Advertisement

Parallel Solution Methods for Vehicle Routing Problems

Chapter
Part of the Operations Research/Computer Science Interfaces book series (ORCS, volume 43)

Summary

Parallel solution methods contribute to efficiently address large and complex combinatorial optimization problems, vehicle routing problems in particular. Parallel exact and heuristic methods for VRP variants are increasingly being proposed, and the pace seems to increase in recent years. “New” strategies have been proposed and many of the best known solutions to classical formulations have thus been obtained. This chapter describes and discusses the main strategies used to parallelize exact and metaheuristic solution methods for vehicle routing problems. It also provides an up-to-date survey of contributions to this rapidly evolving field and points to a number of promising research directions.

Key words

Parallel computation parallelization strategies branch-and-bound metaheuristics vehicle routing problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alba, E., editor.Parallel Metaheuristics. A New Class of Algorithms. John Wiley & Sons, Hoboken, NJ, 2005.Google Scholar
  2. 2.
    Alba, E. and Dorronsoro, B.Solving the Vehicle Routing Problem by Using Cellular Genetic Algorithms. In Gottlieb, J. and Günther, R.R., editors,Evolutionary Computation in Combinatorial Optimization, 4th European Conference, EvoCOP 2004, Coimbra, Portugal, April 5-7, 2004, volume 3004 ofLecture Notes in Computer Science, pages 11–20. Springer-Verlag, Heidelberg, 2004.Google Scholar
  3. 3.
    Attanasio, A., Cordeau, J.F., Ghiani, G., and Laporte, G. Parallel Tabu Search Heuristics for the Dynamic Multi-Vehicle Dial-a-ride Problem.Parallel Computing, 30:377–387, 2004.CrossRefGoogle Scholar
  4. 4.
    Azencott, R.Simulated Annealing Parallelization Techniques. John Wiley & Sons, New York, NY, 1992.Google Scholar
  5. 5.
    Badeau, P., Gendreau, M., Guertin, F., Potvin, J.-Y., and Taillard, É.D. A Parallel Tabu Search Heuristic for the Vehicle Routing Problem with Time Windows.Transportation Research C: Emerging Technologies, 5(2):109–122, 1997.CrossRefGoogle Scholar
  6. 6.
    Barr, R.S. and Hickman, B.L. Reporting Computational Experiments with Parallel Algorithms:Issues, Measures, and Experts Opinions.ORSA Journal on Computing, 5(1):2–18, 1993.Google Scholar
  7. 7.
    Benkner, S., Doerner, K., Hartl, R.F., Kiechle, G., and Lucka, M. Communication Strategies for Parallel Cooperative Ant Colony Optimization on Clusters and Grids. InComplimentary Proceedings of PARA04, pages 3–12, 2004.Google Scholar
  8. 8.
    Berger, J. and Barkaoui, M. Hybrid Genetic Algorithm for the Capacitated Vehicle Routing Problem. In Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Standish, R.K., Kendal, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K.A., Jonoska. N., and Miller, J.F., editors,Genetic and Evolutionary Computation - GECCO 2003, Genetic and Evolutionay Computation Conference, Chicago, IL, USA, July 12-16, 2003, Proceedings, Part I, volume 2723 ofLecture Notes in Computer Science, pages 646–656. Springer-Verlag, Heidelberg, 2003.Google Scholar
  9. 9.
    Berger, J. and Barkaoui, M. A Parallel Hybrid Genetic Algorithm for the Vehicle Routing Problem with Time Windows.Computers & Operations Research, 31(12):2037–2053, 2004.CrossRefGoogle Scholar
  10. 10.
    Bertsekas, D.P. and Tsitsiklis, J.N.Parallel and Distributed Computation, Numerical Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.Google Scholar
  11. 11.
    Bullnheimer, B., Hartl, R., and Strauβ, C. An Improved Ant System Algorithm for the Vehicle Routing Problem.Annals of Operations Research, 89:319–328, 1999.CrossRefGoogle Scholar
  12. 12.
    Bullnheimer, B., Kotsis, G., and Strauβ, C. Parallelization Strategies for the Ant System.Applied Optimization, 24:87–100, 1998.Google Scholar
  13. 13.
    Cantú-Paz, E. A Survey of Parallel Genetic Algorithms.Calculateurs Parallèles, Réseaux et Systèmes répartis, 10(2):141–170, 1998.Google Scholar
  14. 14.
    Christofides, N., Mingozzi A., and Toth, P. The Vehicle Routing Problem. In N.Christofides, Mingozzi A., P.Toth, and C.Sandi, editors,Combinatorial Optimization, pages 315–338. John Wiley, New York, 1979.Google Scholar
  15. 15.
    Cordeau, J.-F., Laporte, G., and Mercier, A. A Unified Tabu Search Heuristic for Vehicle Routing Problems with Time Windows.Journal of the Operational Research Society, 52:928–936, 2001.CrossRefGoogle Scholar
  16. 16.
    Cordeau, J.F. and G. Laporte, G. A Tabu Search Heuristics for the Static Multi-vehicle Dial-a-ride Problem.Transportation Research Part B, pages 579–594, 2003.Google Scholar
  17. 17.
    Crainic, T.G. Parallel Computation, Co-operation, Tabu Search. In C. Rego and B. Alidaee, editors,Metaheuristic Optimization Via Memory and Evolution: Tabu Search and Scatter Search, pages 283–302. Kluwer Academic Publishers, Norwell, MA, 2005.CrossRefGoogle Scholar
  18. 18.
    Crainic, T.G., Gendreau, M., and Potvin, J.-Y. Parallel Tabu Search. In Alba, E., editor,Parallel Metaheuristics, pages 298–313. John Wiley & Sons, Hoboken, NJ, 2005.Google Scholar
  19. 19.
    Crainic, T.G., Le Cun, B., and Roucairol, C. Parallel Branch and Bound Algorithms. In EL-Ghazali Talbi, editor,Parallel Combinatorial Optimization, pages 1–28. John Wiley & Sons, New York, 2006.CrossRefGoogle Scholar
  20. 20.
    Crainic, T.G., Li, Y., and Toulouse, M. A First Multilevel Cooperative Algorithm for the Capacitated Multicommodity Network Design.Computers & Operations Research, 33(9):2602–2622, 2006.CrossRefGoogle Scholar
  21. 21.
    Crainic, T.G. and Nourredine, H. Parallel Meta-Heuristics Applications. In Alba, E., editor,Parallel Metaheuristics, pages 447–494. John Wiley & Sons, Hoboken, NJ, 2005.CrossRefGoogle Scholar
  22. 22.
    Crainic, T.G. and Toulouse, M. Parallel Metaheuristics. In T.G. Crainic and G. Laporte, editors,Fleet Management and Logistics, pages 205–251. Kluwer Academic Publishers, Norwell, MA, 1998.Google Scholar
  23. 23.
    Crainic, T.G. and Toulouse, M. Parallel Strategies for Meta-heuristics. In F. Glover and G. Kochenberger, editors,Handbook in Metaheuristics, pages 475–513. Kluwer Academic Publishers, Norwell, MA, 2003.CrossRefGoogle Scholar
  24. 24.
    Crainic, T.G., Toulouse, M., and Gendreau, M. Parallel Asynchronous Tabu Search for Multicommodity Location-Allocation with Balancing Requirements.Annals of Operations Research, 63:277–299, 1995.CrossRefGoogle Scholar
  25. 25.
    Crainic, T.G., Toulouse, M., and Gendreau, M. Towards a Taxonomy of Parallel Tabu Search Algorithms.INFORMS Journal on Computing, 9(1):61–72, 1997.Google Scholar
  26. 26.
    Cung, V.-D., Martins, S.L., Ribeiro, C.C., and Roucairol, C. Strategies for the Parallel Implementations of Metaheuristics. In C.C. Ribeiro and P. Hansen, editors,Essays and Surveys in Metaheuristics, pages 263–308. Kluwer Academic Publishers, Norwell, MA, 2002.Google Scholar
  27. 27.
    Czech, Z.J. and Czarnas, P. Parallel Simulated Annealing for the Vehicle Routing Problem with Time Windows. In10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, pages 376–383, 2002.Google Scholar
  28. 28.
    Dai, C., Li, B., and Toulouse, M. A Multilevel Cooperative Tabu Search Algorithm for the Covering Design Problem.Journal of Combinatorial Mathematics and Combinatorial Computing, 2007.Google Scholar
  29. 29.
    Deb, K., Pratab, A., Agrawal, S., and Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.CrossRefGoogle Scholar
  30. 30.
    Doerner, K., Hartl, R.F., Kiechle, G., Lucka, M., and Reimann, M. Parallel Ant Systems for the Capacitated Vehicle Routing Problem. In Gottlieb, J. and Raidl, G.R., editors,Evolutionary Computation in Combinatorial Optimization: 4th European Conference, EvoCOP 2004, Proceedings, volume 3004 ofLecture Notes in Computer Science, pages 72–83. Springer-Verlag, Berlin, 2004.Google Scholar
  31. 31.
    Doerner, K.F., Hartl, R.F., Benkner, S., and Lucka, M. Cooperative Savings based Ant Colony Optimization - Multiple Search and Decomposition Approaches.Parallel Processing Letters, 16(3):351–369, 2006.CrossRefGoogle Scholar
  32. 32.
    Doerner, K.F., Hartl, R.F., and Lucka, M. A Parallel Version of the D-Ant Algorithm for the Vehicle Routing Problem. In Vajtersic, M., Trobec, R., Zinterhof, P., and Uhl, A., editors,Parallel Numerics ’05, pages 109–118. Springer-Verlag, New York, NY, 2005.Google Scholar
  33. 33.
    Dorigo, M. and Stuetzle, T. The Ant Colony Metaheuristic. Algorithms, Applications, and Advances. In F. Glover and G. Kochenberger, editors,Handbook in Metaheuristics, pages 251–285.Kluwer Academic Publishers, Norwell, MA,2003.Google Scholar
  34. 34.
    Drummond, L.M.A., Ochi, L.S., and Vianna, D.S. A Parallel Hybrid Evolutionary Metaheuristic for the Period Vehicle Routing Problem. In Rolin, J., editor,International Workshop on Formal Methods for Parallel Programming: Theory and Applications (FMPPTA’99), volume 1586 ofLecture Notes in Computer Science, pages 183–191. Springer-Verlag,Heidelberg, 1999.Google Scholar
  35. 35.
    Drummond, L.M.A., Ochi, L.S., and Vianna, D.S. An Asynchronous Parallel Metaheuristic for the Period Vehicle Routing Problem.Future Generation Computer Systems, 17(4):379–386, 2001.CrossRefGoogle Scholar
  36. 36.
    E.-G. Talbi et al., editor.Parallel and Hybrid Models for Multi-objective Optimization: Application to the Vehicle Routing Problem, volume 2871 ofLecture Notes in Computer Science. Springer-Verlag, Berlin, 2006.Google Scholar
  37. 37.
    Garcia, B.L., Potvin, J.-Y., and Rousseau, J.M. A Parallel Implementation of the Tabu Search Heuristic for Vehicle Routing Problems with Time Window Constraints.Computers & Operations Research, 21(9):1025–1033, 1994.CrossRefGoogle Scholar
  38. 38.
    Gehring, H. and Homberger, J. A Parallel Two-Phase Metaheuristic for Routing Problems with Time Windows.Asia-Pacific Journal of Operational Research, 18(1):35–47,2001.Google Scholar
  39. 39.
    Gehring, H. and Homberger, J. Parallelization of a Two-Phase Metaheuristic for Routing Problems with Time Windows.Journal of Heuristics, 8:251–276, 2002.CrossRefGoogle Scholar
  40. 40.
    Gendreau, M., Guertin, F., Potvin, J.-Y., and Taillard, EdotE.D. Tabu Search for Real-Time Vehicle Routing and Dispatching.Transportation Science, 33(4):381–390, 1999.Google Scholar
  41. 41.
    Gendreau, M., Hertz, A., and Laporte, G. A Tabu Search Heuristic for the Vehicle Routing Problem.Management Science, 40:1276–1290, 1994.Google Scholar
  42. 42.
    Gendreau, M., Laporte , G., and Semet, F. A Dynamic Model and Parallel Tabu Search Heuristic for Real-time Ambulance Relocation.Parallel Computing, 27(12):1641–1653, 2001.CrossRefGoogle Scholar
  43. 43.
    Glover, F. and Laguna, M.Tabu Search. Kluwer Academic Publishers, Norwell, MA, 1997.Google Scholar
  44. 44.
    Golden, B.L., Wasil, E.A., Kelly, J.P., and Chao, I.M. Metaheuristics in Vehicle Routing. In T.G.Crainic and G.Laporte, editors,Fleet Management and Logistics, pages 33–56. Kluwer Academic Publishers, Norwell, MA, 1998.Google Scholar
  45. 45.
    Greening, D.R. Asynchronous Parallel Simulated Annealing.Lectures in Complex Systems, 3:497–505, 1990.Google Scholar
  46. 46.
    Greening, D.R. Parallel Simulated Annealing Techniques.Physica D, 42:293–306, 1990.CrossRefGoogle Scholar
  47. 47.
    Holmqvist, K., Migdalas, A., and Pardalos, P.M. Parallelized Heuristics for Combinatorial Search. In A.Migdalas, P.M. Pardalos, and S.Storoy, editors,Parallel Computing in Optimization, pages 269–294. Kluwer Academic Publishers, Norwell, MA, 1997.Google Scholar
  48. 48.
    Homberger, J. and Gehring, H. Two Evolutionary Metaheuristics for the Vehicle Routing Problem with Time Windows.INFOR, 37:297–318, 1999.Google Scholar
  49. 49.
    J.M. Guervos et al., editor.Parallel and Hybrid Models for Multi-objective Optimization: Application to the Vehicle Routing Problem, volume 2439 ofLecture Notes in Computer Science. Springer-Verlag, Berlin, 2002.Google Scholar
  50. 50.
    Le Bouthillier, A. and Crainic, T.G. A Cooperative Parallel Meta-Heuristic for the Vehicle Routing Problem with Time Windows.Computers & Operations Research, 32(7):1685–1708,2005.CrossRefGoogle Scholar
  51. 51.
    Le Bouthillier, A., Crainic, T.G., and Kropf, P. Towards a Guided Cooperative Search. Publication CRT-05-09, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada, 2005.Google Scholar
  52. 52.
    Lin, S.-C., Punch, W., and Goodman, E. Coarse-Grain Parallel Genetic Algorithms: Categorization and New Approach. InSixth IEEE Symposium on Parallel and Distributed Processing, pages 28–37. IEEE Computer Society Press, 1994.Google Scholar
  53. 53.
    Moreno-Pérez, J.A., Hansen, P., and Mladenović, N. Parallel Variable Neighborhood Search. In Alba, E., editor,Parallel Metaheuristics, pages 247–266. John Wiley & Sons, Hoboken, NJ, 2005.CrossRefGoogle Scholar
  54. 54.
    Mühlenbein, H. Parallel Genetic Algorithms in Combinatorial Optimization. In O.Balci, R.Sharda, and S.Zenios, editors,Computer Science and Operations Research: New Developments in their Interface, pages 441–456. Pergamon Press, New York, NY, 1992.Google Scholar
  55. 55.
    Ochi, L.S., Vianna, D.S., Drummond, L.M.A., and Victor, A.O. A Parallel Evolutionary Algorithm for the Vehicle Routing Problem with Heterogeneous Fleet.Future Generation Computer Systems, 14(3):285–292, 1998.CrossRefGoogle Scholar
  56. 56.
    Oduntan, I.O., Toulouse, M., Baumgartner, R., Somorjai, R., and Crainic, T.G. A Multilevel Tabu Search Algorithm for the Feature Selection Problem in Biomedical Data Sets.Computers & Mathematics with Applications, 2006.Google Scholar
  57. 57.
    Ouyang, M., Toulouse, M., Thulasiraman, K., Glover, F., and Deogun, J.S. Multi-Level Cooperative Search: Application to the Netlist/Hypergraph Partitioning Problem. InProceedings of International Symposium on Physical Design, pages 192–198. ACM Press, 2000.Google Scholar
  58. 58.
    Ouyang, M., Toulouse, M., Thulasiraman, K., Glover, F., and Deogun, J.S. Multilevel Cooperative Search for the Circuit/Hypergraph Partitioning Problem.IEEE Transactions on Computer-Aided Design, 21(6):685–693, 2002.CrossRefGoogle Scholar
  59. 59.
    Pardalos, P.M., L. Pitsoulis, T. Mavridou, and Resende, M.G.C. Parallel Search for Combinatorial Optimization: Genetic Algorithms, Simulated Annealing, Tabu Search and GRASP. In A.Ferreira and J.Rolim, editors,Proceedings of Workshop on Parallel Algorithms for Irregularly Structured Problems, Lecture Notes in Computer Science, volume 980, pages 317–331. Springer-Verlag, Berlin, 1995.Google Scholar
  60. 60.
    Polacek, M., Benkner, S., Doerner, K.F., and Hartl, R.F. A Cooperative and Adaptive Variable Neighborhood Search for the Multi Depot Vehicle Routing Problem with Time Windows. Working paper, Institute of Management Science, University of Vienna, Vienna, Austria, 2006.Google Scholar
  61. 61.
    Polacek, M., Hartl, R.F., , Doerner, K.F., and Reimann, M. A Variable Neighborhood Search for the Multi Depot Vehicle Routing Problem with Time Windows.Journal of Heuristics, 10(6):613–627, 2004.CrossRefGoogle Scholar
  62. 62.
    Prins, C. A Simple and Effective Evolutionary Algorithm for the Vehicle Routing Problem.Computers & Operations Research, 31(12):1985–2002, 2004.CrossRefGoogle Scholar
  63. 63.
    T.K. Ralphs. Parallel Branch and Cut Algorithms. In E.-G. Talbi, editor,Parallel Combinatorial Optimization, pages 53–101. Wiley-Interscience, Wiley & Sons, Hoboken, NJ, 2006.CrossRefGoogle Scholar
  64. 64.
    Ralphs, T.K. Parallel Branch and Cut for Capacitated Vehicle Routing.Parallel Computing, 29:607–629, 2003.CrossRefGoogle Scholar
  65. 65.
    Ralphs, T.K., L.Ladaacuteany, and Saltzman, M.J. Parallel Branch, Cut, and Price for Large-Scale Discrete Optimization.Mathematical Programming, 98(1-3):253–280, 2003.CrossRefGoogle Scholar
  66. 66.
    Ralphs, T.K., L.Ladány, and Saltzman, M.J. A Library Hierarchy for Implementing Scalable Parallel Search Algorithms.Journal of Parallel and Distributed Computing, 37:207–212, 2004.Google Scholar
  67. 67.
    Ram, D.J., Sreenivas, T.H., and Subramaniam, K.G. Parallel Simulated Annealing Algorithms.Journal of Parallel and Distributed Computing, 37:207–212, 1996.CrossRefGoogle Scholar
  68. 68.
    Rego, C. and Roucairol, C. A Parallel Tabu Search Algorithm Using Ejection Chains for the VRP. In I.H. Osman and J.P. Kelly, editors,Meta-Heuristics: Theory & Applications, pages 253–295. Kluwer Academic Publishers, Norwell, MA, 1996.Google Scholar
  69. 69.
    Reimann, M., Doerner, K., and Hartl, R. D-Ants: Savings Based Ants Divide and Conquer the Vehicle Routing Problem.Computers & Operations Research, 31(4):563–591, 2004.CrossRefGoogle Scholar
  70. 70.
    Reimann, M., Stummer, M., and Doerner, K. A Savings Based Ants System for the Vehicle Routing Problem. In Langton, C., Cantuacute-Paz, E., Mathias, K.E., Roy, R., Davis, L., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E.K., and Jonoska. N., editors,GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, USA, July 9-13, 2002, pages 1317–1326. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2002.Google Scholar
  71. 71.
    Rochat, Y. and Taillard, É.D. Probabilistic Diversification and Intensification in Local Search for Vehicle Routing.Journal of Heuristics, 1(1):147–167, 1995.CrossRefGoogle Scholar
  72. 72.
    Schulze, J. and Fahle, T. A Parallel Algorithm for the Vehicle Routing Problem with Time Window Constraints.Annals of Operations Research, 86:585–607, 1999.CrossRefGoogle Scholar
  73. 73.
    Shonkwiler, R. Parallel Genetic Algorithms. In S.Forrest, editor,Proceedings of the Fifth International Conference on Genetic Algorithms, pages 199–205. Morgan Kaufmann, San Mateo, CA, 1993.Google Scholar
  74. 74.
    Solomon, M.M. Time Window Constrained Routing and Scheduling Problems.Operations Research, 35(2):254–265, 1987.CrossRefGoogle Scholar
  75. 75.
    Taillard, Edot.D. Parallel Iterative Search Methods for Vehicle Routing Problems.Networks, 23:661–673, 1993.CrossRefGoogle Scholar
  76. 76.
    Taillard, Edot.D., Badeau, P., Gendreau, M., Guertin, F., and Potvin, J.-Y. A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows.Transportation Science, 31(2):170–186, 1997.Google Scholar
  77. 77.
    Talbi, E.-G., editor.Parallel Combinatorial Optimization. Wiley-Interscience, Wiley & Sons, Hoboken, NJ, 2006.Google Scholar
  78. 78.
    Toulouse, M., Thulasiraman, K., and Glover, F. Multi-Level Cooperative Search: A New Paradigm for Combinatorial Optimization and an Application to Graph Partitioning. In P.Amestoy, P.Berger, M.Daydeacute I.Duff, V.Fraysseeacute L.Giraud, and D.Ruiz, editors,5th International Euro-Par Parallel Processing Conference, volume 1685 ofLecture Notes in Computer Science, pages 533–542. Springer-Verlag, Heidelberg, 1999.Google Scholar
  79. 79.
    Verhoeven, M.G.A. and Aarts, E.H.L. Parallel Local Search.Journal of Heuristics, 1(1):43–65, 1995.CrossRefGoogle Scholar
  80. 80.
    Voβ S. Tabu Search: Applications and Prospects. In D.-Z. Du and P.M. Pardalos, editors,Network Optimization Problems, pages 333–353. World Scientific Publishing Co., Singapore, 1993.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Management and Technology ESGUniversité du Québec à MontréalMontréal
  2. 2.CIRRELTUniversité de MontréalMontréal

Personalised recommendations