Skip to main content

Maize Centromeres and Knobs (neocentromeres)

  • Chapter
Handbook of Maize

In most species, the only chromosomal domains that interact with the cytoskeleton are the centromeres. However in maize there are two motile domains: the centromeres and knobs/neocentromeres. Intensive research has been conducted on both domains. The intent of this review is to provide a broad overall perspective on centromere and knob structure, to compare and contrast their behavior, and to summarize current interpretations of their evolutionary past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adawy, S. S., R. M. Stupar and J. Jiang, 2004 Fluorescence in situ hybridization analysis reveals multiple loci of knob-associated DNA elements in one-knob and knobless maize lines. J Histochem Cytochem 52: 1113–1116.

    Article  PubMed  CAS  Google Scholar 

  • Ananiev, E. V., R. L. Phillips and H. W. Rines, 1998a A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: Are chromosome knobs megatransposons? Proc. Natl. Acad. Sci. USA 95: 10785–10790.

    Article  CAS  Google Scholar 

  • Ananiev, E. V., R. L. Phillips and H. W. Rines, 1998b Complex structure of knob DNA on maize chromosome 9: Retrotransposon invasion into heterochromatin. Genetics 149: 2025–2037.

    CAS  Google Scholar 

  • Ananiev, E. V., R. L. Phillips and H. W. Rines, 1998c Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc. Natl. Acad. Sci. USA 95: 13073–13078.

    Article  CAS  Google Scholar 

  • Aragon-Alcaide, L., T. Miller, T. Schwarzacher, S. Reader and G. Moore, 1996 A cereal centro-meric sequence. Chromosoma 105: 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Ardlie, K. G., 1998 Putting the brake on drive: meiotic drive of haplotypes in natural populations of mice. Trends Genet. 14: 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Buckler, E. S. I., T. L. Phelps-Durr, C. S. K. Buckler, R. K. Dawe, J. F. Doebley et al., 1999 Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153:415–426.

    PubMed  CAS  Google Scholar 

  • Burt, A., and R. Strivers, 2006 Genes in Conflict: The Biology of Selfish Genetic Elements.Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Charlesworth, B., P. Sneglowski and W. Stephan, 1994 The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, Z. J., and M. Murata, 2003 A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164: 665–672.

    PubMed  CAS  Google Scholar 

  • Dawe, R. K., and W. Z. Cande, 1996 Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc. Natl. Acad. Sci. USA 93: 8512–8517.

    Article  PubMed  CAS  Google Scholar 

  • Dawe, R. K., and S. Henikoff, 2006 Centromeres put epigenetics in the driver's seat. Trends Biochem Sci 31: 662–669.

    Article  PubMed  CAS  Google Scholar 

  • Dawe, R. K., and E. N. Hiatt, 2004 Plant neocentromeres: fast, focused, and driven. Chromosome Res 12: 655–669.

    Article  PubMed  CAS  Google Scholar 

  • Dawe, R. K., L. Reed, H.-G. Yu, M. G. Muszynski and E. N. Hiatt, 1999 A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11: 1227–1238.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff, S., K. Ahmad and H. S. Malik, 2001 The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff, S., K. Ahmad, J. S. Platero and B. V. Steensel, 2000 Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97: 716–721.

    Article  PubMed  CAS  Google Scholar 

  • Hiatt, E. N., and R. K. Dawe, 2003a The meiotic drive system on maize abnormal chromosome 10 contains few essential genes. Genetica 117: 67–76.

    Article  CAS  Google Scholar 

  • Hiatt, E. N., and R. K. Dawe, 2003b Four loci on Abnormal chromosome 10 contribute to meiotic drive in maize. Genetics 164: 699–709.

    CAS  Google Scholar 

  • Hiatt, E. N., E. K. Kentner and R. K. Dawe, 2002 Independently-regulated neocentromere activity of two classes of satellite sequences in maize. Plant Cell 14: 407–420.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J., J. A. Birchler, W. A. Parrott and R. K. Dawe, 2003 A molecular view of plant centromeres. Trends Plant Sci. 8: 570–575.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J., A. Nasuda, F. Dong, C. W. Scherrer, S.-S. Woo et al., 1996 A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc. Natl. Acad. Sci. USA 93:14210–14213.

    Article  PubMed  CAS  Google Scholar 

  • Jin, W., J. R. Melo, K. Nagaki, P. B. Talbert, S. Henikoff et al., 2004 Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581.

    Article  PubMed  CAS  Google Scholar 

  • Kato, Y. T. A., 1976 Cytological studies of maize (Zea mays L.) and teosinte (Zea mexicana Shrader Kuntze) in relation to their origin and evolution. Mass. Agric. Exp. Stn. Bull. 635:1–185.

    Google Scholar 

  • Kikudome, G. Y., 1959 Studies on the phenomenon of preferential segregation in maize. Genetics 44: 815–831.

    PubMed  CAS  Google Scholar 

  • Lee, H. R., W. Zhang, T. Langdon, W. Jin, H. Yan et al., 2005 Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci U S A 102: 11793–11798.

    Article  PubMed  CAS  Google Scholar 

  • Longley, A. E., 1938 Chromosomes of maize from North American Indians. J. Agric. Res. 56.

    Google Scholar 

  • Longley, A. E., 1945 Abnormal segregation during megasporogenesis in maize. Genetics 30:100–113.

    PubMed  CAS  Google Scholar 

  • Luce, A. C., A. Sharma, O. S. Mollere, T. K. Wolfgruber, K. Nagaki et al., 2006 Precise centromere mapping using a combination of repeat junction markers and chromatin immunoprecip-itation-polymerase chain reaction. Genetics 174: 1057–1061.

    Article  PubMed  CAS  Google Scholar 

  • Mroczek, R. J., and R. K. Dawe, 2003 Distribution of retroelements in centromeres and neocen-tromeres of maize. Genetics 165: 809–819.

    PubMed  CAS  Google Scholar 

  • Mroczek, R. J., J. R. Melo, A. C. Luce, E. N. Hiatt and R. K. Dawe, 2006 The maize Ab10 meiotic drive system maps to supernumerary sequences in a large complex haplotype. Genetics 174:145–154.

    Article  PubMed  CAS  Google Scholar 

  • Nagaki, K., Z. Cheng, S. Ouyang, P. B. Talbert, M. Kim et al., 2004 Sequencing of a rice centromere reveals active genes. Nature Genet. 36: 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Nagaki, K., J. Song, R. Stupar, A. S. Parokonny, Q. Yuan et al., 2003 Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163: 759–770.

    PubMed  CAS  Google Scholar 

  • Nasuda, S., S. Hudakova, I. Schubert, A. Houben and T. R. Endo, 2005 Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102: 9842–9847.

    Article  PubMed  CAS  Google Scholar 

  • Peacock, W. J., E. S. Dennis, M. M. Rhoades and A. J. Pryor, 1981 Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc. Natl. Acad. Sci. USA 78:4490–4494.

    Article  PubMed  CAS  Google Scholar 

  • Pennisi, E., 2001 Genetics. Closing in on the centromere. Science 294: 30–31.

    Article  PubMed  CAS  Google Scholar 

  • Phan, B. H., W. Jin, C. N. Topp, C. X. Zhong, J. Jiang et al., 2007 Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res 16: 341–351.

    Article  PubMed  CAS  Google Scholar 

  • Presting, G., L. Malysheva, J. Fuchs and I. Schubert, 1998 A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16: 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, M., and E. Dempsey, 1986 Evidence that the K10 knob is not responsible for preferential segregation and neocentromere activity. Maize Genet. Coop. Newslett. 60: 26–27.

    Google Scholar 

  • Rhoades, M. M., 1942 Preferential segregation in maize. Genetics 27: 395–407.

    PubMed  CAS  Google Scholar 

  • Rhoades, M. M., 1952 Preferential segregation in maize, pp. 66–80 in Heterosis, edited by J. W.Gowen. Iowa State College Press, Ames, Iowa.

    Google Scholar 

  • Rhoades, M. M., and E. Dempsey, 1985 Structural heterogeneity of chromosome 10 in races of maize and teosinte, pp. 1–18 in Plant Genetics, edited by M. Freeling. Alan R. Liss, New York.

    Google Scholar 

  • Rhoades, M. M., and E. Dempsey, 1988 Structure of K10-II chromosome and comparison with K10-I. Maize Genet. Coop. Newslett. 62: 33.

    Google Scholar 

  • Rhoades, M. M., and H. Vilkomerson, 1942 On the anaphase movement of chromosomes. Proc.Natl. Acad. Sci. USA 28: 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Sandler, L., and E. Novitski, 1957 Meiotic drive as an evolutionary force. Am Nat. 91: 105–110.

    Article  Google Scholar 

  • Smith, G. P., 1976 Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535.

    Article  PubMed  CAS  Google Scholar 

  • Talbert, P. B., T. D. Bryson and S. Henikoff, 2004 Adaptive evolution of centromere proteins in plants and animals. J Biol 3: 18.

    Article  PubMed  Google Scholar 

  • Warburton, P. E., 2004 Chromosomal dynamics of human neocentromere formation. Chromosome Res 12: 617–626.

    Article  PubMed  CAS  Google Scholar 

  • Yu, H.-G., 2000 The maize kinetochore: composition, structure and roles in meiotic chromosome segregation, pp. 180 in Department of Botany. University of Georgia, Athens.

    Google Scholar 

  • Yu, H.-G., E. N. Hiatt, A. Chan, M. Sweeney and R. K. Dawe, 1997 Neocentromere-mediated chromosome movement in maize. J. Cell Biol. 139: 831–840.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, C. X., J. B. Marshall, C. Topp, R. Mroczek, A. Kato et al., 2002 Centromeric retroele-ments and satellites interact with maize kinetochore protein CENH3. Plant Cell 14: 2825–2836.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Dawe, R.K. (2009). Maize Centromeres and Knobs (neocentromeres). In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_12

Download citation

Publish with us

Policies and ethics