNA modification and the regulation of Mutator element transposition in maize. Mol. Gen. Genet. 208, 45–51.Google Scholar
  10. Bennetzen, J.L. (1994). Inactivation and reactivation of mutability at a Mutator-derived bronze-1 allele in maize. Maydica 39, 309–317.Google Scholar
  11. Bennetzen, J.L. (1996). The Mutator transposable element system of maize. Curr Top Microbiol Immunol 204, 195–229.PubMedGoogle Scholar
  12. Bennetzen, J.L. (2000). The many hues of plant heterochromatin. Genome Biol 1, REVIEWS107.Google Scholar
  13. Bennetzen, J.L., and Springer, P.S. (1994). The generation of Mutator transposable element subfamilies in maize. Theor Appl Genet 87, 657–667.Google Scholar
  14. Bennetzen, J.L., Springer, P.S., Cresse, A.D., and Hendrickx, M. (1993). Specificity and regulation of the Mutator transposable element system in maize. Critical Reviews in Plant Sciences 12, 57–95.Google Scholar
  15. Brown, J., and Sundaresan, V. (1992). Genetic study of the loss and restoration of Mutator trans-poson activity in maize: evidence against dominant-negative regulator associated with loss of activity. Genetics 130, 889–898.PubMedGoogle Scholar
  16. Brown, W.E., Robertson, D.S., and Bennetzen, J.L. (1989). Molecular analysis of multiple Mutator-derived alleles of the bronze locus of maize. Genetics 122, 439–445.PubMedGoogle Scholar
  17. Brown, W.E., Springer, P.S., and Bennetzen, J.L. (1994). Progressive modification of Mu transpos-able elements during development. Maydica 39, 119–126.Google Scholar
  18. Brunner, S., Pea, G., and Rafalski, A. (2005). Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize. Plant J 43, 799–810.PubMedGoogle Scholar
  19. Chalvet, F., Grimaldi, C., Kaper, F., Langin, T., and Daboussi, M.J. (2003). Hop, an active Mutator-like element in the genome of the fungus Fusarium oxysporum. Mol Biol Evol 20, 1362–1375.PubMedGoogle Scholar
  20. Chandler, V., Rivin, C., and Walbot, V. (1986). Stable non-mutator stocks of maize have sequences homologous to the Mu1 transposable element. Genetics 114, 1007–1021.PubMedGoogle Scholar
  21. Chandler, V.L., and Walbot, V. (1986). DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci U S A 83, 1767–1771.PubMedGoogle Scholar
  22. Chandler, V.L., Eggleston, W.B., and Dorweiler, J.E. (2000). Paramutation in maize. Plant Mol Biol 43, 121–145.PubMedGoogle Scholar
  23. Chen, Z., Zhang, J., Kong, J., Li, S., Fu, Y., Li, S., Zhang, H., Li, Y., and Zhu, Y. (2006). Diversity of endogenous small non-coding RNAs in Oryza sativa. Genetica 128, 21–31.PubMedGoogle Scholar
  24. Chomet, P., Lisch, D., Hardeman, K.J., Chandler, V.L., and Freeling, M. (1991). Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics 129, 261–270.PubMedGoogle Scholar
  25. Comelli, P., Konig, J., and Werr, W. (1999). Alternative splicing of two leading exons partitions promoter activity between the coding regions of the maize homeobox gene Zmhox1a and Trap (transposon-associated protein). Plant Mol Biol 41, 615–625.PubMedGoogle Scholar
  26. Cowan, R.K., Hoen, D.R., Schoen, D.J., and Bureau, T.E. (2005). MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. Mol Biol Evol 22, 2084–2089.PubMedGoogle Scholar
  27. Cresse, A.D., Hulbert, S.H., Brown, W.E., Lucas, J.R., and Bennetzen, J.L. (1995). Mu1-related transposable elements of maize preferentially insert into low copy number DNA. Genetics 140, 315–324.PubMedGoogle Scholar
  28. Cui, X., Hsia, A.P., Liu, F., Ashlock, D.A., Wise, R.P., and Schnable, P.S. (2003). Alternative transcription initiation sites and polyadenylation sites are recruited during Mu suppression at the rf2a locus of maize. Genetics 163, 685–698.PubMedGoogle Scholar
  29. Das, L., and Martienssen, R. (1995). Site-selected transposon mutagenesis at the hcf106 locus in maize. Plant Cell 7, 287–294.PubMedGoogle Scholar
  30. Diao, X., Freeling, M., and Lisch, D. (2006). Horizontal transfer of a plant transposon. PLoS Biol 4, e5.Google Scholar
  31. Dietrich, C.R., Cui, F., Packila, M.L., Li, J., Ashlock, D.A., Nikolau, B.J., and Schnable, P.S. (2002). Maize Mu transposons are targeted to the 5′ untranslated region of the gl8 gene and sequences flanking Mu target-site duplications exhibit nonrandom nucleotide composition throughout the genome. Genetics 160, 697–716.PubMedGoogle Scholar
  32. Donlin, M.J., Lisch, D., and Freeling, M. (1995). Tissue-specific accumulation of MURB, a protein encoded by MuDR, the autonomous regulator of the Mutator transposable element family. Plant Cell 7, 1989–2000.PubMedGoogle Scholar
  33. Dorweiler, J.E., Carey, C.C., Kubo, K.M., Hollick, J.B., Kermicle, J.L., and Chandler, V.L. (2000). mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci. Plant Cell 12, 2101–2118PubMedGoogle Scholar
  34. Eisen, J.A., Benito, M.I., and Walbot, V. (1994). Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res 22, 2634–2636.PubMedGoogle Scholar
  35. Engel, M.L., Chaboud, A., Dumas, C., and McCormick, S. (2003). Sperm cells of Zea mays have a complex complement of mRNAs. Plant J 34, 697–707.PubMedGoogle Scholar
  36. Fernandes, J., Dong, Q., Schneider, B., Morrow, D.J., Nan, G.L., Brendel, V., and Walbot, V. (2004). Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol 5, R82.PubMedGoogle Scholar
  37. Fleenor, D., Spell, M., Robertson, D., and Wessler, S. (1990). Nucleotide sequence of the maize Mutator element, Mu8. Nucleic Acids Res 18, 6725.PubMedGoogle Scholar
  38. Fowler, J.E., Muehlbauer, G.J., and Freeling, M. (1996). Mosaic analysis of the liguleless3 mutant phe-notype in maize by coordinate suppression of Mutator-insertion alleles. Genetics 143, 489–503.PubMedGoogle Scholar
  39. Franklin, A.E., McElver, J., Sunjevaric, I., Rothstein, R., Bowen, B., and Cande, W.Z. (1999). Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11, 809–824.PubMedGoogle Scholar
  40. Girard, L., and Freeling, M. (2000). Mutator-suppressible alleles of rough sheath1 and liguleless3 in maize reveal multiple mechanisms for suppression. Genetics 154, 437–446.PubMedGoogle Scholar
  41. Greene, B., Walko, R., and Hake, S. (1994). Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics 138, 1275–1285.PubMedGoogle Scholar
  42. Hanley, S., Edwards, D., Stevenson, D., Haines, S., Hegarty, M., Schuch, W., and Edwards, K.J. (2000). Identification of transposon-tagged genes by the random sequencing of Mutator-tagged DNA fragments from Zea mays. Plant J 23, 557–566.PubMedGoogle Scholar
  43. Hardeman, K.J., and Chandler, V.L. (1989). Characterization of bz1 mutants isolated from mutator stocks with high and low numbers of Mu1 elements. Dev Genet 10, 460–472.PubMedGoogle Scholar
  44. Hardeman, K.J., and Chandler, V.L. (1993). Two maize genes are each targeted predominantly by distinct classes of Mu elements. Genetics 135, 1141–1150.PubMedGoogle Scholar
  45. Hershberger, R.J., Warren, C.A., and Walbot, V. (1991). Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci U S A 88, 10198–10202.PubMedGoogle Scholar
  46. Hershberger, R.J., Benito, M.I., Hardeman, K.J., Warren, C., Chandler, V.L., and Walbot, V. (1995). Characterization of the major transcripts encoded by the regulatory MuDR transposa-ble element of maize. Genetics 140, 1087–1098.PubMedGoogle Scholar
  47. Hoen, D.R., Park, K.C., Elrouby, N., Yu, Z., Mohabir, N., Cowan, R.K., and Bureau, T.E. (2006). Transposon-mediated expansion and diversification of a family of ULP-like genes. Mol Biol Evol 23, 1254–1268.PubMedGoogle Scholar
  48. Holligan, D., Zhang, X., Jiang, N., Pritham, E.J., and Wessler, S.R. (2006). The transposable element landscape of the model legume Lotus japonicus. Genetics 174, 2215–2228.PubMedGoogle Scholar
  49. Hsia, A.P., and Schnable, P.S. (1996). DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics 142, 603–618.PubMedGoogle Scholar
  50. Hudson, M.E., Lisch, D.R., and Quail, P.H. (2003). The FHY3 and FAR1 genes encode trans-posase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J 34, 453–471.PubMedGoogle Scholar
  51. International-Rice-Sequencing-Project. (2005). The map-based sequence of the rice genome. Nature 436, 793–800.Google Scholar
  52. James, M.G., Scanlon, M.J., Qin, M., Robertson, D.S., and Myers, A.M. (1993). DNA sequence and transcript analysis of transposon MuA2, a regulator of Mutator transposable element activity in maize. Plant Mol Biol 21, 1181–1185.PubMedGoogle Scholar
  53. Jiang, N., Bao, Z., Zhang, X., Eddy, S.R., and Wessler, S.R. (2004). Pack-MULE transposable elements mediate gene evolution in plants. Nature 431, 569–573.PubMedGoogle Scholar
  54. Jiao, Y., and Deng, X.W. (2007). A genome-wide transcriptional activity survey of rice transpos-able element-related genes. Genome Biol 8, R28.PubMedGoogle Scholar
  55. Joanin, P., Hershberger, R.J., Benito, M.I., and Walbot, V. (1997). Sense and antisense transcripts of the maize MuDR regulatory transposon localized by in situ hybridization. Plant Mol Biol 33, 23–36.PubMedGoogle Scholar
  56. Juretic, N., Hoen, D.R., Huynh, M.L., Harrison, P.M., and Bureau, T.E. (2005). The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res 15, 1292–1297.PubMedGoogle Scholar
  57. Kidwell, M.G., Kimura, K., and Black, D.M. (1988). Evolution of hybrid dysgenesis potential following P element contamination in Drosophila melanogaster. Genetics 119, 815–828.PubMedGoogle Scholar
  58. Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J., Ishikawa, M., Yamada, H., Ooka, H., Hotta, I., Kojima, K., Namiki, T., Ohneda, E., Yahagi, W., Suzuki, K., Li, C.J., Ohtsuki, K., Shishiki, T., Otomo, Y., Murakami, K., Iida, Y., Sugano, S., Fujimura, T., Suzuki, Y., Tsunoda, Y., Kurosaki, T., Kodama, T., Masuda, H., Kobayashi, M., Xie, Q., Lu, M., Narikawa, R., Sugiyama, A., Mizuno, K., Yokomizo, S., Niikura, J., Ikeda, R., Ishibiki, J., Kawamata, M., Yoshimura, A., Miura, J., Kusumegi, T., Oka, M., Ryu, R., Ueda, M., Matsubara, K., Kawai, J., Carninci, P., Adachi, J., Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashizume, W., Hayatsu, N., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kondo, S., Konno, H., Miyazaki, A., Osato, N., Ota, Y., Saito, R., Sasaki, D., Sato, K., Shibata, K., Shinagawa, A., Shiraki, T., Yoshino, M., Hayashizaki, Y., and Yasunishi, A. (2003). Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301, 376–379.PubMedGoogle Scholar
  59. Kim, S.H., and Walbot, V. (2003). Deletion derivatives of the MuDR regulatory transposon of maize encode antisense transcripts but are not dominant-negative regulators of mutator activities. Plant Cell 15, 2430–2447.PubMedGoogle Scholar
  60. Kipling, D., and Warburton, P.E. (1997). Centromeres, CENP-B and Tigger too. Trends Genet 13, 141–145.PubMedGoogle Scholar
  61. Lai, J., Ma, J., Swigonova, Z., Ramakrishna, W., Linton, E., Llaca, V., Tanyolac, B., Park, Y.J., Jeong, O.Y., Bennetzen, J.L., and Messing, J. (2004). Gene loss and movement in the maize genome. Genome Res. 14, 1924–1931.PubMedGoogle Scholar
  62. Le, Q.H., Wright, S., Yu, Z., and Bureau, T. (2000). Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97, 7376–7381.PubMedGoogle Scholar
  63. Le Rouzic, A., and Capy, P. (2005). The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics 169, 1033–1043.PubMedGoogle Scholar
  64. Lesage, P., and Todeschini, A.L. (2005). Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 110, 70–90.PubMedGoogle Scholar
  65. Levy, A.A., and Walbot, V. (1991). Molecular analysis of the loss of somatic instability in the bz2::mu1 allele of maize. Mol Gen Genet 229, 147–151.PubMedGoogle Scholar
  66. Levy, A.A., Britt, A.B., Luehrsen, K.R., Chandler, V.L., Warren, C., and Walbot, V. (1989). Developmental and genetic aspects of Mutator excision in maize. Dev Genet 10, 520–531.PubMedGoogle Scholar
  67. Lin, R., Ding, L., Casola, C., Ripoll, D.R., Feschotte, C., and Wang, H. (2007). Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302–1305.PubMedGoogle Scholar
  68. Lisch, D. (2002). Mutator transposons. Trends Plant Sci 7, 498–504.PubMedGoogle Scholar
  69. Lisch, D. (2005). Pack-MULEs: theft on a massive scale. Bioessays 27, 353–355.PubMedGoogle Scholar
  70. Lisch, D., and Freeling, M. (1994). Loss of Mutator activity in a minimal line. Maydica 39, 289–300.Google Scholar
  71. Lisch, D., Chomet, P., and Freeling, M. (1995). Genetic characterization of the Mutator system in maize: behavior and regulation of Mu transposons in a minimal line. Genetics 139, 1777–1796.PubMedGoogle Scholar
  72. Lisch, D., Girard, L., Donlin, M., and Freeling, M. (1999). Functional analysis of deletion derivatives of the maize transposon MuDR delineates roles for the MURA and MURB proteins. Genetics 151, 331–341.PubMedGoogle Scholar
  73. Lisch, D., Carey, C.C., Dorweiler, J.E., and Chandler, V.L. (2002). A mutation that prevents par-amutation in maize also reverses Mutator transposon methylation and silencing. Proc Natl Acad Sci U S A 99, 6130–6135.PubMedGoogle Scholar
  74. Lisch, D.R., Freeling, M., Langham, R.J., and Choy, M.Y. (2001). Mutator transposase is widespread in the grasses. Plant Physiol 125, 1293–1303.PubMedGoogle Scholar
  75. Lowe, B., Mathern, J., and Hake, S. (1992). Active Mutator elements suppress the knotted phe-notype and increase recombination at the Kn1-O tandem duplication. Genetics 132, 813–822.PubMedGoogle Scholar
  76. Lu, C., Tej, S.S., Luo, S., Haudenschild, C.D., Meyers, B.C., and Green, P.J. (2005). Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569.PubMedGoogle Scholar
  77. Lu, C., Kulkarni, K., Souret, F.F., MuthuValliappan, R., Tej, S.S., Poethig, R.S., Henderson, I.R., Jacobsen, S.E., Wang, W., Green, P.J., and Meyers, B.C. (2006). MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16, 1276–1288.PubMedGoogle Scholar
  78. Ma, J., Devos, K.M., and Bennetzen, J.L. (2004). Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14, 860–869.PubMedGoogle Scholar
  79. Makarova, K.S., Aravind, L., and Koonin, E.V. (2002). SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes. Trends Biochem Sci 27, 384–386.PubMedGoogle Scholar
  80. Malik, H.S., Burke, W.D., and Eickbush, T.H. (1999). The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16, 793–805.PubMedGoogle Scholar
  81. Martienssen, R., and Baron, A. (1994). Coordinate suppression of mutations caused by Robertson's Mutator transposons in maize. Genetics 136, 1157–1170.PubMedGoogle Scholar
  82. Martienssen, R., Barkan, A., Taylor, W.C., and Freeling, M. (1990). Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes Dev 4, 331–343.PubMedGoogle Scholar
  83. May, E.W., and Craig, N.L. (1996). Switching from cut-and-paste to replicative Tn7 transposition. Science 272, 401–404.PubMedGoogle Scholar
  84. McCarty, D.R., Carson, C.B., Stinard, P.S., and Robertson, D.S. (1989). Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1, 523–532.PubMedGoogle Scholar
  85. McGinnis, K., Murphy, N., Carlson, A.R., Akula, A., Akula, C., Basinger, H., Carlson, M., Hermanson, P., Kovacevic, N., McGill, M.A., Seshadri, V., Yoyokie, J., Cone, K., Kaeppler, H.F., Kaeppler, S.M., and Springer, N.M. (2007). Assessing the efficiency of RNA interference for maize functional genomics. Plant Physiol 143, 1441–1451.PubMedGoogle Scholar
  86. Miller, W.J., McDonald, J.F., Nouaud, D., and Anxolabehere, D. (1999). Molecular domestication–more than a sporadic episode in evolution. Genetica 107, 197–207.PubMedGoogle Scholar
  87. Morgante, M., Brunner, S., Pea, G., Fengler, K., Zuccolo, A., and Rafalski, A. (2005). Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37, 997–1002.PubMedGoogle Scholar
  88. Neuveglise, C., Chalvet, F., Wincker, P., Gaillardin, C., and Casaregola, S. (2005).Mutator-like element in the yeast Yarrowia lipolytica displays multiple alternative splicings. Eukaryot Cell 4, 615–624.PubMedGoogle Scholar
  89. Ohtsu, K., Smith, M.B., Emrich, S.J., Borsuk, L.A., Zhou, R., Chen, T., Zhang, X., Timmermans, M.C., Beck, J., Buckner, B., Janick-Buckner, D., Nettleton, D., Scanlon, M.J., and Schnable, P.S. (2007). Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). Plant J.Google Scholar
  90. Oishi, K., and Freeling, M. (1983). The Mu3 transposon in maize. In Plant Transposable Elements, O.N.e. al, ed (New York: Plenum Press), pp. 289–292.Google Scholar
  91. Ono, A., Kim, S.H., and Walbot, V. (2002). Subcellular localization of MURA and MURB proteins encoded by the maize MuDR transposon. Plant Mol Biol 50, 599–611.PubMedGoogle Scholar
  92. Pace, J.K., 2nd, and Feschotte, C. (2007). The evolutionary history of human DNA transposons evidence for intense activity in the primate lineage. Genome Res 17, 422–432.PubMedGoogle Scholar
  93. Pikaard, C.S. (2006). Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. Cold Spring Harb Symp Quant Biol 71, 473–480.PubMedGoogle Scholar
  94. Pontes, O., Li, C.F., Nunes, P.C., Haag, J., Ream, T., Vitins, A., Jacobsen, S.E., and Pikaard, C.S. (2006). The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92.PubMedGoogle Scholar
  95. Pooma, W., Gersos, C., and Grotewold, E. (2002). Transposon insertions in the promoter of the mays a1e differentially affect transcription by the Myb factors P and C1. Genetics 161, 793–801.PubMedGoogle Scholar
  96. Qin, M.M., Robertson, D.S., and Ellingboe, A.H. (1991). Cloning of the Mutator transposable lement 2putative regulator of somatic mutability of the mum2ele in maize. Genetics 129, 845–854.PubMedGoogle Scholar
  97. Raina, R., Schlappi, M., and Fedoroff, N. (1998). Epigenetic mechanisms in the regulation of the maize Suppressor-mutator transposon. Novartis Found Symp 214, 133–140; discussion 140–133, 163–137.PubMedGoogle Scholar
  98. Raizada, M.N., and Walbot, V. (2000). The late developmental pattern of Mu transposon excision is conferred by a cauliflower mosaic virus 35S -driven MURA cDNA in transgenic maize. Plant Cell 12, 5–21.PubMedGoogle Scholar
  99. Raizada, M.N., Nan, G.L., and Walbot, V. (2001a). Somatic and germinal mobility of the RescueMu transposon in transgenic maize. Plant Cell 13, 1587–1608.Google Scholar
  100. Raizada, M.N., Benito, M.I., and Walbot, V. (2001b). The MuDR transposon terminal inverted repeat contains a complex plant promoter directing distinct somatic and germinal programs. Plant J 25, 79–91.Google Scholar
  101. Robertson, D.S. (1978). Characterization of a mutator system in maize. Mutat. Res. 51, 21–28.Google Scholar
  102. Robertson, D.S. (1980). The Timing of Mu Activity in Maize. Genetics 94, 969–978.PubMedGoogle Scholar
  103. Robertson, D.S. (1981). Mutator Activity in maize: timing of its activation in ontogeny. Science 213, 1515–1517.PubMedGoogle Scholar
  104. Robertson, D.S. (1983). A possible dose-dependent inactivation of mutator (Mu) in maize. Mol Gen Genet 191, 86–90.Google Scholar
  105. Robertson, D.S. (1985). Differential activity of the maize mutator Mu at different loci and in different cell lineages. Mol. Gen. Gent. 200, 9–13.Google Scholar
  106. Robertson, D.S. (1986). Genetic Studies on the Loss of Mu mutator activity in Maize. Genetics 113, 765–773.PubMedGoogle Scholar
  107. Robertson, D.S., and Stinard, P.S. (1993). Evidence for Mu activity in the male and female game-tophytes of maize. Maydica 38, 145–150.Google Scholar
  108. Rudenko, G.N., and Walbot, V. (2001). Expression and post-transcriptional regulation of maize transposable element MuDR and its derivatives. Plant Cell 13, 553–570.PubMedGoogle Scholar
  109. Rudenko, G.N., Ono, A., and Walbot, V. (2003). Initiation of silencing of maize MuDR/Mutransposable elements. Plant J 33, 1013–1025.PubMedGoogle Scholar
  110. SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y., and Bennetzen, J.L. (1998). The paleontology of intergene retrotransposons of maize. Nat. Genet. 20, 43–45.PubMedGoogle Scholar
  111. SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z., and Bennetzen, J.L. (1996a). Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768.Google Scholar
  112. Schnable, P.S., and Peterson, P.A. (1988). The atorated Cy transposable element of mays L. behaves as a near-mendelian factor. Genetics 120, 587–596.PubMedGoogle Scholar
  113. Schnable, P.S., Peterson, P.A., and Saedler, H. (1989). The rcyele of the Cy transposable lement system of Zea mays contains a Mu-like element insertion. Mol Gen Genet 217, 459–463.PubMedGoogle Scholar
  114. Singh, J., Freeling, M., and D. Lisch, (2008). A position effect on the heritability of silencing. PLoS Genetics. 4:e1000216. PMID: 18846225.PubMedGoogle Scholar
  115. Slotkin, R.K., Freeling, M., and Lisch, D. (2003). Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays. Genetics 165, 781–797.PubMedGoogle Scholar
  116. Slotkin, R.K., Freeling, M., and Lisch, D. (2005). Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37, 641–644.PubMedGoogle Scholar
  117. Stinard, P.S., Robertson, D.S., and Schnable, P.S. (1993). Genetic isolation, cloning, and analysis of a mutator-induced, dominant antimorph of the maize amylose extender1 Locus. Plant Cell 5, 1555–1566.PubMedGoogle Scholar
  118. Strommer, J.N., Hake, S., Bennetzen, J.L., Taylor, W.C., and Freeling, M. (1982). Regulatory mutants of the maize Adh1 gene caused by DNA insertions. Nature 300, 542–544.Google Scholar
  119. Takumi, S., and Walbot, V. (2007). Epigenetic silencing and unstable inheritance of MuDR activity monitored at four bz2-mu alleles in maize (Zea mays L.). Genes Genet Syst 82, 387–401.PubMedGoogle Scholar
  120. Talbert, L.E., and Chandler, V.L. (1988). Characterization of a highly conserved sequence related to mutator transposable elements in maize. Mol. Biol. Evol. 5, 519–529.PubMedGoogle Scholar
  121. Talbert, L.E., Patterson, G.I., and Chandler, V.L. (1989). Mu transposable elements are structurally diverse and distributed throughout the genus Zea. J Mol Evol 29, 28–39.Google Scholar
  122. Taylor, L.P., and Walbot, V. (1987). Isolation and characterization of a 1.7-kb transposable element from a mutator line of maize. Genetics 117, 297–307.PubMedGoogle Scholar
  123. Toth, M., Grimsby, J., Buzsaki, G., and Donovan, G.P. (1995). Epileptic seizures caused by inac-tivation of a novel gene, jerky, related to centromere binding protein-B in transgenic mice. Nat Genet 11, 71–75.PubMedGoogle Scholar
  124. Turcotte, K., Srinivasan, S., and Bureau, T. (2001). Survey of transposable elements from rice genomic sequences. Plant J 25, 169–179.PubMedGoogle Scholar
  125. van Leeuwen, H., Monfort, A., and Puigdomenech, P. (2007). Mutator-like elements identified in melon, Arabidopsis and rice contain ULP1 protease domains. Mol. Genet. Genomics 277, 357–364.PubMedGoogle Scholar
  126. Walbot, V. (1986). Inheritance of mutator activity in Zea mays as assayed by somatic instability of the bz2-mu1 allele. Genetics 114, 1293–1312.PubMedGoogle Scholar
  127. Walbot, V. (1991). The Mutator transposable element family of maize. Genet Eng (N Y) 13, 1–37.Google Scholar
  128. Walbot, V., and Warren, C. (1988). Regulation of Mu element copy number in maize lines with an active or inactive Mutator transposable element system. Mol Gen Genet 211, 27–34.PubMedGoogle Scholar
  129. Wang, Q., and Dooner, H.K. (2006). Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A 103, 17644–17649.PubMedGoogle Scholar
  130. Woodhouse, M.R., Freeling, M., and Lisch, D. (2006a). The mop1 (mediator of paramutation1) mutant progressively reactivates one of the two genes encoded by the MuDR transposon in maize. Genetics 172, 579–592.Google Scholar
  131. Woodhouse, M.R., Freeling, M., and Lisch, D. (2006b). Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol 4, e339.Google Scholar
  132. Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, K.D., Lellis, A.D., Zilberman, D., Jacobsen, S.E., and Carrington, J.C. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2, E104.PubMedGoogle Scholar
  133. Xu, Z., Yan, X., Maurais, S., Fu, H., O'Brien, D.G., Mottinger, J., and Dooner, H.K. (2004). Jittery, a Mutator distant relative with a paradoxical mobile behavior: excision without reinsertion. Plant Cell 16, 1105–1114.PubMedGoogle Scholar
  134. Yandeau-Nelson, M.D., Zhou, Q., Yao, H., Xu, X., Nikolau, B.J., and Schnable, P.S. (2005). MuDR transposase increases the frequency of meiotic crossovers in the vicinity of a Mu insertion in the maize a1 gene. Genetics 169, 917–929.PubMedGoogle Scholar
  135. Yates, J.R., Cunningham, R.P., and Holmes, D.S. (1988). IST2: an insertion sequence from Thiobacillus ferrooxidans. Proc Natl Acad Sci U S A 85, 7284–7287.PubMedGoogle Scholar
  136. Yu, W., Lamb, J.C., Han, F., and Birchler, J.A. (2007). Cytological visualization of DNA trans-posons and their transposition pattern in somatic cells of maize. Genetics 175, 31–39.PubMedGoogle Scholar
  137. Yu, Z., Wright, S.I., and Bureau, T.E. (2000). Mutator-like elements in Arabidopsis thaliana. Structure, diversity and evolution. Genetics 156, 2019–2031.PubMedGoogle Scholar
  138. Zabala, G., and Vodkin, L.O. (2005). The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell 17, 2619–2632.PubMedGoogle Scholar
  139. Zhang, X., Jiang, N., Feschotte, C., and Wessler, S.R. (2004). PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics 166, 971–986.PubMedGoogle Scholar
  140. Zhang, X., Henderson, I.R., Lu, C., Green, P.J., and Jacobsen, S.E. (2007). Role of RNA polymer-ase IV in plant small RNA metabolism. Proc Natl Acad Sci U S A 104, 4536–4541.PubMedGoogle Scholar
  141. Zhang, X., Feschotte, C., Zhang, Q., Jiang, N., Eggleston, W.B., and Wessler, S.R. (2001). P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci U S A 98, 12572–12577.PubMedGoogle Scholar
  142. Zhao, Z.Y., and Sundaresan, V. (1991). Binding sites for maize nuclear proteins in the terminal inverted repeats of the Mu1 transposable element. Mol Gen Genet 229, 17–26.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Plant and Microbial BiologyBerkeley
  2. 2.Department of HorticultureMichigan State UniversityEast Lansing

Personalised recommendations