Advertisement

Robust Branch-Cut-and-Price Algorithms for Vehicle Routing Problems

Chapter
Part of the Operations Research/Computer Science Interfaces book series (ORCS, volume 43)

Summary

This chapter presents techniques for constructing robust Branch-Cut-and-Price algorithms on a number of Vehicle Routing Problem variants. The word ‘‘robust’’ stresses the effort of controlling the worst-case complexity of the pricing subproblem, keeping it pseudo-polynomial. Besides summarizing older research on the topic, some promising new lines of investigation are also presented, specially the development of new families of cuts over large extended formulations. Computational experiments over benchmark instances from ACVRP, COVRP, CVRP and HFVRP variants are provided.

Key words

Column generation cutting plane algorithms extended formulations branch-and-bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Achuthan, L. Caccetta, and S. Hill. Capacited vehicle routing problem: Some new cutting planes.Asia-Pacific J. of Operational Research, 15:109–123, 1998.Google Scholar
  2. 2.
    J. Araque, L. Hall, and T. Magnanti. Capacitated trees, capacitated routing, and associated polyhedra. Technical Report OR232-90, MIT, Operations Research Center, 1990.Google Scholar
  3. 3.
    P. Augerat.Approche poly‘edrale du probl‘eme de tourn’ees de v’ehicles. PhD thesis, Institut National Polytechnique de Grenoble, 1995.Google Scholar
  4. 4.
    P. Augerat, J. Belenguer, E. Benavent, A. Corber’an, D. Naddef, and G. Rinaldi. Computational results with a branch and cut code for the capacitated vehicle routing problem. Technical Report 949-M, Université Joseph Fourier, Grenoble, France, 1995.Google Scholar
  5. 5.
    R. Baldacci, L. Bodin, and A. Mingozzi. The multiple disposal facilities and multiple inventory locations rollon-rolloff vehicle routing problem.Computers and Operation Research, 33:2667–2702, 2006.CrossRefGoogle Scholar
  6. 6.
    R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Submitted, 2007.Google Scholar
  7. 7.
    C. Barnhart, C. Hane, and P. Vance. Using branch-and-price-and-cut to solve origin-destination integer multicommodity flow problems.Operations Research, 40:318–326, 2000.CrossRefGoogle Scholar
  8. 8.
    C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance. Branch-and-price: Column generation for solving huge integer programs.Operations Research, 46:316–329, 1998.Google Scholar
  9. 9.
    E. Choi and D-W Tcha. A column generation approach to the heterogeneous fleet vehicle routing problem.Computers and Operations Research, 34:2080–2095, 2007.CrossRefGoogle Scholar
  10. 10.
    N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem.Operational Research Quarterly, 20:309–318, 1969.Google Scholar
  11. 11.
    N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations.Mathematical Programming, 20:255–282, 1981.CrossRefGoogle Scholar
  12. 12.
    G. Cornu’ejols and F. Harche. Polyhedral study of the capacitated vehicle routing problem.Mathematical Programming, 60:21–52, 1993.CrossRefGoogle Scholar
  13. 13.
    S. Dash, R. Fukasawa, and O. Gunluk. On the generalized master knapsack polyhedron. InProceedings of the IPCO 2007, 2007.Google Scholar
  14. 14.
    du Merle, O. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation.Discrete Mathematics, 194:229–237, 1999.CrossRefGoogle Scholar
  15. 15.
    G. Felici, C. Gentile, and G. Rinaldi. Solving large MIP models in supply chain management by branch & cut. Technical report, Istituto di Analisi dei Sistemi ed Informatica del CNR, Italy, 2000.Google Scholar
  16. 16.
    M. Fischetti, P. Toth, and D. Vigo. A branch and bound algorithm for the capacitated vehicle routing problem on directed graphs.Operations Research, 42:846–859, 1994.Google Scholar
  17. 17.
    R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, and R. F. Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.Mathematical Programming, 106:491–511, 2006.CrossRefGoogle Scholar
  18. 18.
    R. Fukasawa, M. Reis, M. Poggi de Aragão, and E. Uchoa. Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Technical Report RPEP Vol.3 no.8, Universidade Federal Fluminense, Engenharia de Produção, Niter’oi, Brazil, 2003.Google Scholar
  19. 19.
    M. T. Godinho, L. Gouveia, and T. Magnanti. Combined route capacity and path length models for unit demand vehicle routing problems.InProceedings of the INOC, volume 1, pages 8–15, Lisbon, 2005.Google Scholar
  20. 20.
    B. Golden, A. Assad, L. Levy, and F. Gheysens. The fleet size and mix vehicle routing problem.Computers and Operations Research, 11:49–66, 1984.CrossRefGoogle Scholar
  21. 21.
    L. Hall and T. Magnanti. A polyhedral intersection theorem for capacitated spanning trees.Mathematics of Operations Research, 17, 1992.Google Scholar
  22. 22.
    D. Houck, J. Picard, M. Queyranne, and R. Vegamundi. The travelling salesman problem as a constrained shortest path problem.Opsearch, 17:93–109, 1980.Google Scholar
  23. 23.
    S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and k-cycle elimination for k⩾ 3.INFORMS Journal on Computing, 18:391–406, 2006.CrossRefGoogle Scholar
  24. 24.
    M. Jepsen, S. Spoorendonk, B. Petersen, and D. Pisinger. A non-robust branch-and-cut-and-price for the vehicle routing problem with time windows. Technical Report 06/03, University of Copenhagen, 2006.Google Scholar
  25. 25.
    B. Kallehauge, N. Boland, and O. Madsen. Path inequalities for the vehicle routing problem with time windows. Technical report, Technical University of Denmark, 2005.Google Scholar
  26. 26.
    D. Kim, C. Barnhart, K. Ware, and G. Reinhardt. Multimodal express package delivery: A service network design application.Transportation Science, 33:391–407, 1999.Google Scholar
  27. 27.
    N. Kohl, J. Desrosiers, O. Madsen, M. Solomon, and F. Soumis. 2-Path cuts for the vehicle routing problem with time windows.Transportation Science, 33:101–116, 1999.Google Scholar
  28. 28.
    A. Letchford, R. Eglese, and J. Lysgaard. Multistars, partial multistars and the capacitated vehicle routing problem.Mathematical Programming, 94:21–40, 2002.CrossRefGoogle Scholar
  29. 29.
    A. Letchford, J. Lysgaard, and R. Eglese. A branch-and-cut algorithm for the capacitated open vehicle routing problem.Journal of the Operational Research Society, 2007.Google Scholar
  30. 30.
    A. Letchford and J-J. Salazar. Projection results for vehicle routing.Mathematical Programming, 105:251–274, 2006.CrossRefGoogle Scholar
  31. 31.
    J. Lysgaard. Reachability cuts for the vehicle routing problem with time windows.European Journal of Operational Research, 175:210–233, 2006.CrossRefGoogle Scholar
  32. 32.
    J. Lysgaard, A. Letchford, and R. Eglese. A new branch-and-cut algorithm for the capacitated vehicle routing problem.Mathematical Programming, 100:423–445, 2004.CrossRefGoogle Scholar
  33. 33.
    D. Naddef and G. Rinaldi. Branch-and-cut algorithms for the capacitated VRP. In P. Toth and D. Vigo, editors,The Vehicle Routing Problem, chapter 3, pages 53–84. SIAM, 2002.Google Scholar
  34. 34.
    J. Picard and M. Queyranne. The time-dependant traveling salesman problem and its application to the tardiness problem in one-machine scheduling.Operations Research, 26:86–110, 1978.Google Scholar
  35. 35.
    M. Poggi de Aragão and E. Uchoa. Integer program reformulation for robust branch-and-cut-and-price. In L. Wolsey, editor,Annals of Mathematical Programming in Rio, pages 56–61, Bùzios, Brazil, 2003.Google Scholar
  36. 36.
    E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M. Poggi de Aragão, and D. Andrade. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.Mathematical Programming, on-line first, 2007.Google Scholar
  37. 37.
    J. Van den Akker, C. Hurkens, and M. Savelsbergh. Time-indexed formulation for machine scheduling problems: column generation.INFORMS J. on Computing, 12:111–124, 2000.Google Scholar
  38. 38.
    F. Vanderbeck. Lot-sizing with start-up times.Management Science, 44:1409–1425, 1998.CrossRefGoogle Scholar
  39. 39.
    H. Yaman. Formulations and valid inequalities for the heterogeneous vehicle routing problem.Mathematical Programming, 106:365–390, 2006.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de Engenharia de ProduçãoUniversidade Federal FluminenseR. Passo da Pátria, 156 24210-240Brazil
  2. 2.Departamento de InformáicaPontifícia Universidade Católica do Rio de JaneiroBrazil

Personalised recommendations