Advertisement

The Period Vehicle Routing Problem and its Extensions

Chapter
Part of the Operations Research/Computer Science Interfaces book series (ORCS, volume 43)

Summary

This chapter presents an overview of the Period Vehicle Routing Problem, a generalization of the classic vehicle routing problem in which driver routes are constructed over a period of time. We survey the evolution of the PVRP and present a synopsis of modeling and solution methods, including classical heuristics, metaheuristics, and mathematical programming based methods. We review three important variants of the problem: the PVRP with Time Windows, the Multi-Depot PVRP, and the PVRP with Service Choice. We present case studies and highlight related implementation issues, including metrics that quantify the operational complexity of implementing periodic delivery routes. Finally, we discuss potential directions for future work in the area.

Key words

Vehicle routing periodic distribution problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelelli, E., M. W. P. Savelsbergh, and M. G. Speranza (2006). Competitive analysis of a dispatch policy for a dynamic multi-period routing problem. Working paper; http://www2.isye.gatech.edu/∼mwps/publications/.Google Scholar
  2. 2.
    Angelelli, E. and M. G. Speranza (2002). The periodic vehicle routing problem with intermediate facilities.European Journal of Operational Research 137(2), 233–247.CrossRefGoogle Scholar
  3. 3.
    Anily, S. and J. Bramel (1998). Vehicle routing and the supply chain. In S. Tayur, R. Ganeshan, and M. Magazine (Eds.),Quantitative Models for Supply Chain Management. Kluwer Academic Publishers.Google Scholar
  4. 4.
    Anily, S. and A. Federgruen (1990). One warehouse multiple retailer systems with vehicle routing costs.Management Science 36(1), 92–114.Google Scholar
  5. 5.
    Baker, B. M. and M. A. Ayechew (2003). A genetic algorithm for the vehicle routing problem.Computers and Operations Research 30(5), 787–800.CrossRefGoogle Scholar
  6. 6.
    Banerjea-Brodeur, M., J.-F. Cordeau, G. Laporte, and A. Lasry (1998). Scheduling linen deliveries in a large hospital.Journal of the Operational Research Society 49(8), 777–780.CrossRefGoogle Scholar
  7. 7.
    Baptista, S., R. C. Oliveira, and E. Zúquete (2002). A period vehicle routing case study.European Journal of Operational Research 139(2), 220–229.CrossRefGoogle Scholar
  8. 8.
    Beltrami, E. J. and L. D. Bodin (1974). Networks and vehicle routing for municipal waste collection.Networks 4(1), 65–94.CrossRefGoogle Scholar
  9. 9.
    Blakely, F., B. Bozkaya, B. Cao, W. Hall, and J. Knolmajer (2003). Optimizing periodic maintenance operations for Schindler Elevator Corporation.Interfaces 33(1), 67–79.CrossRefGoogle Scholar
  10. 10.
    Blum, C. and A. Roli (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison.ACM Computing Surveys 35(3), 268–308.CrossRefGoogle Scholar
  11. 11.
    Bommisetty, D., M. Dessouky, and L. Jacobs (1998). Scheduling collection of recyclable material at Northern Illinois University campus using a two-phase algorithm.Computers and Industrial Engineering 35(3–4), 435–438.CrossRefGoogle Scholar
  12. 12.
    Carter, M. W., J. M. Farvolden, G. Laporte, and J. Xu (1996). Solving an integrated logistics problem arising in grocery distribution.INFOR 34(4), 290–306.Google Scholar
  13. 13.
    Chan, L., A. Federgruen, and D. Simchi-Levi (1998). Probabilistic analysis and practical algorithms for inventory-routing models.Operations Research 46(1), 96–106.Google Scholar
  14. 14.
    Chao, I.-M., B. L. Golden, and E. A. Wasil (1995). An improved heuristic for the period vehicle routing problem.Networks 26(1), 25–44.CrossRefGoogle Scholar
  15. 15.
    Chao, I.-M., B. L. Golden, and E. A. Wasil (1996). The team orienteering problem.European Journal of Operational Research 88(3), 464–474.CrossRefGoogle Scholar
  16. 16.
    Christofides, N. and J. E. Beasley (1984). The period routing problem.Networks 14(2), 237–256.CrossRefGoogle Scholar
  17. 17.
    Christofides, N. and S. Eilon (1969). Expected distances in distribution problems.Operational Research Quarterly 20(4), 437–443.CrossRefGoogle Scholar
  18. 18.
    Claassen, G. D. H. and T. H. B. Hendriks (2007). An application of Special Ordered Sets to a periodic milk collection problem.European Journal of Operational Research 180(2), 754–769.CrossRefGoogle Scholar
  19. 19.
    Clarke, G. and J. Wright (1964). Scheduling of vehicles from a central depot to a number of delivery points.Operations Research 12(4), 568–581.Google Scholar
  20. 20.
    Cordeau, J.-F., M. Gendreau, A. Hertz, G. Laporte, and J.-S. Sormany (2005). New heuristics for the vehicle routing problem. In A. Langevin and D. Riopel (Eds.),Logistics Systems: Design and Optimization, pp. 279–297. Springer US.Google Scholar
  21. 21.
    Cordeau, J.-F., M. Gendreau, and G. Laporte (1997). A tabu search heuristic for periodic and multi-depot vehicle routing problems.Networks 30(2), 105–119.CrossRefGoogle Scholar
  22. 22.
    Cordeau, J.-F., G. Laporte, and A. Mercier (2001). A unified tabu search heuristic for vehicle routing problems with time windows.Journal of the Operational Research Society 52(8), 928–936.CrossRefGoogle Scholar
  23. 23.
    Drummond, L. M. A., L. S. Ochi, and D. S. Vianna (2001). An asynchronous parallel metaheuristic for the period vehicle routing problem.Future Generation Computer Systems 17(4), 379–386.CrossRefGoogle Scholar
  24. 24.
    Eilon, S., C. T. Watson-Gandy, and N. Christofides (1971).Distribution Management: Mathematical modeling and practical analysis. London: Griffin.Google Scholar
  25. 25.
    Federgruen, A. and D. Simchi-Levi (1995). Analysis of vehicle routing and inventory-routing problems. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser (Eds.),Handbooks in Operations Research and Management Science, Volume 8, pp. 297–373. Elsevier Science B.V.Google Scholar
  26. 26.
    Fisher, M. L. and R. Jaikumar (1981). A generalized assignment heuristic for vehicle routing problems.Networks 11(2), 109–124.CrossRefGoogle Scholar
  27. 27.
    Foster, B. A. and D. M. Ryan (1976). An integer programming approach to the vehicle scheduling problem.Operational Research Quarterly 27(2), 367–384.Google Scholar
  28. 28.
    Francis, P. M. and K. R. Smilowitz (2006). Modeling techniques for periodic vehicle routing problems.Transportation Research: Part B 40(10), 872–884.CrossRefGoogle Scholar
  29. 29.
    Francis, P. M., K. R. Smilowitz, and M. Tzur (2006). The period vehicle routing problem with service choice.Transportation Science 40(4), 439–454.CrossRefGoogle Scholar
  30. 30.
    Francis, P. M., K. R. Smilowitz, and M. Tzur (2007). Flexibility and complexity in periodic distribution problems.Naval Research Logistics (Forthcoming).Google Scholar
  31. 31.
    Gaudioso, M. and G. Paletta (1992). A heuristic for the period vehicle routing problem.Transportation Science 26(2), 86–92.Google Scholar
  32. 32.
    Gaur, V. and M. L. Fisher (2004). A periodic inventory routing problem at a supermarket chain.Operations Research 52(6), 813–822.CrossRefGoogle Scholar
  33. 33.
    Gendreau, M., A. Hertz, and G. Laporte (1994). A tabu search heuristic for the vehicle routing problem.Management Science 40(10), 1276–1290.Google Scholar
  34. 34.
    Gendreau, M., G. Laporte, and J.-Y. Potvin (2002). Metaheuristics for the capacitated VRP. In P. Toth and D. Vigo (Eds.),The vehicle routing problem, pp. 129–154. Philadelphia: SIAM.Google Scholar
  35. 35.
    Golden, B. L., T. L. Magnanti, and H. Q. Nguyen (1977). Implementing vehicle routing algorithms.Networks 7(2), 113–148.CrossRefGoogle Scholar
  36. 36.
    Golden, B. L. and E. A. Wasil (1987). Computerized vehicle routing in the soft drink industry.Operations Research 35(1), 6–17.Google Scholar
  37. 37.
    Hadjiconstantinou, E. and R. Baldacci (1998). A multi-depot period vehicle routing problem arising in the utilities sector.The Journal of the Operational Research Society 49(12), 1239–1248.CrossRefGoogle Scholar
  38. 38.
    Hemmelmayr, V., K. F. Doerner, R. F. Hartl, and M. W. P. Savelsbergh (2006). Delivery strategies for blood products supplies. Working paper; http://www2.isye.gatech.edu/∼mwps/publications/.Google Scholar
  39. 39.
    Jang, W., H. H. Lim, T. J. Crowe, G. Raskin, and T. E. Perkins (2006). The Missouri Lottery optimizes its scheduling and routing to improve efficiency and balance.Interfaces 36(4), 302–313.CrossRefGoogle Scholar
  40. 40.
    Kang, K. H., Y. H. Lee, and B. K. Lee (2005). An exact algorithm for multi depot and multi period vehicle scheduling problem. In O. Gervasi, M. L. Gavrilova, V. Kumar, A. Laganà, H. P. Lee, Y. Mun, D. Taniar, and C. J. K. Tan (Eds.),Computational Science and Its Applications ICCSA 2005, pp. 350–359. Springer Berlin.Google Scholar
  41. 41.
    Kleywegt, A. J., V. S. Nori, and M. W. P. Savelsbergh (2002). The stochastic inventory routing problem with direct deliveries.Transportation Science 36(1), 94–118.CrossRefGoogle Scholar
  42. 42.
    le Blanc, H. M., F. Cruijssen, H. A. Fleuren, and M. B. M. de Koster (2004). Factory gate pricing: An analysis of the Dutch retail distribution. Working paper; http://econpapers.repec.org/paper/dgreureri/30001575.htm.Google Scholar
  43. 43.
    Lin, S. and B. W. Kernighan (1973). An effective heuristic for the traveling salesman problem.Operations Research 21(2), 498–516.Google Scholar
  44. 44.
    Mingozzi, A. and A. Valletta (2005). The multi-depot and periodic vehicle routing problem. Presented at the 2005 Symposium on Abstraction, Reformulation, and Approximation, Edinburgh.Google Scholar
  45. 45.
    Mourgaya, M. and F. Vanderbeck (2006). Column generation based heuristic for tactical planning in multi-period vehicle routing.European Journal of Operational Research (In press).Google Scholar
  46. 46.
    Parthanadee, P. and R. Logendran (2006). Periodic product distribution from multi-depots under limited supplies.IIE Transactions 38(11), 1009–1026.CrossRefGoogle Scholar
  47. 47.
    Pontin, M. I., M. N. Ziletti, and A. Mendez (2004). Optimal routing for infectious waste collection in the City of Rio Cuarto. Presented at the V Pan American Workshop on Applied and Computational Mathematics, Honduras.Google Scholar
  48. 48.
    Reeves, C. R. and J. E. Rowe (2003).Genetic Algorithms - Principles and Perspectives. Boston: Kluwer Academic Publishers.Google Scholar
  49. 49.
    Rusdiansyah, A. and D.-B. Tsao (2005). An integrated model of the periodic delivery problems for vending-machine supply chains.Journal of Food Engineering 70(3), 421–434.CrossRefGoogle Scholar
  50. 50.
    Russell, R. A. (1977). An effective heuristic for the M-tour traveling salesman problem with some side conditions.Operations Research 25(3), 517–524.CrossRefGoogle Scholar
  51. 51.
    Russell, R. A. and D. Gribbin (1991). A multiphase approach to the period routing problem.Networks 21(7), 747–765.CrossRefGoogle Scholar
  52. 52.
    Russell, R. A. and W. Igo (1979). An assignment routing problem.Networks 9(1), 1–17.CrossRefGoogle Scholar
  53. 53.
    Shih, L.-H. and H.-C. Chang (2001). A routing and scheduling system for infectious waste collection.Environmental Modeling and Assessment 6(4), 261–269.CrossRefGoogle Scholar
  54. 54.
    Shih, L.-H. and Y.-T. Lin (1999). Optimal routing for infectious waste collection.Journal of Environmental Engineering 125(5), 479–484.CrossRefGoogle Scholar
  55. 55.
    Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints.Operations Research 35(2), 254–265.CrossRefGoogle Scholar
  56. 56.
    Tan, C. C. R. and J. E. Beasley (1984). A heuristic algorithm for the period vehicle routing problem.Omega 12(5), 497–504.CrossRefGoogle Scholar
  57. 57.
    Teixeira, J., A. P. Antunes, and J. P. de Sousa (2004). Recyclable waste collection planning - a case study.European Journal of Operational Research 158(3), 543–554.Google Scholar
  58. 58.
    Zhong, H., R. W. Hall, and M. Dessouky (2007). Territory planning and vehicle dispatching with driver learning.Transportation Science 41(1), 74–89.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.The University of Chicago GSBChicago
  2. 2.Department of Industrial Engineering and Management SciencesNorthwestern UniversityEvanston
  3. 3.Department of Industrial EngineeringTel Aviv UniversityTel Aviv

Personalised recommendations