Transposons Ac/Ds, En/Spmand their Relatives in Maize

  • Jianbo Zhang
  • Thomas Peterson
  • Peter A. Peterson

Many wild and cultivated species of plants exhibit unstable traits and variegated phenotypes, hallmarks of transposable element activity. However, the unique advantages of maize for genetic and cytogenetic research greatly facilitated the discovery and characterization of transposable element systems by McClintock. While initially dismissed by some scientists as being peculiar to maize, transpos-able elements are now recognized as major components of all eukaryotic genomes. Transposition of single elements can exert powerful effects on the structure and expression of individual genes. Recent research is showing how alternative transposition reactions involving multiple elements can have a major impact on the evolution of the genome as a whole.


Transposable Element Chromosome Breakage Inverted Duplication Terminal Inverted Repeat Sequence CACTA Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, E. G. (1948). On the Frequency and Transmitted Chromosome Alterations and Gene Mutations Induced by Atomic Bomb Radiations in Maize. Proceedings of the National Academy of Sciences of the United States of America 34, 387–390.CrossRefGoogle Scholar
  2. Anderson, E. G., Longley, A. E., Li, C. H., and Retherford, K. L. (1949). Hereditary effects produced in maize by radiations from the bikini atomic bomb. I. Studies on seedlings and pollen of the exposed generation. Genetics 34, 639–646.PubMedGoogle Scholar
  3. Athma, P., Grotewold, E., and Peterson, T. (1992). Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics 131, 199–209.PubMedGoogle Scholar
  4. Bancroft, I., Bhatt, A. M., Sjodin, C., Scofield, S., Jones, J. D., and Dean, C. (1992). Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Mol Gen Genet233, 449–461.PubMedCrossRefGoogle Scholar
  5. Becker, H. A., and Kunze, R. (1997). Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats. Mol Gen Genet 254, 219–230.PubMedCrossRefGoogle Scholar
  6. Boehm, U., Heinlein, M., Behrens, U., and Kunze, R. (1995). One of three nuclear localization signals of maize Activator (Ac) transposase overlaps the DNA-binding domain. Plant J 7, 441–451.PubMedCrossRefGoogle Scholar
  7. Brink, R. A., and Nilan, R. A. (1952). The relation between light variegated and medium variegated pericarp in maize. Genetics 37, 519–544.PubMedGoogle Scholar
  8. Calvi, B. R., Hong, T. J., Findley, S. D., and Gelbart, W. M. (1991). Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66, 465–471.PubMedCrossRefGoogle Scholar
  9. Cardon, G. H., Frey, M., Saedler, H., and Gierl, A. (1991). Transposition of En/Spm in transgenic tobacco. Maydica 36, 305–308.Google Scholar
  10. Chen, J., Greenblatt, I. M., and Dellaporta, S. L. (1987). Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117, 109–116.PubMedGoogle Scholar
  11. Chen, J., Greenblatt, I. M., and Dellaporta, S. L. (1992). Molecular analysis of Ac transposition and DNA replication. Genetics 130, 665–676.PubMedGoogle Scholar
  12. Chopra, S., Brendel, V., Zhang, J., Axtell, J. D., and Peterson, T. (1999). Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc Natl Acad Sci U S A 96, 15330–15335.PubMedCrossRefGoogle Scholar
  13. Conrad, L. J., Bai, L., Ahern, K., Dusinberre, K., Kane, D. P., and Brutnell, T. P. (2007). State II Dissociation (Ds) Element Formation Following Activator (Ac) Excision in Maize. Genetics.Google Scholar
  14. Cormack, J. B., Cox, D. F., and Peterson, P. A. (1988). Presence of the transposable element Uq in maize breeding material. Crop science 28, 941–944.CrossRefGoogle Scholar
  15. Courage-Tebbe, U., Doring, H. P., Fedoroff, N., and Starlinger, P. (1983). The controlling element Ds at the Shrunken locus in Zea mays: structure of the unstable sh-m5933 allele and several revertants. Cell 34, 383–393.PubMedCrossRefGoogle Scholar
  16. Cuypers, H., Dash, S., Peterson, P. A., Saedler, H., and Gierl, A. (1988). The defective En-I102 element encodes a product reducing the mutability of the En/Spm transposable element system of Zea mays. EMBO J 7, 2953–2960.PubMedGoogle Scholar
  17. Dooner, H. K., and Belachew, A. (1991). Chromosome breakage by pairs of closely linked trans-posable elements of the Ac-Ds family in maize. Genetics 129, 855–862.PubMedGoogle Scholar
  18. Doring, H. P., Nelsen-Salz, B., Garber, R., and Tillmann, E. (1989). Double Ds elements are involved in specific chromosome breakage. Mol Gen Genet 219, 299–305.PubMedGoogle Scholar
  19. Doring, H. P., Pahl, I., and Durany, M. (1990). Chromosomal rearrangements caused by the aberrant transposition of double Ds elements are formed by Ds and adjacent non-Ds sequences. Mol Gen Genet 224, 40–48.PubMedCrossRefGoogle Scholar
  20. Doring, H. P., and Starlinger, P. (1984). Barbara McClintock's controlling elements: now at the DNA level. Cell 39, 253–259.PubMedCrossRefGoogle Scholar
  21. Doring, H. P., Tillmann, E., and Starlinger, P. (1984). DNA sequence of the maize transposable element Dissociation. Nature 307, 127–130.PubMedCrossRefGoogle Scholar
  22. Dowe, M. F., Jr., Roman, G. W., and Klein, A. S. (1990). Excision and transposition of two Ds transposons from the bronze mutable 4 derivative 6856 allele of Zea mays L. Mol Gen Genet 221, 475–485.PubMedCrossRefGoogle Scholar
  23. Emelyanov, A., Gao, Y., Naqvi, N. I., and Parinov, S. (2006). Trans-kingdom transposition of the maize dissociation element. Genetics 174, 1095–1104.PubMedCrossRefGoogle Scholar
  24. Emerson, R. A. (1914). The Inheritance of a Recurring Somatic Variation in Variegated Ears of Maize. The American Naturalist 48, 87–115.CrossRefGoogle Scholar
  25. English, J., Harrison, K., and Jones, J. D. (1993). A genetic analysis of DNA sequence requirements for Dissociation state I activity in tobacco. Plant Cell 5, 501–514.PubMedCrossRefGoogle Scholar
  26. English, J. J., Harrison, K., and Jones, J. (1995). Aberrant Transpositions of Maize Double Ds-Like Elements Usually Involve Ds Ends on Sister Chromatids. Plant Cell 7, 1235–1247.PubMedCrossRefGoogle Scholar
  27. Essers, L., Adolphs, R. H., and Kunze, R. (2000). A highly conserved domain of the maize activator transposase is involved in dimerization. Plant Cell 12, 211–224.PubMedCrossRefGoogle Scholar
  28. Fedoroff, N., Wessler, S., and Shure, M. (1983). Isolation of the transposable maize controlling elements Ac and Ds. Cell 35, 235–242.PubMedCrossRefGoogle Scholar
  29. Fedoroff, N. V., Furtek, D. B., and Nelson, O. E. (1984). Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci U S A 81, 3825–3829.PubMedCrossRefGoogle Scholar
  30. Feldmar, S., and Kunze, R. (1991). The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. Embo J 10, 4003–4010.PubMedGoogle Scholar
  31. Fowler, R. G., and Peterson, P. A. (1978). An Altered State of a Specific En Regulatory Element Induced in a Maize Tiller. Genetics 90, 761–782.PubMedGoogle Scholar
  32. Frey, M., Reinecke, J., Grant, S., Saedler, H., and Gierl, A. (1990). Excision of the En/Spm trans-posable element of Zea mays requires two element-encoded proteins. Embo J 9, 4037–4044.PubMedGoogle Scholar
  33. Frey, M., Tavantzis, S. M., and Saedler, H. (1989). The maize En-1/Spm element transposes in potato. Mol Gen Genet 217, 172–177.PubMedCrossRefGoogle Scholar
  34. Fu, H., and Dooner, H. K. (2002). Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A 99, 9573–9578.PubMedGoogle Scholar
  35. Geurts, A. M., Collier, L. S., Geurts, J. L., Oseth, L. L., Bell, M. L., Mu, D., Lucito, R., Godbout, S. A., Green, L. E., Lowe, S. W., et al. (2006). Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genet 2, e156.PubMedCrossRefGoogle Scholar
  36. Gierl, A., Lütticke, S., and Saedler, H. (1988). TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. Embo J 7, 4045–4053.PubMedGoogle Scholar
  37. Giroux, M. J., Clancy, M., Baier, J., Ingham, L., McCarty, D., and Hannah, L. C. (1994). De novo synthesis of an intron by the maize transposable element Dissociation. Proc Natl Acad Sci U S A 91, 12150–12154.PubMedCrossRefGoogle Scholar
  38. Grant, S. R., Gierl, A., and Saedler, H. (1990). En/Spm encoded tnpA protein requires a specific target sequence for suppression. EMBO J 9, 2029–2035.PubMedGoogle Scholar
  39. Grappin, P., Audeon, C., Chupeau, M. C., and Grandbastien, M. A. (1996). Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol Gen Genet 252, 386–397.PubMedGoogle Scholar
  40. Gray, Y. H., Tanaka, M. M., and Sved, J. A. (1996). P-element-induced recombination in Drosophila melanogaster: hybrid element insertion. Genetics 144, 1601–1610.PubMedGoogle Scholar
  41. Greenblatt, I. M. (1966). Transposition and replication of modulator in maize. Genetics 53, 361–369.PubMedGoogle Scholar
  42. Greenblatt, I. M., and Brink, R. A. (1962). Twin Mutations in Medium Variegated Pericarp Maize. Genetics 47, 489–501.PubMedGoogle Scholar
  43. Greenblatt, I. M., and Brink, R. A. (1963). Transpositions of Modulator in maize into divided and undivided chromosome segments. Nature 197, 412–413.CrossRefGoogle Scholar
  44. Grotewold, E., Athma, P., and Peterson, T. (1991). A possible hot spot for Ac insertion in the maize P gene. Mol Gen Genet 230, 329–331.PubMedCrossRefGoogle Scholar
  45. Hall, L. N., Rossini, L., Cribb, L., and Langdale, J. A. (1998). GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 10, 925–936.PubMedCrossRefGoogle Scholar
  46. Hartings, H., Spilmont, C., Lazzaroni, N., Rossi, V., Salamini, F., Thompson, R. D., and Motto, M. (1991). Molecular analysis of the Bg-rbg transposable element system of Zea mays L. Mol Gen Genet 227, 91–96.PubMedCrossRefGoogle Scholar
  47. Heinlein, M., Brattig, T., and Kunze, R. (1994). In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and Petunia protoplasts. Plant J 5, 705–714.PubMedCrossRefGoogle Scholar
  48. Henk, A. D., Warren, R. F., and Innes, R. W. (1999). A new Ac-like transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene. Genetics 151, 1581–1589.PubMedGoogle Scholar
  49. Hua-Van, A., Langin, T., and Daboussi, M. J. (2002). Aberrant transposition of a Tc1-mariner element, impala, in the fungus Fusarium oxysporum. Mol Genet Genomics 267, 79–87.PubMedCrossRefGoogle Scholar
  50. Jones, R. N. (2005). McClintock's controlling elements: the full story. Cytogenet Genome Res 109, 90–103.PubMedCrossRefGoogle Scholar
  51. Kaufman, P. D., and Rio, D. C. (1992). P element transposition in vitro proceeds by a cut-and-paste mechanism and uses GTP as a cofactor. Cell 69, 27–39.PubMedCrossRefGoogle Scholar
  52. Klein, A. S., Clancy, M., Paje-Manalo, L., Furtek, D. B., Hannah, L. C., and Nelson, O. E., Jr. (1988). The mutation bronze-mutable 4 derivative 6856 in maize is caused by the insertion of a novel 6.7-kilobase pair transposon in the untranslated leader region of the bronze-1 gene. Genetics 120, 779–790.PubMedGoogle Scholar
  53. Kunze, R., and Starlinger, P. (1989). The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. Embo J 8, 3177–3185.PubMedGoogle Scholar
  54. Kunze, R., Stochaj, U., Laufs, J., and Starlinger, P. (1987). Transcription of transposable element Activator (Ac) of Zea mays L. Embo J 6, 1555–1563.PubMedGoogle Scholar
  55. Kunze, R., and Weil, C. F. (2002). The hAT and CACTA superfamilies of plant transposons, In Mobile DNA II, N. L. Craig, R. Craigie, M. Gellert, and A. Lambowitz, eds. (ASM Press), pp. 565–610.Google Scholar
  56. Lamkey, K. R., Peterson, P. A., and Hallauer, A. R. (1991). Frequency of the transposable element uq in iowa stiff stalk synthetic maize populations. Genetical research 57, 1–9.Google Scholar
  57. Lechelt, C., Peterson, T., Laird, A., Chen, J., Dellaporta, S. L., Dennis, E., Peacock, W. J., and Starlinger, P. (1989). Isolation and molecular analysis of the maize P locus. Mol Gen Genet 219, 225–234.PubMedCrossRefGoogle Scholar
  58. Masson, P., Banks, J. A., and Fedoroff, N. (1991). Structure and function of the maize Spm trans-posable element. Biochimie 73, 5–8.PubMedCrossRefGoogle Scholar
  59. Masson, P., Surosky, R., Kingsbury, J. A., and Fedoroff, N. V. (1987). Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics 117, 117–137.PubMedGoogle Scholar
  60. McClintock, B. (1944). The relation of homozygous deficiencies to mutations and allelic series in maize. Genetics 29, 478–502.PubMedGoogle Scholar
  61. McClintock, B. (1946). Maize genetics. Carnegie Institution of Washington Year Book 45, 176–186.Google Scholar
  62. McClintock, B. (1947). Cytogenetic studies of maize and Neurospora. Carnegie Institution of Washington Year Book 46, 146–152.Google Scholar
  63. McClintock, B. (1948). Mutable loci in maize. Carnegie Institution of Washington Year Book 47, 155–169.Google Scholar
  64. McClintock, B. (1949). Mutable Loci in Maize. Carnegie Institution of Washington Year Book 48, 142–154.Google Scholar
  65. McClintock, B. (1950). The Origin and Behavior of Mutable Loci in Maize. Proceedings of the National Academy of Sciences of the United States of America 36, 344–355.PubMedCrossRefGoogle Scholar
  66. McClintock, B. (1951a). Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol 16, 13–47.Google Scholar
  67. McClintock, B. (1951b). Mutable Loci in Maize. Carnegie Institute of Washington Yearbook 50, 174–181.Google Scholar
  68. McClintock, B. (1953). Induction of Instability at Selected Loci in Maize. Genetics 38, 579–599.PubMedGoogle Scholar
  69. McClintock, B. (1954). Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst Wash Year Book 53, 254–260.Google Scholar
  70. Menssen, A., Hohmann, S., Martin, W., Schnable, P. S., Peterson, P. A., Saedler, H., and Gierl, A. (1990). The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. Embo J 9, 3051–3057.PubMedGoogle Scholar
  71. Miura, A., Yonebayashi, S., Watanabe, K., Toyama, T., Shimada, H., and Kakutani, T. (2001). Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411, 212–214.PubMedCrossRefGoogle Scholar
  72. Muszynski, M. G., Gierl, A., and Peterson, P. A. (1993). Genetic and molecular analysis of a three-component transposable-element system in maize. Mol Gen Genet 237, 105–112.PubMedCrossRefGoogle Scholar
  73. Nowick, E. M., and Peterson, P. A. (1981). Transposition of the enhancer controlling element system in maize. Molecular Genetics and Genomics 183, 440–448.Google Scholar
  74. O'Reilly, C., Shepherd, N. S., Pereira, A., Schwarz-Sommer, Z., Bertram, I., Robertson, D. S., Peterson, P. A., and Saedler, H. (1985). Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1. The EMBO Journal 4, 877–877.PubMedGoogle Scholar
  75. Ozeki, Y., Davies, E., and Takeda, J. (1997). Somatic variation during long-term subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia-lyase (PAL) gene. Mol Gen Genet 254, 407–416.PubMedCrossRefGoogle Scholar
  76. Paz-Ares, J., Wienand, U., Peterson, P. A., and Saedler, H. (1986). Molecular cloning of the c locus of Zea mays: a locus regulating the anthocyanin pathway. The EMBO Journal 5, 829–829.PubMedGoogle Scholar
  77. Pereira, A., Cuypers, H., Gierl, A., Schwarz-Sommer, Z., and Saedler, H. (1986). Molecular analysis of the En/Spm transposable element system of Zea mays. Embo J 5, 835–841.PubMedGoogle Scholar
  78. Pereira, A., Schwarz-Sommer, Z., Gierl, A., Bertram, I., Peterson, P. A., and Saedler, H. (1985). Genetic and molecular analysis of the Enhancer (En) transposable element system of Zea mays. Embo J 4, 17–23.PubMedGoogle Scholar
  79. Peterson, P. A. (1953). A mutable pale green locus in maize. Genetics 38, 682–683.Google Scholar
  80. Peterson, P. A. (1956). An a1 mutable arising in pgm stocks. Maize Co-op News L 30, 82.Google Scholar
  81. Peterson, P. A. (1961). Mutable a1 of the En system in maize. Genetics 46, 759–771.PubMedGoogle Scholar
  82. Peterson, P. A. (1965). A Relationship between the Spm and En Control Systems in Maize. The American Naturalist 99, 391–398.CrossRefGoogle Scholar
  83. Peterson, P. A. (1977). The position hypothesis for controlling elements in maize, In DNA Insertion Elements, Plasmids and Episomes. (Cold Spring Harbor Laboratory Press), pp. 429–435.Google Scholar
  84. Peterson, P. A. (1978). Controlling elements: the induction of mutability at the A2 and C loci in maize, In Maize breeding and genetics, D. B. Walden, ed. (New York: Wiley and Sons), pp. 601–631.Google Scholar
  85. Peterson, P. A. (1986). Mobile elements in maize. Plant Breed Rev 4, 122–122.Google Scholar
  86. Peterson, P.A. (1987). Mobile Elements in Plants. CRC Critical Reviews in Plant Sciences 6105–208.CrossRefGoogle Scholar
  87. Peterson, P. A. (1991). The transposable element-En-four decades after Bikini. Genetica 84, 63–72.CrossRefGoogle Scholar
  88. Peterson, P. A. (1995). Genetic Analysis of the Functions of the Transposable Element En in Zea mays: Limited Transposase Elicits a Differential Response on Reporter Alleles. Genetics 141, 1135–1145.PubMedGoogle Scholar
  89. Peterson, P. A., and Salamini, F. (1986). A search for active mobile elements in the Iowa Stiff Stalk Synthetic maize population and some derivatives. Maydica 31, 163–172.Google Scholar
  90. Peterson, T. (1990). Intragenic transposition of Ac generates a new allele of the maize P gene. Genetics 126, 469–476.PubMedGoogle Scholar
  91. Preston, C. R., Sved, J. A., and Engels, W. R. (1996). Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics 144, 1623–1638.PubMedGoogle Scholar
  92. Ralston, E., English, J., and Dooner, H. K. (1989). Chromosome-breaking structure in maize involving a fractured Ac element. Proc Natl Acad Sci U S A 86, 9451–9455.PubMedCrossRefGoogle Scholar
  93. Rhoades, M. M. (1938). Effect of the Dt gene on the mutability of the a1 allele in maize. Genetics 23, 377–397.PubMedGoogle Scholar
  94. Rhodes, P. R., and Vodkin, L. O. (1988). Organization of the Tgm family of transposable elements in soybean. Genetics 120, 597–604.PubMedGoogle Scholar
  95. Rinehart, T. A., Dean, C., and Weil, C. F. (1997). Comparative analysis of non-random DNA repair following Ac transposon excision in maize and Arabidopsis. Plant J 12, 1419–1427.PubMedCrossRefGoogle Scholar
  96. Rubin, E., and Levy, A. A. (1997). Abortive gap repair: underlying mechanism for Ds element formation. Mol Cell Biol 17, 6294–6302.PubMedGoogle Scholar
  97. Rubin, E., Lithwick, G., and Levy, A. A. (2001). Structure and evolution of the hAT transposon superfamily. Genetics 158, 949–957.PubMedGoogle Scholar
  98. Saedler, H., Bonas, U., Gierl, A., Harrison, B. J., Klosgen, R. B., Krebbers, E., Nevers, P., and Peterson, P. A. (1984). The Plant Transposable Elements TarnI, Tarn2 and Spm-18. The Impact of Gene Transfer Techniques in Eucaryotic Cell Biology.Google Scholar
  99. SanMiguel P., Gaut B.S., Tikhonov A., Nakajima Y., Bennetzen J.L. (1998) The paleontology of intergene retrotransposons of maize. Nat Genet. 20, 43–45.PubMedCrossRefGoogle Scholar
  100. Schiefelbein, J. W., Raboy, V., Kim, H. Y., and Nelson, O. E. (1988). Molecular characterization of suppressor-mutator (Spm)-induced mutations at the bronze-1 locus in maize: the bz-m13 alleles. Basic Life Sci 47, 261–278.PubMedGoogle Scholar
  101. Schwarz-Sommer, Z., Gierl, A., Klösgen, R.B, Wienand, U., Peterson, P. A., and Saedler, H. (1984). The Spm (En) transposable element controls the excision of a 2-kb DNA insert at the wxm-8 allele of Zea mays. EMBO J 3, 1021–1028.PubMedGoogle Scholar
  102. Schwarz-Sommer, Z., Shepherd, N., Tacke, E., Gierl, A., Rohde, W., Leclercq, L., Mattes, M., Berndtgen, R., Peterson, P. A., and Saedler, H. (1987). Influence of transposable elements on the structure and function of the A1 gene of Zea mays. EMBO J 6, 287–294.PubMedGoogle Scholar
  103. Scott, L., LaFoe, D., and Weil, C. F. (1996). Adjacent sequences influence DNA repair accompanying transposon excision in maize. Genetics 142, 237–246.PubMedGoogle Scholar
  104. Snowden, K. C., and Napoli, C. A. (1998). Psl: a novel Spm-like transposable element from Petunia hybrida. Plant J 14, 43–54.PubMedCrossRefGoogle Scholar
  105. Song, R., and Messing, J. (2003). Gene expression of a gene family in maize based on noncol-linear haplotypes. Proc Natl Acad Sci U S A 100, 9055–9060.PubMedCrossRefGoogle Scholar
  106. Tacke, E., Schwarz-Sommer, Z., Peterson P., and Saedler, H. (1986). Molecular analysis of states of the A locus of Zea mays. Maydica 31, 83–91.Google Scholar
  107. Thatiparthi, V. R., Dinesh-Kumar, S. P., and Peterson, P. A. (1995). Permanent Fixation of a Transposable Element Insert in the A2 Gene of Maize (Zea mays L.). Journal of Heredity 86, 167–167.PubMedGoogle Scholar
  108. Tsay, Y. F., Frank, M. J., Page, T., Dean, C., and Crawford, N. M. (1993). Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science 260, 342–344.PubMedCrossRefGoogle Scholar
  109. Wang, L., Heinlein, M., and Kunze, R. (1996). Methylation pattern of Activator transposase binding sites in maize endosperm. Plant Cell 8, 747–758.PubMedCrossRefGoogle Scholar
  110. Warren, W. D., Atkinson, P. W., and O'Brochta, D. A. (1994). The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet Res 64, 87–97.PubMedCrossRefGoogle Scholar
  111. Weil, C. F., and Kunze, R. (2000). Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat Genet 26, 187–190.PubMedCrossRefGoogle Scholar
  112. Weil, C. F., and Wessler, S. R. (1993). Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell 5, 515–522.PubMedCrossRefGoogle Scholar
  113. Wessler, S. R., Baran, G., and Varagona, M. (1987). The maize transposable element Ds is spliced from RNA. Science 237, 916–918.PubMedCrossRefGoogle Scholar
  114. Wienand, U., Weydemann, U., Niesbach-Klgen, U., Peterson, P. A., and Saedler, H. (1986). Molecular cloning of the c2 locus of Zea mays, the gene coding for chalcone synthase. Molecular Genetics and Genomics 203, 202–207.Google Scholar
  115. Wirtz, U., Osborne, B., and Baker, B. (1997). Ds excision from extrachromosomal geminivirus vector DNA is coupled to vector DNA replication in maize. Plant J 11, 125–135.PubMedCrossRefGoogle Scholar
  116. Xiao, W., Brown, R. C., Lemmon, B. E., Harada, J. J., Goldberg, R. B., and Fischer, R. L. (2006). Regulation of Seed Size by Hypomethylation of Maternal and Paternal Genomes. Plant Physiol.Google Scholar
  117. Xu, Z., and Dooner, H. K. (2005). Mx-rMx, a family of interacting transposons in the growing hAT superfamily of maize. Plant Cell 17, 375–388.PubMedCrossRefGoogle Scholar
  118. Yan, X., Martinez-Ferez, I. M., Kavchok, S., and Dooner, H. K. (1999). Origination of Ds elements from Ac elements in maize: evidence for rare repair synthesis at the site of Ac excision. Genetics 152, 1733–1740.PubMedGoogle Scholar
  119. Zhang, J., and Peterson, T. (1999). Genome rearrangements by nonlinear transposons in maize. Genetics 153, 1403–1410.PubMedGoogle Scholar
  120. Zhang, J., and Peterson, T. (2004). Transposition of reversed Ac element ends generates chromosome rearrangements in maize. Genetics 167, 1929–1937.PubMedCrossRefGoogle Scholar
  121. Zhang, J., and Peterson, T. (2005). A segmental deletion series generated by sister-chromatid transposition of Ac transposable elements in maize. Genetics 171, 333–344.PubMedCrossRefGoogle Scholar
  122. Zhang, J., Zhang, F., and Peterson, T. (2006). Transposition of reversed Ac element ends generates novel chimeric genes in maize. PLoS Genet 2, e164.PubMedCrossRefGoogle Scholar
  123. Zhou, L., Mitra, R., Atkinson, P. W., Hickman, A. B., Dyda, F., and Craig, N. L. (2004). Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432, 995–1001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Jianbo Zhang
  • Thomas Peterson
  • Peter A. Peterson

There are no affiliations available

Personalised recommendations