Optical Fiber Sensors Based on Nanostructured Coatings

  • Francisco J. Arregui
  • Ignacio R. Matias
  • Javier Goicoechea
  • Ignacio Del Villar


Optical fiber sensors have been developed from the late 1960s, when optical fiber was proposed as a practical medium for communication [1, 2]. Since then, a great effort has been dedicated for the design and development of optical fiber sensors. In fact, the use of this technology to fabricate sensors is very attractive because optical fibers make possible large sensor data capacities over long distances (kilometers). This implies that the sensing head can be very far from the electronic unit that processes the information. In addition to this, the optical fiber is made of dielectric materials which make possible to incorporate these devices in circumstances where high electromagnetic fields are applied, such as in medical magnetic resonance or in situations with high radiation doses [3]. Besides, optical fibers are made of biocompatible materials. Therefore, this technology is very suitable to develop biomedical instrumentation. Other advantages with respect to...


Optical Fiber Fiber Bragg Grating Optical Power Optical Fiber Sensor Nanostructured Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded in part by the Spanish Ministry of Education and Science-FEDER TEC2006-12170/MIC Research Grant and Government of Navarre-FEDER Euroinnova Research Grants.


  1. 1.
    Culshaw B (2000). Fiber optics in sensing and measurement. IEEE J Sel Top Quant Electron, 6(6): 1014–1021.CrossRefGoogle Scholar
  2. 2.
    Dakin J, Culshaw B (1988, 1989, 1996, 1997). Optical Fiber Sensors. Vol I, II, III, and IV. Artech House Publishers, Massachusetts, USA.Google Scholar
  3. 3.
    Gusarov A, Fernandez Fernandez A, Vasiliev S, et al. (2002). Effect of gamma-neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms, 187(1): 79–86.CrossRefGoogle Scholar
  4. 4.
    Matias IR, Arregui FJ, Claus RO (2006). Optical Fiber Sensors. In: Grimes CA, Dickey EC, Pishko MV (eds), Encyclopedia of Sensors. American Scientific Publishers, New York, USA.Google Scholar
  5. 5.
    Bunganaen Y, Lamb DW (2005). An optical fibre technique for measuring optical absorption by chromophores in the presence of scattering particles. J Phys: Conf Ser, 15: 67–73.CrossRefGoogle Scholar
  6. 6.
    Davis F, Hodge P, Tredgold RH, et al. (2005). Langmuir–Blodgett films of preformed polymers containing biphenyl groups. Langmuir, 21(20): 9199–9205.CrossRefGoogle Scholar
  7. 7.
    Lvov Y, Ariga K, Ichinose Y, et al. (1995). Layer-by-layer architectures of concanavalin A by means of electrostatic and biospecific interactions. J Am Chem Soc, 117(22): 6117–6123.CrossRefGoogle Scholar
  8. 8.
    Ariga K, Lvov Y, Kunitake T (1997). Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption. J Am Chem Soc, 119: 2224–2231.CrossRefGoogle Scholar
  9. 9.
    Decher G (1997). Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science, 277: 1232–1237.CrossRefGoogle Scholar
  10. 10.
    Liu YJ, Wang AB, Claus RO (1997). Molecular self-assembly of TiO2/polymer nanocomposite films. J Phys Chem B, 101: 1385–1388.CrossRefGoogle Scholar
  11. 11.
    Lenahan KM, Wang AB, Liu YJ, Claus RO (1998). Novel polymer dyes for nonlinear optical applications using ionic self-assembled monolayer technology. Adv Mater, 10(11): 853–855.CrossRefGoogle Scholar
  12. 12.
    Bertrand P, Jonas A, Laschewsky A, et al. (2000). Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun, 21: 319–348.CrossRefGoogle Scholar
  13. 13.
    Shiratori SS, Rubner MF (2000). pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules, 33(11): 4213–4219.CrossRefGoogle Scholar
  14. 14.
    Iler RK (1966). Multilayers of colloidal particles. J Colloid Interface Sci, 21: 569–594.CrossRefGoogle Scholar
  15. 15.
    Pastoriza-Santos I, Schöler B, Caruso F (2001). Core-shell colloids and hollow polyelectrolyte capsules based on diazoresins. Adv Mat, 11(2): 122–128.Google Scholar
  16. 16.
    Schönhoff M (2003). Self-assembled polyelectrolyte multilayers. Curr Opin Colloid Interface Sci, 8(1): 86–95.CrossRefGoogle Scholar
  17. 17.
    Hammond PT (2004). Form and function in multilayer assembly: new applications at the nanoscale. Adv Mat, 16(15): 1271–1293.CrossRefGoogle Scholar
  18. 18.
    Arregui FJ, Matias IR, Liu Y, et al. (1999). Optical fiber nanometer-scale Fabry–Perot interferometer formed by the ionic self-assembly monolayer process. Opt Lett, 24: 596–598.CrossRefGoogle Scholar
  19. 19.
    Arregui FJ, Liu Y, Matias IR, et al. (1999). Optical fiber humidity sensor using a nano Fabry–Perot cavity formed by the ionic selfassembly method. Sens Actuat B, 59(1): 54–59.CrossRefGoogle Scholar
  20. 20.
    Arregui FJ, Cooper KL, Liu Y, et al. (2000). Optical fiber humidity sensor with a fast response time using the ionic self-assembly method. IEICE Trans Electron, E83C: 360–365.Google Scholar
  21. 21.
    Goicoechea J, Arregui FJ, Corres J, et al. (2008). Study and optimization of self-assembled polymeric multilayer structures with neutral red for pH sensing applications. J Sens, Article ID 142854, 7 pages, doi: 10.1155/2008/142854.Google Scholar
  22. 22.
    Lee CE, Gibler WN, Atkins RA, et al. (1992). In-line fiber Fabry–Perot interferometer with high-reflectance internal mirrors. IEEE J Lightwave Technol, 10: 1376–1379.CrossRefGoogle Scholar
  23. 23.
    Del Villar I, Matías IR, Arregui FJ, et al. (2005). Fiber-optic hydrogen peroxide nanosensor. IEEE Sensors J, 5(3): 365–371.CrossRefGoogle Scholar
  24. 24.
    Arregui FJ, Matias IR, Cooper KL, et al. (2001). Fabrication of microgratings on the ends of standard optical fibers by the electrostatic self-assembly monolayer process. Opt Lett, 26: 131–133.CrossRefGoogle Scholar
  25. 25.
    Arregui FJ, Claus RO, Cooper KL, et al. (2001). Optical fiber gas sensor based on self-assembled gratings. J Lightwave Technol, 19(12): 1932–1937.CrossRefGoogle Scholar
  26. 26.
    García-Moreda FJ, Arregui FJ, Achaerandio M, et al. (2006). Study of indicators for the development of fluorescence based optical fiber temperature sensors. Sens Actuat B, 118(1–2): 425–432.CrossRefGoogle Scholar
  27. 27.
    Zamarreño CR, Bravo J, Goicoechea J, et al. (2007). Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings. Sens Actuat B, 128(1): 138–144.CrossRefGoogle Scholar
  28. 28.
    Goicoechea J, Zamarreño CR, Matias IR, et al. (2007). Minimizing the photobleaching of self-assembled multilayers for sensor applications. Sens Actuat B, 126(1): 41–47.CrossRefGoogle Scholar
  29. 29.
    Lacroix S, Black R, Veilleux C, et al. (1986). Tapered single-mode fibers: external refractive index dependence. Appl Opt, 25(15): 2468–2469.CrossRefGoogle Scholar
  30. 30.
    Love JD, Henry WM, Stewart WJ, et al. (1991). Tapered single-mode fibers and devices (part 1). Adiabatic criteria. IEE Proc J, 138(5): 343–353.Google Scholar
  31. 31.
    Black RJ, Bourbonnais R (1986). Core-mode cutoff for finite-cladding lightguides, IEE Proc J, 133(6): 277–384.Google Scholar
  32. 32.
    Shankar PM, Lloyd C, Bobb HD, et al. (1991). Coupling of modes in bent biconically tapered single-mode fibers. J Lightwave Technol, 9: 832–837.CrossRefGoogle Scholar
  33. 33.
    Corres JM, Arregui FJ, Matias IR (2006). Design of humidity sensors based on tapered optical fibers. J Lightwave Technol, 24: 4329–4336.CrossRefGoogle Scholar
  34. 34.
    Corres JM, Arregui FJ, Matías IR (2007). Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sens Actuat B, 122(2): 442–449.CrossRefGoogle Scholar
  35. 35.
    Matias IR, Arregui FJ, Corres, et al. (2007). Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings. IEEE Sens J, 7(1): 89–95.CrossRefGoogle Scholar
  36. 36.
    James SW, Tatam RP (2003). Optical fibre long-period grating sensors: characteristics and application. Meas Sci Technol, 14(5): R49.CrossRefGoogle Scholar
  37. 37.
    Ng MN, Chiang KS (2002). Thermal effects on the transmission spectra of long-period fiber gratings. Opt Commun, 208(4–6): 321–327.CrossRefGoogle Scholar
  38. 38.
    Chen X, Zhou K, Zhang L, et al. (2004). Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching. IEEE Photon Technol Lett, 16(5): 1352–1354.CrossRefGoogle Scholar
  39. 39.
    Allsop T, Dubov M, Martinez A, et al. (2005). Long period grating directional bend sensor based on asymmetric index modification of cladding. Electron Lett, 41(2): 59–60.CrossRefGoogle Scholar
  40. 40.
    Zhang L, Liu Y, Everall L, et al. (1999). Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors. IEEE J Sel Top Quant Electron, 5(5): 1373–1378.CrossRefGoogle Scholar
  41. 41.
    James SW, Tatam RP (2006). Fibre optic sensors with nano-structured coatings. J Opt A, Pure Appl Opt, 8(7): S430–S444.CrossRefGoogle Scholar
  42. 42.
    Del Villar I, Corres JM, Achaerandio M, et al. (2006). Spectral evolution with incremental nanocoating of long period fiber gratings. Opt Express, 14: 11972–11981.CrossRefGoogle Scholar
  43. 43.
    Del Villar I, Matias IR, Arregui FJ (2006). Influence on cladding mode distribution of overlay deposition on long-period fiber gratings. J Opt Soc Am A, 23: 651–658.CrossRefGoogle Scholar
  44. 44.
    James SW, Cheung CS, Tatam RP (2007). Experimental observations on the response of 1st and 2nd order fibre optic long period grating coupling bands to the deposition of nanostructured coatings. Opt Express, 15(20): 13096–13107.CrossRefGoogle Scholar
  45. 45.
    Del Villar I, Matias IR, Arregui FJ (2005). Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials. Opt Lett, 30: 2363–2365.CrossRefGoogle Scholar
  46. 46.
    Del Villar I, Matías IR, Arregui FJ, et al. (2005). optimization of sensitivity in long period fiber gratings with overlay deposition. Opt Express, 13: 56–69.CrossRefGoogle Scholar
  47. 47.
    James SW, Ishaq I, Ashwell GJ, et al. (2005). Cascaded long-period gratings with nanostructured coatings. Opt Lett, 30(17): 2197–2199.CrossRefGoogle Scholar
  48. 48.
    Del Villar I, Arregui FJ, Matias IR, et al. (2007). Fringe generation with non-uniformly coated long-period fiber gratings. Opt Express, 15: 9326–9340.CrossRefGoogle Scholar
  49. 49.
    Bravo J, Matias IR, Del Villar I, et al. (2006). Nanofilms on hollow core fiber-based structures: an optical study. J Lightwave Technol, 24: 2100–2107.CrossRefGoogle Scholar
  50. 50.
    Sirkis J, Berkoff TA, Jones RT, et al. (1995). In-line fiber etalon (ILFE) fiber-optic strain sensors. J Lightwave Technol, 13: 1256–1263.CrossRefGoogle Scholar
  51. 51.
    Kang Y, Ruan H, Wang Y, et al. (2006). Nanostructured optical fibre sensors for breathing airflow monitoring. Meas Sci Technol, 17(5): 1207–1210.CrossRefGoogle Scholar
  52. 52.
    Arregui FJ, Matías IR, Cooper KL, et al. (2002). Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber bragg grating. IEEE Sens J, 2(5): 482–487.CrossRefGoogle Scholar
  53. 53.
    de Bastida G, Arregui FJ, Goicoechea J, et al. (2006). Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer. IEEE Sens J, 6(6): 1378–1379.CrossRefGoogle Scholar
  54. 54.
    Bravo J, Goicoechea J, Corres JM, et al. (2007). Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique. Proc SPIE. doi: 10.1117/12.738388.Google Scholar
  55. 55.
    Arregui FJ, Matias IR, Claus RO (2003). Optical fiber gas sensors based on hydrophobic alumina thin films formed by the electrostatic self-assembly monolayer process. IEEE Sens J, 3(1): 56–61.CrossRefGoogle Scholar
  56. 56.
    Elosua C, Bariain C, Matıas IR, et al. (2006). Volatile alcoholic compounds fibre optic nanosensor. Sens Actuat B, 115: 444–449.CrossRefGoogle Scholar
  57. 57.
    Grant PS, McShane MJ (2003). Development of multilayer fluorescent thin film chemical sensors using electrostatic self-assembly. IEEE Sens J, 3(2): 139–146.CrossRefGoogle Scholar
  58. 58.
    Arregui FJ, Latasa I, Matias IR (2003). An optical fiber pH sensor based on the electrostatic self-assembly method. Sens Proc IEEE, 1(22–24): 107–110.Google Scholar
  59. 59.
    Goicoechea J, Arregui FJ, Matias IR (2007). Optical fiber pH sensors based on self-assembled multilayered neutral red. Proc SPIE. doi: 10.1117/12.738427.Google Scholar
  60. 60.
    Goicoechea J, Zamarreño CR, Matias IR, et al. (2008). Optical fiber pH sensors based on layer-by-layer electrostatic self-assembly. Sens Actuat B, 132(1): 305–311.Google Scholar
  61. 61.
    Corres JM, Del Villar I, Matias IR, et al. (2007). Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly. Opt Lett, 32: 29–31.CrossRefGoogle Scholar
  62. 62.
    Keith J, Hess LC, Spendel WU, et al. (2006). The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption. Talanta, 70: 818–822.CrossRefGoogle Scholar
  63. 63.
    Del Villar I, Matías IR, Arregui FJ, et al. (2005). ESA-based in-fiber nanocavity for hydrogen–peroxide detection. IEEE Trans Nanotechnol, 4(2): 187–193.CrossRefGoogle Scholar
  64. 64.
    Wang X, Cooper KL, Wang A, et al. (2006). Label-free DNA sequence detection using oligonucleotide functionalized optical fiber. Appl Phys Lett, 89: 163901.1–163901.3.Google Scholar
  65. 65.
    Zhang Y, Shibru H, Cooper KL, et al. (2005). Miniature fiber-optic multicavity Fabry–Perot interferometric biosensor. Opt Lett, 30: 1021–1023.CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Chen X, Wang Y, et al. (2007). Microgap multicavity Fabry–Perot biosensor. J Lightwave Technol, 25(7): 1797–1814.CrossRefGoogle Scholar
  67. 67.
    Kaul S, Chinnayelka S, McShane MJ (2004). Self-assembly of polymer/nanoparticle films for fabrication of fiber-optic sensors based on SPR. In: Gannot I (ed) Optical Fibers and Sensors for Medical Applications IV. SPIE, Bellingham, WA.Google Scholar
  68. 68.
    Kuila D, Tien M, Lvov Y et al. (2004). Nanoassembly of immobilized ligninolytic enzymes for biocatalysis, bioremediation and biosensing. In: Islam MS, Dutta AK (eds) Nanosensing: Materials and Devices. SPIE, Bellingham, WA.Google Scholar
  69. 69.
    Corres JM, Bravo J, Matias IR, et al. (2007). Tapered optical fiber biosensor for the detection of anti-gliadin antibodies. IEEE Sens, 28–31: 608–611.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Francisco J. Arregui
    • 1
  • Ignacio R. Matias
  • Javier Goicoechea
  • Ignacio Del Villar
  1. 1.Electric and Electronic Engineering DepartmentUniversidad Pública de Navarra, Edificio de los Tejos31006 PamplonaSpain

Personalised recommendations