Advertisement

Genetic Diversity, Linkage Disequilibrium and Association Mapping

  • Antoni Rafalski
  • Evgueni Ananiev

Maize, at all levels of resolution, is one of the most diverse crop species. Large insertions and deletions are common between maize inbreds, and include tandem repeat clusters, abundant retroelement and transposons. At the gene level, single nucleotide polymorphisms are common, especially in introns and untranslated regions of genes. Depending on choice of experimental population and region in the genome, linkage disequilibrium between polymorphic sites could decay very rapidly, or persist for hundreds of Kb. Appropriately chosen germplasm collections may be used for genetic association mapping (also called linkage disequilibrium mapping), either with candidate genes, or by scanning the whole genome with thousands of markers at high density. This approach, in favorite circumstances, could provide high resolution. The power of association mapping is variable, and has not been thoroughly investigated. Rapid advances in genome sequencing and high density genotyping are making this approach to relating genotype with phenotype increasingly attractive.

Keywords

Linkage Disequilibrium Association Mapping Maize Genome Oleic Acid Content Heterotic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfenito, M.R., and Birchler, J.A. (1993). Molecular characterization of a maize B chromosome centric sequence. Genetics 135, 589–597.PubMedGoogle Scholar
  2. Ananiev, E.V., Phillips, R.L., and Rines, H.W. (1998a). Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A. 95, 13073–13078.CrossRefGoogle Scholar
  3. Ananiev, E.V., Phillips, R.L., and Rines, H.W. (1998b). Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. Genetics 149, 2025–2037.Google Scholar
  4. Ananiev, E.V., Phillips, R.L., and Rines, H.W. (1998c). A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons?. Proc Natl Acad Sci U S A 95, 10785–10790.CrossRefGoogle Scholar
  5. Ananiev, E.V., Chamberlin, M.A., Klaiber, J., and Svitashev, S. (2005a). Microsatellite megatracts in the maize (Zea mays L.) genome. Genome 48, 1061–1069.CrossRefGoogle Scholar
  6. Ananiev, E.V., Chamberlin, M.A., Klaiber, J., and Svitashev, S. (2005b). Microsatellite megatracts in the maize (Zea mays L.) genome. Genome 48, 1061–1069.CrossRefGoogle Scholar
  7. Anderson, L.K., Salameh, N., Bass, H.W., Harper, L.C., Cande, W.Z., Weber, G., and Stack, S.M. (2004). Integrating genetic linkage maps with pachytene chromosome structure in maize. Genetics 166, 1923–1933.PubMedCrossRefGoogle Scholar
  8. Banks, J., Kingsbury, J., Raboy, V., Schiefelbein, J.W., Nelson, O., and Fedoroff, N. (1985). The Ac and Spm controlling element families in maize. Cold Spring Harb Symp Quant Biol. 50, 307–311.PubMedGoogle Scholar
  9. Beló, A., Zheng, P., Luck, S., Shen, B., Meyer, D.J., Li, B., Tingey, S., and Rafalski, A. (2007). Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279, 1–10.PubMedCrossRefGoogle Scholar
  10. Bennetzen, J.L. (2000). Transposable element contributions to plant gene and genome evolution. Plant Mol Biol. 42, 251–269.PubMedCrossRefGoogle Scholar
  11. Bruggmann, R., Bharti, A., Gundlach, H., Lai, J., Young, S., Pontaroli, A., Wei, F., Haberer, G., Fuks, G., Du, C., Raymond, C., Estep, M., Liu, R., Bennetzen, J., Chan, A., Rabinowicz, P., Quackenbush, J., Barbazuk, W., Wing, R., Birren, B., Nusbaum, C., Rounsley, S., Mayer, K., and Messing, J. (2006). Uneven chromosome contraction and expansion in the maize genome. Genome Res. 16, 1241–1251.PubMedCrossRefGoogle Scholar
  12. Brunner, S., Pea, G., and Rafalski, A. (2005a). Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize. The Plant Journal 43, 799–810.CrossRefGoogle Scholar
  13. Brunner, S., Fengler, K., Morgante, M., Tingey, S., and Rafalski, A. (2005b). Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17, 343–360.CrossRefGoogle Scholar
  14. Buckler, E.S., Gaut, B.S., and McMullen, M.D. (2006). Molecular and functional diversity of maize. Curr Opin Plant Biol. 9, 172–176.PubMedCrossRefGoogle Scholar
  15. Buckner, B., Kelson, T.L., and Robertson, D.S. (1990). Cloning of the y1 Locus of Maize, a Gene involved in the Biosynthesis of Carotenoids. The Plant Cell 2, 867–876.PubMedCrossRefGoogle Scholar
  16. Buckner, B., San Miguel, P., Janick-Buckner, D., and Bennetzen, J.L. (1998). The y1 Gene of Maize codes for Phytoene Synthase. Genetics 143, 479–488.Google Scholar
  17. Bureau, T.E., and Wessler, S.R. (1994). Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc. Natl. Acad. Sci. USA 91, 1411–1415.PubMedCrossRefGoogle Scholar
  18. Burr, B., Burr, F.A., Matz, E.C., and Romero-Severson, J. (1992). Pinning down loose ends: mapping telomeres and factors affecting their length. Plant Cell 4, 953–960.PubMedCrossRefGoogle Scholar
  19. Cardon, L.R., and Bell, J.I. (2001). Association Study Designs for Complex Diseases. Nature Reviews Genetics 2, 91–99.PubMedCrossRefGoogle Scholar
  20. Cardon, L.R., and Abecasis, G.R. (2003). Using haplotype blocks to map human complex trait loci. Trends Genet 19, 135–140.PubMedCrossRefGoogle Scholar
  21. Chen, C., Yan, H., Zhai, W., Zhu, L., and Sun, J. (2000). Identification and chromosomal location of a new tandemly repeated DNA in maize. Genome 43, 181–184.PubMedCrossRefGoogle Scholar
  22. Cheng, Y.M., and Lin, B.Y. (2003). Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics 164, 299–310.PubMedGoogle Scholar
  23. Ching, A., Caldwell, K.S., Jung, M., Dolan, M., Smith, O.S., Tingey, S., Morgante, M., and Rafalski, A.J. (2002). SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3, 19.PubMedCrossRefGoogle Scholar
  24. Clark, R.M., Wagler, T.N., Quijada, P., and Doebley, J. (2006). A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet. 38, 594–597.PubMedCrossRefGoogle Scholar
  25. Cooper, M., Smith, O.S., Graham, G., Arthur, L., Feng, L., and Podlich, D.W. (2004). Genomics, Genetics and Plant Breeding: A Private Sector Perspective. Crop Sci. 44, 1907–1913.CrossRefGoogle Scholar
  26. Curtis, D., Vine, A., and Knight, J. (2007). A pragmatic suggestion for dealing with results for candidate genes obtained from genome wide association studies BMC Genetics 8, 20.PubMedCrossRefGoogle Scholar
  27. Dennis, E.S., and Peacock, W.J. (1984). Knob heterochromatin homology in maize and its relatives. J. Mol. Evol. 20, 341–350.PubMedCrossRefGoogle Scholar
  28. Doebley, J., and Lukens, L. (1998). Transcriptional regulators and the evolution of plant form. Plant Cell 10, 1075–1082.PubMedCrossRefGoogle Scholar
  29. Doebley, J., Goodman, M.M., and Stuber, C.W. (1984). Isoenzymatic variation in Zea (Gramineae). Systematic Botany 9, 203–218.CrossRefGoogle Scholar
  30. Dooner, H.K., and Martinez-Ferez, I.M. (1997). Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell 9, 1633–1646.PubMedCrossRefGoogle Scholar
  31. Fedoroff, N. (2000). Transposons and genome evolution in plants. Proc Natl Acad Sci U S A 97, 7002–7007.PubMedCrossRefGoogle Scholar
  32. Fengler, K., Allen, S.M., Li, B., and Rafalski, A. (2007). Distribution of genes, recombination, and repetitive elements in the maize genome. The Plant Genome [A Supplement to Crop Science], 83–95.Google Scholar
  33. Flint-Garcia, S.A., Thornsberry, J.M., and Buckler IV, E.S. (2003). Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374.PubMedCrossRefGoogle Scholar
  34. Frary, A., Fulton, T.M., Zamir, D., and Tanksley, S.D. (2004). Advanced backcross QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet. 108, 485–496.PubMedCrossRefGoogle Scholar
  35. Fu, H., and Dooner, H.K. (2002). Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A 99, 9573–9578.PubMedGoogle Scholar
  36. Gardiner, J.M., Coe, E.H., and Chao, S. (1996). Cloning maize telomeres by complementation in Saccharomyces cerevisiae. Genome 39, 736–748.PubMedCrossRefGoogle Scholar
  37. Gaut, B.S., and Clegg, M.T. (1993). Molecular evolution of the Adh1 locus in the genus Zea. Proc. Natl. Acad. Sci. USA 90, 5095–5099.PubMedCrossRefGoogle Scholar
  38. Gaut, B.S., and Long, A.D. (2003). The Lowdown on Linkage Disequilibrium. The Plant Cell 15, 1502–1506.PubMedCrossRefGoogle Scholar
  39. Grotewold, E., Drummond, B.J., Bowen, B., and Peterson, T. (1994). The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell 76, 543–553.PubMedCrossRefGoogle Scholar
  40. Gupta, S., Gallavotti, A., Stryker, G.A., Schmidt, R.J., and Lal, S.K. (2005). A novel class of Helitron- related transposable elements in maize contain portions of multiple pseudogenes. Plant Mol Biol 57, 115–127.PubMedCrossRefGoogle Scholar
  41. Hanson, M.A., Gaut, B.S., Stec, A.O., Fuerstenberg, S.I., Goodman, M.M., Coe, E.H., and Doebley, J.F. (1996). Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics 143, 1395–1407.PubMedGoogle Scholar
  42. Hartl, D. (2000). A Primer of Population Genetics. (Sunderland, MA, USA.: Sinauer Associates).Google Scholar
  43. Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J.M., Skovmand, B., Taba, S., and Warburton, M. (1999). Plant genetic resources: what can they contribute toward increased crop productivity? Proc. Natl. Acad. Sci. U.S.A. 96, 5937–5943.PubMedCrossRefGoogle Scholar
  44. Hudson, R.R., and Kaplan, N.L. (1995). Deleterious background selection with recombination. Genetics 141, 1605–1617.PubMedGoogle Scholar
  45. Jiang, N., Bao, Z., Zhang, X., Eddy, S.R., and Wessler, S.R. (2004). Pack-MULE transposable elements mediate gene evolution in plants. Nature 431, 569–573.PubMedCrossRefGoogle Scholar
  46. Jung, M., Ching, A., Bhattramakki, D., Dolan, M., Tingey, S., Morgante, M., and Rafalski, A. (2004). Linkage disequilibrium and sequence diversity in a 500-kbp region around the adh1 locus in elite maize germplasm. Theor Appl Genet 109, 681–689.PubMedCrossRefGoogle Scholar
  47. Kapitonov, V.V., and Jurka, J. (2001). Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A 98, 8714–8719.PubMedCrossRefGoogle Scholar
  48. Kato, A., Lamb, J.C., and Birchler, J.A. (2004). Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A. 101, 13554–13559.PubMedCrossRefGoogle Scholar
  49. Kumar, A., and Bennetzen, J.L. (2000). Retrotransposons: central players in the structure, evolution and function of plant genomes. Trends Plant Sci 5, 509–510.PubMedCrossRefGoogle Scholar
  50. Lai, J., Li, Y., Messing, J., and Dooner, H.K. (2005). Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci U S A 102, 9068–9073.PubMedCrossRefGoogle Scholar
  51. Lal, S.K., Giroux, M.J., Brendel, V., Vallejos, C.E., and Hannah, L.C. (2003). The maize genome contains a helitron insertion. Plant Cell 15, 381–391.PubMedCrossRefGoogle Scholar
  52. Li, L., and Arumuganathan, K. (2001). Physical mapping of 45S and 5S rDNA on maize metaphase and sorted chromosomes by FISH. Hereditas 134, 141–145.PubMedCrossRefGoogle Scholar
  53. Lijavetzky, D., Cabezas, J.A., Ibanez, A., Rodriguez, V., and Martinez-Zapater, J.M. (2007). High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8, 424.PubMedCrossRefGoogle Scholar
  54. Lippman, Z., and Tanksley, S.D. (2001). Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics. 158, 413–422.PubMedGoogle Scholar
  55. Liu, K., Goodman, M., Muse, S., Smith, J.S., Buckler, E., and Doebley, J. (2003). Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165, 2117–2128.PubMedGoogle Scholar
  56. Liu, R., Vitte, C., Ma, J., Mahama, A.A., Dhliwayo, T., Lee, M., and Bennetzen, J.L. (2007). A GeneTrek analysis of the maize genome. Proc Natl Acad Sci U S A 104, 11844–11849.CrossRefGoogle Scholar
  57. Longley, A.E. (1939). Knob positions on corn chromosomes. J. Agric. Res. 59, 475–490Google Scholar
  58. Mackay, I., and Powell, W. (2007). Methods for linkage disequilibrium mapping in crops. Trends Plant Sci. 12, 57–63.PubMedCrossRefGoogle Scholar
  59. Mascia, P.N., Rubenstein, I., Phillips, R.L., Wang, A.S., and Xiang, L.Z. (1981). Localization of the 5S rRNA genes and evidence for diversity in the 5S rDNA region of maize. Gene 15, 7–20.PubMedCrossRefGoogle Scholar
  60. McClintock, B. (1931). The Order of the Genes C, Sh, and Wx in Zea Mays with Reference to a Cytologically Known Point in the Chromosome. Proc Natl Acad Sci U S A 17, 485–491.PubMedCrossRefGoogle Scholar
  61. McClintock, B. (1978). Significance of chromosome constitutions in tracing the origin and migration of races of maize in the Americas. In: Maize Breeding and Genetics. Walden, D.B., ed., 159–184. In in: Maize Breeding and Genetics, D.B. Walden, ed (New York: Wiley), pp. 159–184.Google Scholar
  62. Meyers, B.C., Tingey, S.V., and Morgante, M. (2001). Abundance, distribution and transcriptional activity of repetitive elements in the maize genome. Genome Res. 11, 1660–1676.PubMedCrossRefGoogle Scholar
  63. Mikkilineni, V., and Rocheford, T. (2003). Sequence variation and genomic organization of fatty acid desaturase-2 (fad2 and fatty acid desaturase-6 (fad6) cDNAs in maize. Theor Appl Genet 106, 1326–1332.PubMedGoogle Scholar
  64. Morgante, M., Brunner, S., Pea, G., Fengler, K., Zuccolo, A., and Rafalski, A. (2005). Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37, 997–1002.PubMedCrossRefGoogle Scholar
  65. Mroczek, R.J., and Dawe, R.K. (2003). Distribution of retroelements in centromeres and neocentromeres of maize. Genetics 165, 809–819.PubMedGoogle Scholar
  66. Nagaki, K., Song, J., Stupar, R.M., Parokonny, A.S., Yuan, Q., Ouyang, S., Liu, J., Hsiao, J., Jones, K.M., Dawe, R.K., Buell, C.R., and Jiang, J. (2003). Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163, 759–770.PubMedGoogle Scholar
  67. Nobuta, K., Venu, R.C., Lu, C., Belo, A., Vemaraju, K., Kulkarni, K., Wang, W., Pillay, M., Green, P.J., Wang, G.L., and Meyers, B.C. (2007). An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol. 25, 473–477.PubMedCrossRefGoogle Scholar
  68. Page, B.T., Wanous, M.K., and Birchler, J.A. (2001). Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere. Genetics 159, 291–302.PubMedGoogle Scholar
  69. Palaisa, K., Morgante, M., Williams, M., and Rafalski, A. (2003). Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. The Plant Cell 15, 1795–1806.PubMedCrossRefGoogle Scholar
  70. Palaisa, K., Morgante, M., Tingey, S., and Rafalski, A. (2004). Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an assymetric selective sweep. Proc Natl Acad Sci U S A 101, 9885–9890.PubMedCrossRefGoogle Scholar
  71. Pritchard, J.K. (2001). Denconstructing maize population structure. Nature Genetics 28, 203–204.PubMedCrossRefGoogle Scholar
  72. Pritchard, J.K., and Rosenberg, N.A. (1999). Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65, 220–228.PubMedCrossRefGoogle Scholar
  73. Rafalski, A. (2002). Applications of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology 5, 94–100.PubMedCrossRefGoogle Scholar
  74. Rafalski, A. (2007). Tagging the rice transcriptome. Nat Biotechnol. 25, 430–431.PubMedCrossRefGoogle Scholar
  75. Remington, D.L., Thornsberry, J.M., Matsuoka, Y., Wilson, L.M., Whitt, S.R., Doebley, J., Kresovich, S., Goodman, M.M., and Buckler, E.S.t. (2001). Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A 98, 11479–11484.PubMedCrossRefGoogle Scholar
  76. Rose, L.E., Bittner-Eddy, P.D., Langley, C.H., Holub, E.B., Michelmore, R.W., and Beynon, J.L. (2004). The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166, 1517–1527.PubMedCrossRefGoogle Scholar
  77. SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y., and Bennetzen, J.L. (1998). The paleontology of intergene retrotransposons of maize. Nat.Genet. 20, 43–45.PubMedCrossRefGoogle Scholar
  78. SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z., and Bennetzen, J.L. (1996). Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768.PubMedCrossRefGoogle Scholar
  79. Song, R., and Messing, J. (2003). Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A 100, 9055–9060.PubMedCrossRefGoogle Scholar
  80. Stam, M., Belele, C., Ramakrishna, W., Dorweiler, J.E., Bennetzen, J.L., and Chandler, V.L. (2002). The regulatory regions required for B'paramutation and expression are located far upstream of the maize b1 transcribed sequences. Genetics 162, 917–930.PubMedGoogle Scholar
  81. Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460.PubMedGoogle Scholar
  82. Tanksley, S.D., and McCouch, S.R. (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066.PubMedCrossRefGoogle Scholar
  83. Tenaillon, M.I., Sawkins, M.C., Long, A.D., Gaut, R.L., Doebley, J.F., and Gaut, B.S. (2001). Patterns of DNA sequence polym orphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc. Natl. Acad. Sci. USA 98, 9161–9166.PubMedCrossRefGoogle Scholar
  84. Thornsberry, J.M., Goodman, M.M., Doebley, J., Kresovich, S., Nielsen, D., and Buckler, E.S.I. (2001). Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics 28, 286–289.PubMedCrossRefGoogle Scholar
  85. Tiffin, P., Hacker, R., and Gaut, B.S. (2004). Population genetic evidence for rapid changes in intraspecific diversity and allelic cycling of a specialist defense gene in Zea. Genetics 168, 425–434.PubMedCrossRefGoogle Scholar
  86. Tochtrop, C., and Buckner, B. (2000). Sequence analysis of a recessive allele of the y1 gene of maize. In Maize Genetics Conference Abstracts, pp. P96.Google Scholar
  87. Vigouroux, Y., Jaqueth, J.S., Matsuoka, Y., Smith, O.S., Beavis, W.D., Smith, J.S., and Doebley, J. (2002). Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol. 19, 1251–1260.PubMedGoogle Scholar
  88. Vigouroux, Y., Mitchell, S., Matsuoka, Y., Hamblin, M., Kresovich, S., Smith, J.S., Jaqueth, J., Smith, O.S., and Doebley, J. (2005). An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169, 1617–1630.PubMedCrossRefGoogle Scholar
  89. Wang, Q., and Dooner, H.K. (2006). Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus Proc Natl Acad Sci U S A 103, 17644–17649.PubMedCrossRefGoogle Scholar
  90. Wang, R.L., Stec, A., Hey, J., Lukens, L., and Doebley, J. (1999). The limits of selection during maize domestication. Nature 398, 236–239.PubMedCrossRefGoogle Scholar
  91. Wessler, S.R. (2006). Transposable elements and the evolution of eukaryotic genomes Proc Natl Acad Sci U S A 103, 17600–17601.PubMedCrossRefGoogle Scholar
  92. Whitt, S.R., Wilson, L.M., Tenaillon, M.I., Gaut, B.S., and Buckler, E.S.t. (2002). Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci U S A 99, 12959–12962.PubMedCrossRefGoogle Scholar
  93. Wright, S.I., Bi, I.V., Schroeder, S.G., Yamasaki, M., Doebley, J.F., McMullen, M.D., and Gaut, B.S. (2005). The Effects of Artificial Selection on the Maize Genome. Science 308, 1310–1314.PubMedCrossRefGoogle Scholar
  94. Xiao, J., Li, J., Grandillo, S., Ahn S, N., Yuan, L., Tanksley, S.D., and McCouch, S.R. (1998). Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150, 899–909.PubMedGoogle Scholar
  95. Xu, J.H., and Messing, J. (2006). Maize haplotype with a helitron-amplified cytidine deaminase gene copy. BMC Genet 7, 52.PubMedCrossRefGoogle Scholar
  96. Yamasaki, M., Tenaillon, M.I., Bi, I.V., Schroeder, S.G., Sanchez-Villeda, H., Doebley, J.F., Gaut, B.S., and McMullen, M.D. (2005). A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17, 2859–2872.PubMedCrossRefGoogle Scholar
  97. Yu, J., Pressoir, G., Briggs, W.H., Vroh, B.I., Yamasaki, M., Doebley, J.F., McMullen, M.D., Gaut, B.S., Nielsen, D.M., Holland, J.B., Kresovich, S., and Buckler, E.S. (2006). A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 38, 203–208.PubMedCrossRefGoogle Scholar
  98. Zhang, Q., Arbuckle, J., and Wessler, S.R. (2000). Recent, extensive, and preferential insertion of memebers of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. PNAS 97, 1160–1165.PubMedCrossRefGoogle Scholar
  99. Zhu, Y.L., Song, Q.J., Hyten, D.L., Van Tassell, C.P., Matukumalli, L.K., Grimm, D.R., Hyatt, S.M., Fickus, E.W., Young, N.D., and Cregan, P.B. (2003). Single-nucleotide polymorphisms in soybean. Genetics 163, 1123–1134.PubMedGoogle Scholar
  100. Zimmer, E.A., Jupe, E.R., and Walbot, V. (1988). Ribosomal gene structure, variation and inheritance in maize and its ancestors. Genetics 120, 1125–1136.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.DuPont Crop Genetics ResearchWilmington

Personalised recommendations