Recent Developments in Dynamic Vehicle Routing Systems

Part of the Operations Research/Computer Science Interfaces book series (ORCS, volume 43)


This chapter examines the evolution of research on dynamic vehicle routing problems (DVRP). We de?ne the DVRP and show how it is di?erent from the traditional static vehicle routing problem. We then illustrate the technological environment required. Next, we discuss important characteristics of the problem, including the degree of dynamism, elements relevant for the system objective, and evaluation methods for the performance of algorithms.The chapter then summarizes research prior to 2000 and focuses on developments from 2000 to present. Finally, we o?er our conclusions and suggest directions for future research.

Key words

Networks transportation dynamic vehicle routing problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Angelelli, R. Mansini, and M.G. Speranza. A real-time vehicle routing model for a courier service problem. In B. Fleischmann and A. Klose, editors,Distribution Logistics-Advanced solutions to practical problems, pages 87–104. Springer–Verlag, 2005.Google Scholar
  2. 2.
    E. Angelelli, M.W.P. Savelsbergh, and M.G Speranza. Competitive analysis for dynamic multi-period uncapacitated routing problems. Technical report, School of Industrial and Systems Engineering, Georgia Institute of Technology, 2005. Networks. (Forthcoming).Google Scholar
  3. 3.
    E. Angelelli, M.W.P. Savelsbergh, and M.G Speranza. Competitive analysis of a dispatch policy for a dynamic multi-period routing problem. Technical report, Department of Quantitative Methods, University of Brescia, 2006.Google Scholar
  4. 4.
    A. Attanasio, J.-F. Cordeau, G. Ghiani, and G. Laporte. Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem.Parallel Computing, 30(3):377–387, 2004.CrossRefGoogle Scholar
  5. 5.
    G. Ausiello, E. Feurstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms for the on-line travelling salesman.Algorithmica, 29:560–581, 2001.CrossRefGoogle Scholar
  6. 6.
    J. Bartholdi III, L. Platzman, Collins L., and W. Warden III. A minimal technology routing system for meals on wheels.Interfaces, 13:1–8, 1983.Google Scholar
  7. 7.
    R. Bent and P. Van Hentenryck. Scenario-based planning for partially dynamic vehicle routing with stochastic customers.Operations Research, 52(6):977–987, 2004.CrossRefGoogle Scholar
  8. 8.
    R. Bent and P. Van Hentenryck. Waiting and relocation strategies in online stochastic vehicle routing. InProceedings of the 20th International Joint Conference on Artificial Intelligence, pages 1816–1821, Hyderabad, India, 2007.Google Scholar
  9. 9.
    D. Bertsimas and L. Howell. Further results on the probabilistic traveling salesman problem.European Journal of Operational Research, 65:68–95, 1993.CrossRefGoogle Scholar
  10. 10.
    D. Bertsimas, P. Jaillet, and A. Odoni. A priori optimization.Operations Research, 38(6):1019–1033, 1990.CrossRefGoogle Scholar
  11. 11.
    D. Bertsimas and D. Simchi-Levi. A new generation of vehicle routing research: Robust algorithms, addressing uncertainty.Operations Research, 44:286–304, 1996.Google Scholar
  12. 12.
    D. Bertsimas and G. Van Ryzin. A stochastic and dynamic vehicle routing problem in the euclidean plane.Operations Research, 39:601–615, 1991.Google Scholar
  13. 13.
    D. Bertsimas and G. Van Ryzin. Stochastic and dynamic vehicle routing problem in the euclidean plane with multiple capacitated vehicles.Operations Research, 41:60–70, 1993.Google Scholar
  14. 14.
    D. Bertsimas and G. Van Ryzin. Stochastic and dynamic vehicle routing with general demand and inter travel time distributions.Appl. Probl., 25:947–978, 1993.CrossRefGoogle Scholar
  15. 15.
    J. Branke, M. Middendorf, G. Noeth, and M. Dessouky. Waiting strategies for dynamic vehicle routing.Transportation Science, 39(3):298–312, 2005.CrossRefGoogle Scholar
  16. 16.
    L. Brotcorne, G. Laporte, and F. Semet. Ambulance location and relocation models.European Journal of Operational Research, 147:451–463, 2003.CrossRefGoogle Scholar
  17. 17.
    Z.-L. Chen and H. Xu. Dynamic column generation for dynamic vehicle routing with time windows.Transportation Science, 40(1):74–88, 2006.CrossRefGoogle Scholar
  18. 18.
    J. Collins.Global Positioning System. Springer Verlag, Wien, New York, 1992.Google Scholar
  19. 19.
    L. Coslovich, R. Pesenti, and W. Ukovich. A two-phase insertion technique of unexpected customers for a dynamic dial-a-ride problem.European Journal of Operational Research, 175:1605–1615, 2006.CrossRefGoogle Scholar
  20. 20.
    R. Dial. Autonomous dial a ride transit - introductory overview.Transportation Research C, 3:261–275, 1995.CrossRefGoogle Scholar
  21. 21.
    B. Fleischmann, S. Gnutzmann, and E. Sandvoss. Dynamic vehicle routing based on online traffic information.Transportation Science, 38(4):420–433, 2004.CrossRefGoogle Scholar
  22. 22.
    M. Gendreau, F. Guertin, J.-Y. Potvin, and R. Seguin. Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries.TRC, 14:157–174, 2006.Google Scholar
  23. 23.
    M. Gendreau, F. Guertin, J.-Y. Potvin, and E. Taillard. Parallel tabu search for real-time vehicle routing and dispatching.TS, 33:381–390, 1999.Google Scholar
  24. 24.
    M. Gendreau, G. Laporte, and R. Seguin. Stochastic vehicle routing.European Journal of Operational Research, 88:3–12, 1996.CrossRefGoogle Scholar
  25. 25.
    M. Gendreau, G. Laporte, and F. Semet. A dynamic model and parallel tabu search heuristic for real-time ambulance relocation.Parallel Computing, 27:1641–1653, 2001.CrossRefGoogle Scholar
  26. 26.
    M. Gendreau, G. Laporte, and F. Semet. The maximal expected coverage relocation problem for emergency vehicles.Journal of Operational Research Society, 57(1):22–28, 2006.CrossRefGoogle Scholar
  27. 27.
    G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno. Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies.European Journal of Operational Research, 151(1):1–11, 2004.CrossRefGoogle Scholar
  28. 28.
    A. Haghania and S. Jung. A dynamic vehicle routing problem with time-dependent travel times.Computers & Operations Research, 32:2959–2986, 2005.CrossRefGoogle Scholar
  29. 29.
    D. Huisman, R. Freling, and A. P. M. Wagelmans. A robust solution approach to the dynamic vehicle scheduling problem.Transportation Science, 38(4):447–458, 2004.CrossRefGoogle Scholar
  30. 30.
    L. Hvattum, A. Lokketangen, and G. Laporte. Solving a dynamic and stochastic vehicle routing problem with a sample scenario hedging heuristic.Transportation Science, 40(4):421–438, 2006.CrossRefGoogle Scholar
  31. 31.
    S. Ichoua, M. Gendreau, and J.-Y. Potvin. Diversion issues in real-time vehicle dispatching.Transportation Science, 34(4):426–438, 2000.CrossRefGoogle Scholar
  32. 32.
    S. Ichoua, M. Gendreau, and J.-Y. Potvin. Exploiting knowledge about future demands for real-time vehicle dispatching.Transportation Science, 40(2):211–225, 2006.CrossRefGoogle Scholar
  33. 33.
    P. Jaillet.Probabilistic Traveling Salesman Problems. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1985.Google Scholar
  34. 34.
    P. Jaillet and M. R. Wagner. Online routing problems: Value of advanced information as improved competitive ratios.Transportation Science, 40(2):2–21, 2006.CrossRefGoogle Scholar
  35. 35.
    A. Jezequel.Probabilistic Vehicle Routing Problems. Masters Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1985.Google Scholar
  36. 36.
    A. Larsen, O. Madsen, and M. Solomon. Partially dynamic vehicle routing - models and algorithms.Journal of Operational Research Society, 53:637–646, 2002.CrossRefGoogle Scholar
  37. 37.
    A. Larsen, O. Madsen, and M. Solomon. The a-priori dynamic traveling salesman problem with time windows.Transportation Science, 38(4):459–472, 2004.CrossRefGoogle Scholar
  38. 38.
    A. Larsen, O.B.G. Madsen, and M.M. Solomon. Classification of dynamic vehicle routing systems. In V. Zeimpekis, G. M. Giaglis, C.D. Tarantilis, and I. Minis, editors,Dynamic Fleet Management: Concepts, Systems, Algorithms & Case Studies. Springer–Verlag, 2007.Google Scholar
  39. 39.
    K. Lund, O. B.G. Madsen, and J. M. Rygaard. Vehicle routing problems with varying degrees of dynamism. Technical report, IMM, The Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, 1996.Google Scholar
  40. 40.
    S. Mitrovic-Minic, R. Krishnamurti, and G. Laporte. Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows.Transportation Research B, 38:669–685, 2004.CrossRefGoogle Scholar
  41. 41.
    S. Mitrovic-Minic and G. Laporte. Waiting strategies for the dynamic pickup and delivery problem with time windows.Transportation Research B, 38:635–655, 2004.CrossRefGoogle Scholar
  42. 42.
    R. Montemanni, L.M. Gambardella, A.E. Rizzoli, and A.V. Donati. Ant colony system for a dynamic vehicle routing problem.Journal of Combinatorial Optimization, 10(4):327–343, 2005.CrossRefGoogle Scholar
  43. 43.
    W. de Paepe.Complexity Results and Competitive Aanlysis for Vehicle Ruoting Problems. PhD thesis, Technical University of Eindhoven, The Netherlands, 2002.Google Scholar
  44. 44.
    J.D. Papastavrou. A stochastic and dynamic routing policy using branching processes with state dependent immigration.European Journal of Operational Research, 95:167–177, 1996.CrossRefGoogle Scholar
  45. 45.
    J.- Y. Potvin, Y. Xu, and I. Benyahia. Vehicle routing and scheduling with dynamic travel times.Computers & Operations Research, 33:1129–1137, 2006.CrossRefGoogle Scholar
  46. 46.
    W.B. Powell, P. Jaillet, and Odoni A. Stochastic and dynamic networks and routing. In M.O. Ball et al., editor,Network Routing, Handbooks in OR & MS, pages 141–295. Elsevier Science, Amsterdam, 1995.Google Scholar
  47. 47.
    H. Psaraftis. A dynamic programming solution to the single many-to-many immediate request dial-a-ride problem.Transportation Science, 14:130–154, 1980.Google Scholar
  48. 48.
    H.N. Psaraftis. Dynamic vehicle routing problems. In B.L. Golden and A.A. Assad, editors,Vehicle routing: Methods and studies, pages 223–248. North-Holland, Amsterdam, 1988.Google Scholar
  49. 49.
    H.N. Psaraftis. Dynamic vehicle routing: Status and prospects.Annals of Operations Research, 61:143–164, 1995.CrossRefGoogle Scholar
  50. 50.
    D. Sleator and R.E. Tarjan. Amortized effiency of list update and paging rules.Communications of the ACM, 28(2):202–208, 1985.CrossRefGoogle Scholar
  51. 51.
    M. Z. Spivey and W. B. Powell. The dynamic assignment problem.Transportation Science, 38(4):399–419, 2004.CrossRefGoogle Scholar
  52. 52.
    M. Swihart and J.D. Papastavrou. A stochastic and dynamic model for the single-vehicle pick-up and delivery problem.European Journal of Operational Research, 114:447–464, 1999.CrossRefGoogle Scholar
  53. 53.
    E. Taniguchi and H. Shimamoto. Intelligent transportation system based dynamic vehicle routing and scheduling with variable travel times.Transportation Research C, 12:235–250, 2004.CrossRefGoogle Scholar
  54. 54.
    B. W. Thomas and C. C. White III. Anticipatory route selection.Transportation Science, 38(4):473–487, 2004.CrossRefGoogle Scholar
  55. 55.
    J.I. van Hemert and J.A. La Poutre. Dynamic routing problems with fruitful regions: Models and evolutionary computation. In X. Yao, E. Burke, J.A. Lozano, J. Smith, J.J. Merelo-Guervs, J.A. Bullinaria, J. Rowe, P. Tino, A. Kabn, and H.-P. Schwefel, editors,Parallel Problem Solving from Nature VIII, Lecture Notes in Computer Science 3242, pages 690–699. Springer, Berlin, 2004.Google Scholar
  56. 56.
    J. Yang, P. Jaillet, and H. Mahmassani. Real-time multivehicle truckload pickup and delivery problems.Transportation Science, 38(2):135–148, 2004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Centre for Traffic and TransportThe Technical University of DenmarkDK-2800 Kongens LyngbyDenmark
  2. 2.College of Business Administration Department of Information, Operations and AnalysisNortheastern UniversityBoston

Personalised recommendations