Maize Centromeres and Knobs (neocentromeres)

  • R. Kelly Dawe

In most species, the only chromosomal domains that interact with the cytoskeleton are the centromeres. However in maize there are two motile domains: the centromeres and knobs/neocentromeres. Intensive research has been conducted on both domains. The intent of this review is to provide a broad overall perspective on centromere and knob structure, to compare and contrast their behavior, and to summarize current interpretations of their evolutionary past.


Kinetochore Protein Meiotic Drive Preferential Segregation Differential Segment Ab10 Haplotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adawy, S. S., R. M. Stupar and J. Jiang, 2004 Fluorescence in situ hybridization analysis reveals multiple loci of knob-associated DNA elements in one-knob and knobless maize lines. J Histochem Cytochem 52: 1113–1116.PubMedCrossRefGoogle Scholar
  2. Ananiev, E. V., R. L. Phillips and H. W. Rines, 1998a A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: Are chromosome knobs megatransposons? Proc. Natl. Acad. Sci. USA 95: 10785–10790.CrossRefGoogle Scholar
  3. Ananiev, E. V., R. L. Phillips and H. W. Rines, 1998b Complex structure of knob DNA on maize chromosome 9: Retrotransposon invasion into heterochromatin. Genetics 149: 2025–2037.Google Scholar
  4. Ananiev, E. V., R. L. Phillips and H. W. Rines, 1998c Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc. Natl. Acad. Sci. USA 95: 13073–13078.CrossRefGoogle Scholar
  5. Aragon-Alcaide, L., T. Miller, T. Schwarzacher, S. Reader and G. Moore, 1996 A cereal centro-meric sequence. Chromosoma 105: 261–268.PubMedCrossRefGoogle Scholar
  6. Ardlie, K. G., 1998 Putting the brake on drive: meiotic drive of haplotypes in natural populations of mice. Trends Genet. 14: 189–193.PubMedCrossRefGoogle Scholar
  7. Buckler, E. S. I., T. L. Phelps-Durr, C. S. K. Buckler, R. K. Dawe, J. F. Doebley et al., 1999 Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153:415–426.PubMedGoogle Scholar
  8. Burt, A., and R. Strivers, 2006 Genes in Conflict: The Biology of Selfish Genetic Elements.Harvard University Press, Cambridge, Massachusetts.Google Scholar
  9. Charlesworth, B., P. Sneglowski and W. Stephan, 1994 The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.PubMedCrossRefGoogle Scholar
  10. Cheng, Z. J., and M. Murata, 2003 A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164: 665–672.PubMedGoogle Scholar
  11. Dawe, R. K., and W. Z. Cande, 1996 Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc. Natl. Acad. Sci. USA 93: 8512–8517.PubMedCrossRefGoogle Scholar
  12. Dawe, R. K., and S. Henikoff, 2006 Centromeres put epigenetics in the driver's seat. Trends Biochem Sci 31: 662–669.PubMedCrossRefGoogle Scholar
  13. Dawe, R. K., and E. N. Hiatt, 2004 Plant neocentromeres: fast, focused, and driven. Chromosome Res 12: 655–669.PubMedCrossRefGoogle Scholar
  14. Dawe, R. K., L. Reed, H.-G. Yu, M. G. Muszynski and E. N. Hiatt, 1999 A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11: 1227–1238.PubMedCrossRefGoogle Scholar
  15. Henikoff, S., K. Ahmad and H. S. Malik, 2001 The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.PubMedCrossRefGoogle Scholar
  16. Henikoff, S., K. Ahmad, J. S. Platero and B. V. Steensel, 2000 Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97: 716–721.PubMedCrossRefGoogle Scholar
  17. Hiatt, E. N., and R. K. Dawe, 2003a The meiotic drive system on maize abnormal chromosome 10 contains few essential genes. Genetica 117: 67–76.CrossRefGoogle Scholar
  18. Hiatt, E. N., and R. K. Dawe, 2003b Four loci on Abnormal chromosome 10 contribute to meiotic drive in maize. Genetics 164: 699–709.Google Scholar
  19. Hiatt, E. N., E. K. Kentner and R. K. Dawe, 2002 Independently-regulated neocentromere activity of two classes of satellite sequences in maize. Plant Cell 14: 407–420.PubMedCrossRefGoogle Scholar
  20. Jiang, J., J. A. Birchler, W. A. Parrott and R. K. Dawe, 2003 A molecular view of plant centromeres. Trends Plant Sci. 8: 570–575.PubMedCrossRefGoogle Scholar
  21. Jiang, J., A. Nasuda, F. Dong, C. W. Scherrer, S.-S. Woo et al., 1996 A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc. Natl. Acad. Sci. USA 93:14210–14213.PubMedCrossRefGoogle Scholar
  22. Jin, W., J. R. Melo, K. Nagaki, P. B. Talbert, S. Henikoff et al., 2004 Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581.PubMedCrossRefGoogle Scholar
  23. Kato, Y. T. A., 1976 Cytological studies of maize (Zea mays L.) and teosinte (Zea mexicana Shrader Kuntze) in relation to their origin and evolution. Mass. Agric. Exp. Stn. Bull. 635:1–185.Google Scholar
  24. Kikudome, G. Y., 1959 Studies on the phenomenon of preferential segregation in maize. Genetics 44: 815–831.PubMedGoogle Scholar
  25. Lee, H. R., W. Zhang, T. Langdon, W. Jin, H. Yan et al., 2005 Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci U S A 102: 11793–11798.PubMedCrossRefGoogle Scholar
  26. Longley, A. E., 1938 Chromosomes of maize from North American Indians. J. Agric. Res. 56.Google Scholar
  27. Longley, A. E., 1945 Abnormal segregation during megasporogenesis in maize. Genetics 30:100–113.PubMedGoogle Scholar
  28. Luce, A. C., A. Sharma, O. S. Mollere, T. K. Wolfgruber, K. Nagaki et al., 2006 Precise centromere mapping using a combination of repeat junction markers and chromatin immunoprecip-itation-polymerase chain reaction. Genetics 174: 1057–1061.PubMedCrossRefGoogle Scholar
  29. Mroczek, R. J., and R. K. Dawe, 2003 Distribution of retroelements in centromeres and neocen-tromeres of maize. Genetics 165: 809–819.PubMedGoogle Scholar
  30. Mroczek, R. J., J. R. Melo, A. C. Luce, E. N. Hiatt and R. K. Dawe, 2006 The maize Ab10 meiotic drive system maps to supernumerary sequences in a large complex haplotype. Genetics 174:145–154.PubMedCrossRefGoogle Scholar
  31. Nagaki, K., Z. Cheng, S. Ouyang, P. B. Talbert, M. Kim et al., 2004 Sequencing of a rice centromere reveals active genes. Nature Genet. 36: 138–145.PubMedCrossRefGoogle Scholar
  32. Nagaki, K., J. Song, R. Stupar, A. S. Parokonny, Q. Yuan et al., 2003 Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163: 759–770.PubMedGoogle Scholar
  33. Nasuda, S., S. Hudakova, I. Schubert, A. Houben and T. R. Endo, 2005 Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A 102: 9842–9847.PubMedCrossRefGoogle Scholar
  34. Peacock, W. J., E. S. Dennis, M. M. Rhoades and A. J. Pryor, 1981 Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc. Natl. Acad. Sci. USA 78:4490–4494.PubMedCrossRefGoogle Scholar
  35. Pennisi, E., 2001 Genetics. Closing in on the centromere. Science 294: 30–31.PubMedCrossRefGoogle Scholar
  36. Phan, B. H., W. Jin, C. N. Topp, C. X. Zhong, J. Jiang et al., 2007 Transformation of rice with long DNA-segments consisting of random genomic DNA or centromere-specific DNA. Transgenic Res 16: 341–351.PubMedCrossRefGoogle Scholar
  37. Presting, G., L. Malysheva, J. Fuchs and I. Schubert, 1998 A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16: 721–728.PubMedCrossRefGoogle Scholar
  38. Rhoades, M., and E. Dempsey, 1986 Evidence that the K10 knob is not responsible for preferential segregation and neocentromere activity. Maize Genet. Coop. Newslett. 60: 26–27.Google Scholar
  39. Rhoades, M. M., 1942 Preferential segregation in maize. Genetics 27: 395–407.PubMedGoogle Scholar
  40. Rhoades, M. M., 1952 Preferential segregation in maize, pp. 66–80 in Heterosis, edited by J. W.Gowen. Iowa State College Press, Ames, Iowa.Google Scholar
  41. Rhoades, M. M., and E. Dempsey, 1985 Structural heterogeneity of chromosome 10 in races of maize and teosinte, pp. 1–18 in Plant Genetics, edited by M. Freeling. Alan R. Liss, New York.Google Scholar
  42. Rhoades, M. M., and E. Dempsey, 1988 Structure of K10-II chromosome and comparison with K10-I. Maize Genet. Coop. Newslett. 62: 33.Google Scholar
  43. Rhoades, M. M., and H. Vilkomerson, 1942 On the anaphase movement of chromosomes. Proc.Natl. Acad. Sci. USA 28: 433–443.PubMedCrossRefGoogle Scholar
  44. Sandler, L., and E. Novitski, 1957 Meiotic drive as an evolutionary force. Am Nat. 91: 105–110.CrossRefGoogle Scholar
  45. Smith, G. P., 1976 Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535.PubMedCrossRefGoogle Scholar
  46. Talbert, P. B., T. D. Bryson and S. Henikoff, 2004 Adaptive evolution of centromere proteins in plants and animals. J Biol 3: 18.PubMedCrossRefGoogle Scholar
  47. Warburton, P. E., 2004 Chromosomal dynamics of human neocentromere formation. Chromosome Res 12: 617–626.PubMedCrossRefGoogle Scholar
  48. Yu, H.-G., 2000 The maize kinetochore: composition, structure and roles in meiotic chromosome segregation, pp. 180 in Department of Botany. University of Georgia, Athens.Google Scholar
  49. Yu, H.-G., E. N. Hiatt, A. Chan, M. Sweeney and R. K. Dawe, 1997 Neocentromere-mediated chromosome movement in maize. J. Cell Biol. 139: 831–840.PubMedCrossRefGoogle Scholar
  50. Zhong, C. X., J. B. Marshall, C. Topp, R. Mroczek, A. Kato et al., 2002 Centromeric retroele-ments and satellites interact with maize kinetochore protein CENH3. Plant Cell 14: 2825–2836.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • R. Kelly Dawe
    • 1
  1. 1.Departments of Plant Biology and GeneticsUniversity of GeorgiaAthens

Personalised recommendations