Nanostructured Magnetic Sensors

  • Manuel Vázquez
  • Aqustina Asenjo
  • Maria del Puerto Morales
  • Kleber Roberto Pirota
  • Giovanni Badini-Confalonieri
  • Manuel Hernández-Vélez


The world of sensors is characterized by a large variety of devices, appropriately selected to answer the needs to detect different external conditions. For instance, multitudes of thermal sensors are present as contact and non-contact sensors, devices based on the measure of heat flux or temperature changes, and basic sensing technologies for temperature probes include thermocouple [1], thermistor [2], solid state [3] and fibre optic [4]. Magnetic sensors are equally variegated in their types and shapes according to the different physical principles they make use of: from those that are actuated by the presence of a permanent magnet, where their operating principle is based on the use of reed contacts, to fluxometric sensors which use the voltage induced by the changes in permeability of a ferromagnetic core.


Magnetic Nanoparticles Iron Oxide Nanoparticles Magnetic Recording Magnetic Sensor Magnetic Force Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Hutter and B. Danhamer: Thermoanalytical sensor, and method of producing the thermoanalytical sensor, patent US2005169344 (August 2005).Google Scholar
  2. 2.
    R. Welch, Y. Tung-Sheng and W. Miller: Thermistor sensor probe, patent USD507977S (August 2005).Google Scholar
  3. 3.
    J. Feder, R. Beyerle, S. Byers and T. Jones: Thermal control of a DUT using a thermal control substrate, patent US2005007136 (January 2005).Google Scholar
  4. 4.
    J. Laurence and N. Corner: Optical temperature, patent US5180227 (January 1993).Google Scholar
  5. 5.
    G. Bartington: Fluxgate sensor, patent GB2411964 (September 2005).Google Scholar
  6. 6.
    N. Holmes: Anisotropic magnetoresistive sensor, patent GB2388915 (November 2003).Google Scholar
  7. 7.
    Ch. Rumenin: Microsensor for magnetic field, patent BG108430 (June 2005).Google Scholar
  8. 8.
    N. Hasegawa: Spin-valve type magnetoresistive sensor and method of manufacturing the same, patent US6913836 (July 2005).Google Scholar
  9. 9.
    C. Salter and R. Pendergrass: Thin film gas sensor configuration, patent US2005183967 (August 2005).Google Scholar
  10. 10.
    H.V. Markovych, A.I. Bondarchurk, V. Bubleinyk, V. Medvediev, V. Koptikov and L. Lupo: Catalytic thermal sensor for detecting combustible gases or vapors, patent UA73019 (January 2005).Google Scholar
  11. 11.
    Ch.-K. Kim, Ch.-S. Yoon, J.-H. Lee and Ch.-S. Yu: Micro-magnetoelastic biosensor array for detection of DNA hybridization and fabrication method thereof, patent US2004014201 (January 2004).Google Scholar
  12. 12.
    J. Viola and W. Moore: Magnetoelastic pressure sensor, patent US2004093951 (May 2004).Google Scholar
  13. 13.
    J. Viola and J. Laidlaw: Magnetoelastic torque sensor assembly, patent GB2395568 (May 2004).Google Scholar
  14. 14.
    H. Morimoto: Strain gauge type sensor and gauge type sensor unit using the same, patent WO2005045388 (May 2005).Google Scholar
  15. 15.
    S. Masuda and K. Sumino: Position sensor, patent JP8313237 (November 1996).Google Scholar
  16. 16.
    P. Tartaj, M.P. Morales, S.Veintemillas-Verdaguer, T. González-Carreño and C.J. Serna (2003). J. Phys D, Appl. Phys., 36, R182.CrossRefGoogle Scholar
  17. 17.
    E. Duguet, S.Vasseur, S. Mornet, G. Goglio, A. Demourgues, J. Portier, F. Grasset, P. Veverka and E. Pollert (2006). Bull. Mater. Sci., 29, 581.CrossRefGoogle Scholar
  18. 18.
    A.-H. Lu, E.L. Salabas and F. Schuth (2007). Angew. Chem. Int. Ed., 46, 1222.CrossRefGoogle Scholar
  19. 19.
    J. Dobson (2006). Nanomedicine, 1, 31.CrossRefGoogle Scholar
  20. 20.
    D. Cai, J.M. Mataraza, Z.-H. Qin, Z. Huang, J. Huang, T.C. Chiles, D. Carnahan, K. Kempa and Z.C. Ren (2005). Nat. Methods, 2, 449.CrossRefGoogle Scholar
  21. 21.
    Y. Bao and K.M. Krishnan (2005). J. Magn. Magn. Mater., 293, 15.CrossRefGoogle Scholar
  22. 22.
    A. Jordan, P. Wust, H. Fahling, W. John, A. Hinz and R. Felix (1993). Int. J. Hyperthermia, 9, 51.CrossRefGoogle Scholar
  23. 23.
    P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreño and C.J. Serna, “Synthesis, properties and biomedical applications of magnetic nanoparticles”, Handbook of Magnetic Materials, ed. K.H.J. Buschow © 2006 Elsevier B.V., 16, 403–483.Google Scholar
  24. 24.
    J. Park, J. Joo, G.K. Soon, Y. Jang and T. Hyeon (2007). Angew. Chem. Int. Ed. 46, 4630.CrossRefGoogle Scholar
  25. 25.
    R. Massart and V. Cabuil (1987). J. Chem. Phys., 84, 967.Google Scholar
  26. 26.
    M. Tada, S. Hatanaka, H. Sanbonsugi, N. Matsushita and M. Abe (2003). J. Appl. Phys., 93, 7566.CrossRefGoogle Scholar
  27. 27.
    T. Sugimoto and E. Matijević (1980). J. Colloid Interface Sci., 74, 227.CrossRefGoogle Scholar
  28. 28.
    T.J. Daou, G. Pourroy, S. Bégin-Colin, J.M. Grenèche, C. Ulhaq-Bouillet, P. Legaré, P. Bernhardt, C. Leuvrey and G. Rogez (2006). Chem. Mater., 18, 4399.CrossRefGoogle Scholar
  29. 29.
    T. Prozorov, S.K. Mallapragada, B. Narasimhan, L. Wang, P. Palo, M. Nilsen-Hamilton, T.J. Williams, D.A. Bazylinski, R. Prozorov and P.C. Canfield (2007). Adv. Funct. Mater., 17, 951.CrossRefGoogle Scholar
  30. 30.
    J. Rockenberger, E.C. Scher and A. Paul Alivisatos (1999). J. Am. Chem. Soc., 121, 11595.CrossRefGoogle Scholar
  31. 31.
    Y.-W. Jun, J. Choi and J. Cheon (2006). Angew. Chem. Int. Ed., 45, 3414.CrossRefGoogle Scholar
  32. 32.
    J. Park, E. Lee, N.-M. Hwang, M. Kang, C.K. Sung, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park and T. Hyeon (2005). Angew. Chem. Int. Ed., 44, 2872.CrossRefGoogle Scholar
  33. 33.
    V.F. Puntes, K.M. Krishnan and A.P. Alivisatos (2001). Science, 291, 2115.CrossRefGoogle Scholar
  34. 34.
    S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser (2000). Science, 287, 1989.CrossRefGoogle Scholar
  35. 35.
    A. Sukhanova, M. Devy, L. Venteo, H. Kaplan, M. Artemyev, V. Oleinikov, D. Klinov, M. Pluot, J.H.M. Cohen and I. Nabiev (2004). Anal. Biochem., 324, 60.CrossRefGoogle Scholar
  36. 36.
    M. Darbandi, R. Thomann and T. Nann (2005). Chem. Mater., 17, 5720.CrossRefGoogle Scholar
  37. 37.
    T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Radler, G. Natile and W. J. Parak (2004). Nano Lett., 4, 703.CrossRefGoogle Scholar
  38. 38.
    J. Lee, A.O. Govorov and N.A. Kotov (2005). Angew. Chem. Int. Ed., 117, 7605 (2005) and Angew. Chem. Int. Ed., 44, 7439.Google Scholar
  39. 39.
    V. Salgueirinño-Maceira, L.M. Liz-Marzan and M. Farle (2004). Langmuir, 20, 6946.CrossRefGoogle Scholar
  40. 40.
    V. Salgueiriño-Maceira, M.A.Correa-Duarte and M. Farle (2005). Small, 1, 1073.CrossRefGoogle Scholar
  41. 41.
    S. Veintemillas-Verdaguer, M.P. Morales and C.J. Serna (1998). Mater. Lett., 35, 227.CrossRefGoogle Scholar
  42. 42.
    S. Veintemillas-Verdaguer, M.P. Morales and C.J. Serna (2001). Appl. Organomet. Chem., 15, 1.CrossRefGoogle Scholar
  43. 43.
    T. González-Carreño, M.P. Morales, M. Gracia and C.J. Serna (1993). Mater. Lett., 18, 151.CrossRefGoogle Scholar
  44. 44.
    T. González-Carreño, A. Mifsud, C.J. Serna and J.M. Palacios (1993). Mater. Chem. Phys., 27, 287.CrossRefGoogle Scholar
  45. 45.
    O. Bomatí-Miguel, P. Tartaj, M.P. Morales, P. Bonville, U. Golla-Schindler, X.Q. Zhao and S. Veintemillas-Verdaguer (2006). Small, 2, 1476.CrossRefGoogle Scholar
  46. 46.
    E.Y. Sun, L. Josephson, K.A. Kelly and R. Weissleder (2006). Bioconj. Chem, 17, 109.CrossRefGoogle Scholar
  47. 47.
    E.Y. Sun, L. Josephson and R. Weissleder (2006). Mol. Imag., 5, 122.Google Scholar
  48. 48.
    W. Wu, Q. He, H. Chen, J. Tang and L. Nie (2007). Nanotechnology, 18, 145609.CrossRefGoogle Scholar
  49. 49.
    Y.-W. Jun, J.-S. Choi and J. Cheon (2007). Chem. Commun., 12, 1203.CrossRefGoogle Scholar
  50. 50.
    S.M. Moghimi, A.C. Hunter and J.C. Murray (2001). Pharmacol. Rev., 53, 283.Google Scholar
  51. 51.
    L. Burgos-Asperilla, M. Darder, P. Aranda, L. Vazquez, M. Vazquez and E. Ruiz-Hitzky (2007). J. Mater. Chem., 17, 4233.CrossRefGoogle Scholar
  52. 52.
    Ø. Olsvik, T. Popovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad and M. Uhlén (1994). Clin. Microbiol. Rev., 7, 43.Google Scholar
  53. 53.
    J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T.-N. Nilsen, P.C. Mørk, P. Sienstad, E. Hornes and Ø. Olsvik (1992). Progr. Poly. Sci. (Oxford), 17, 87.CrossRefGoogle Scholar
  54. 54.
    R. Veyret, A. Elaissari, P. Marianneau, A.A. Sall and T. Delair (2005). Anal. Biochem., 346, 59.CrossRefGoogle Scholar
  55. 55.
    Nanotechnologies for life sciences, Vol.1: Biofunctionalization of Nanomaterials, Ed. Challa Kumar, Wiley-VCH, Weinheim, Germany (2005).Google Scholar
  56. 56.
    X. Gao, K.M.K. Yu, K.Y. Tam and S.C. Tsang (2003). Chem. Commun, 2998.Google Scholar
  57. 57.
    Y. Kobayashi, M. Horie, M. Konno, B. Rodrı´guez-Gonza´lez, and L.M. Liz-Marzán (2003). J. Phys. Chem. B, 107, 7420.CrossRefGoogle Scholar
  58. 58.
    Y. Lu, Y. Yin, B. T. Mayers and Y. Xia (2002). Nano Lett., 2, 183.CrossRefGoogle Scholar
  59. 59.
    M. Aslam, L. Fu, S. Li and V.P. Dravid (2005). J. Colloid Inter. Sci., 290, 444.CrossRefGoogle Scholar
  60. 60.
    P. Tartaj, T. González-Carreño and C.J. Serna (2001). Adv. Mater., 13, 1620.CrossRefGoogle Scholar
  61. 61.
    F. Caruso, R.A. Caruso and H. Möhwald (1998). Science, 282, 1111.CrossRefGoogle Scholar
  62. 62.
    E. Ruiz-Hernández, A. López-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki and M. Vallet-Regí (2007). Chem. Mater., 19, 3455.CrossRefGoogle Scholar
  63. 63.
    L. D'Amico, F. D'Orazio, J. L. Dormann, D. Fiorani, F. Lucari and E. Tronc (1995). Mater. Sci. Forum., 195, 173.CrossRefGoogle Scholar
  64. 64.
    L. Zhang, G.C. Papaefthymiou, R.F. Ziolo and J.Y. Ying (1997). Nanostruct. Mater., 9, 185.CrossRefGoogle Scholar
  65. 65.
    C. Cannas, D. Gatteshi, A. Musinu, G. Piccaluga and C. Sangregorio (1998). J. Phys. Chem B., 102, 7721.CrossRefGoogle Scholar
  66. 66.
    F. Del Monte, M.P. Morales, D. Levy, A. Fernandez, M. Ocaña, A. Roig, E. Molins, K. O’Grady and C.J.Serna (1997). Langmuir, 13, 3627.CrossRefGoogle Scholar
  67. 67.
    S. Solinas, G. Piccaluga, M.P. Morales and C.J. Serna (2001). Acta Mater., 49, 2805.CrossRefGoogle Scholar
  68. 68.
    B.A. Fuertes and P. Tartaj (2006). Chem. Mater., 18, 1675.CrossRefGoogle Scholar
  69. 69.
    M.A.Correa-Duarte, M. Grzelczak, V. Salgueirino-Maceira, M. Giersig, L.M. Liz-Marzán, M. Farle, K. Sierazdki and R. Diaz (2005). J. Phys. Chem. B, 109, 19060.CrossRefGoogle Scholar
  70. 70.
    Z. Ban, Y.A. Barnakov, F. Li, V.O. Golub and C.J. O'Connor (2005). J. Mater. Chem., 15, 4660.CrossRefGoogle Scholar
  71. 71.
    P. de la Presa, M. Multigner, M.P. Morales, T. Rueda, E. Fernández-Pinel and A. Hernando (2007). J. Magn. Magn. Mater, 316, E753.CrossRefGoogle Scholar
  72. 72.
    Z. Lu, M.D. Prouty, Z. Quo, V.O. Golub, C.S.S.R. Kumar and Y.M. Lvov (2005). Langmuir, 21, 2042.CrossRefGoogle Scholar
  73. 73.
    H. Kim, M. Achermann, L.P. Balet, J.A. Hollingsworth and V.I. Klimov (2005). J. Am. Chem. Soc., 127, 544.CrossRefGoogle Scholar
  74. 74.
    D. Wang, J. He, N. Rosenzweig and Z. Rosenzweig (2004). Nano Lett., 4, 409.CrossRefGoogle Scholar
  75. 75.
    Y. Lu, Y. Yin, B.T. Mayers and Y. Xia (2002). Nano Lett., 2, 183.CrossRefGoogle Scholar
  76. 76.
    F. Bertorelle, C. Wilhelm, J. Roger, F. Gazeau, C. Ménager and V. Cabuil (2006). Langmuir, 22, 5385.CrossRefGoogle Scholar
  77. 77.
    T. Pellegrino, S. Kudera, T. Liedl, A.M. Javier, L. Manna and W.J. Parak (2005). Small, 1, 48.CrossRefGoogle Scholar
  78. 78.
    V. Salgueiriño-Maceira, M.A. Correa-Duarte, M. Spasova, L.M. Liz-Marzán and M. Farle (2006). Adv. Funct. Mater., 16, 509.CrossRefGoogle Scholar
  79. 79.
    G. Bastiat, P. Oligere, G. Karlsson, K. Edwards and M. Lafleur (2007). Langmuir, 23, 7695.CrossRefGoogle Scholar
  80. 80.
    Y. Xia, B. Gates, Y. Yin and Y. Lu (2000). Adv. Mater., 12, 693.CrossRefGoogle Scholar
  81. 81.
    M.-P. Pileni (2007). Acc. Chem. Res., 40, 685.CrossRefGoogle Scholar
  82. 82.
    M.-P. Pileni (2001). J. Phys. Chem. B, 105, 3358.CrossRefGoogle Scholar
  83. 83.
    C. Luna, P. Morales, C. Serna and M. Vázquez (2003). Nanotechnology, 14, 268.CrossRefGoogle Scholar
  84. 84.
    C. Petit, A. Taleb and M.-P. Pileni (1998). Adv. Mater., 10, 259.CrossRefGoogle Scholar
  85. 85.
    D. Parker, I. Lisiecki, C. Salzemann and M.-P. Pileni (2007). J. Phys. Chem. C, 111, 12632.CrossRefGoogle Scholar
  86. 86.
    I. Lisiecki, C. Salzemann, D. Parker, P.-A. Albouy and M.-P. Pileni (2007). J. Phys. Chem. C, 111, 12625.CrossRefGoogle Scholar
  87. 87.
    Y. Lalatonne, L. Motte, V. Russier, A.T. Ngo, P. Bonville and M.-P. Pileni (2004). J. Phys. Chem. B, 108, 1848.CrossRefGoogle Scholar
  88. 88.
    A.T. Ngo and M.-P. Pileni (2002). J. Appl. Phys., 92, 4649.CrossRefGoogle Scholar
  89. 89.
    S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser (2000). Science, 287, 1989.CrossRefGoogle Scholar
  90. 90.
    A.-P. Li, F. Müller, A, Birner, K. Nielsch and U. Gösele (1999). Adv. Mater., 11, 483.CrossRefGoogle Scholar
  91. 91.
    M. Vázquez, K. Pirota, J. Torrejon, D. Navas and M. Hernandez-Velez (2005). J. Magn. Magn. Mater., 294, 174.CrossRefGoogle Scholar
  92. 92.
    M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz and F. Batallán (2004). J. Appl. Phys., 95, 6642.CrossRefGoogle Scholar
  93. 93.
    A.M. Haghiri-Gosnet, C. Vieu, G. Simon, M. Mejías, F. Carcenac and H. Launois (1999). J. Phys. IV, 9(2), 133.Google Scholar
  94. 94.
    C.R.K. Marrian and D.M. Tennant (2003). J. Vac. Sci. Technol. A, 21, S207.CrossRefGoogle Scholar
  95. 95.
    J.I. Martín, J. Nogués, K. Liu, J.L. Vicent and I.K. Schuller (2003). J. Magn. Magn. Mater., 256, 449.CrossRefGoogle Scholar
  96. 96.
    C.Ross (2001). Ann. Rev. Mater. Res., 31, 203.Google Scholar
  97. 97.
    W.O. Rosa, M. Knobel, L. Cescato, A.L. Gobbi and M. Vazquez (2007). Solid State Communications 142, 228.Google Scholar
  98. 98.
    C.A. Ross, H.I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M.C. Abraham and R.J. Ram (1999). J. Vac. Sci. Technol. B, 17, 3168.CrossRefGoogle Scholar
  99. 99.
    S.Y. Chou, P.R. Krauss and P.J. Renstrom (1996). Science, 272, 85.CrossRefGoogle Scholar
  100. 100.
    M. Li, L. Chen and S.Y. Chou (2001). Appl. Phys. Lett., 78, 3322.CrossRefGoogle Scholar
  101. 101.
    S.P. Beaumount (1991). in “Low-dimensional Structures in Semiconductors”. Plenum Press, New York, 109.Google Scholar
  102. 102.
    P.R. Krauss and S.Y. Chou (1997). Appl. Phys. Lett., 71, 3174.CrossRefGoogle Scholar
  103. 103.
    T. Müller, K.-H. Heining and B. Schmidt (2001). Nuc. Instrum. Methods Phys. Res., 175, 468.CrossRefGoogle Scholar
  104. 104.
    Y. Sun, D.-Y. Khang, F. Hua, K. Hurley, R.G. Nuzzo and J.A. Rogers (2005). Adv. Funct. Mater., 15, 30.CrossRefGoogle Scholar
  105. 105.
    J. Viernow, D.Y. Petrovykh, F.K. Men, A. Kirakosian, J.-L. Lin and F.J. Himpsel (1999). Appl. Phys. Lett., 74, 2125.CrossRefGoogle Scholar
  106. 106.
    J.N. Crain, A. Kirakosian, K.N. Altmann, C. Bromberger, S.C. Erwin, J.L: McChesney, J.-L. Lin and F.J. Himpsel (2003). Phys. Rev. Lett., 90, 176805.CrossRefGoogle Scholar
  107. 107.
    Q. Xie, A. Madhukar, P. Chen and N. P. Kobyashi (1995). Phys. Rev. Lett., 75, 2542; V.A. Shchukin and D. Bimberg (1999). Rev. Mod. Phys., 71, 1125.Google Scholar
  108. 108.
    P.W. Tasker (1979). J. Phys. C: Solid State Phys., 12, 4977.CrossRefGoogle Scholar
  109. 109.
    Z.L. Wang, X.Y. Kong and J.M. Zuo (2003). Phys. Rev., Lett., 91(18), 185502.CrossRefGoogle Scholar
  110. 110.
    D. Whang, S. Jin, and Ch.M. Lieber, (2003). Nano Lett., 3(7), 951.CrossRefGoogle Scholar
  111. 111.
    D. Whang, S. Jin and Ch.M. Lieber, (2004). J. Appl. Phys., 43(7B), 4465.Google Scholar
  112. 112.
    Y. Cui, Q. Wei, H. Park and Ch.M. Lieber (2001). Science, 293, 1289.CrossRefGoogle Scholar
  113. 113.
    A. DeHon (2003). IEEE Trans. Nanotech., 2, 23.CrossRefGoogle Scholar
  114. 114.
    G.T. Hu, T.W. Odom and C.M. Lieber (1999). Acc. Chem. Res., 32, 435.CrossRefGoogle Scholar
  115. 115.
    W.Q. Han, S.S. Fan, Q.Q. Li and Y.D. Hu (1997). Science, 277, 1278.CrossRefGoogle Scholar
  116. 116.
    M.T. Bjork, B.J. Ohlsson, C. Thelander, A.I. Persson, K. Deppert, L.R. Wallenberg and L. Samuelson (2002). Appl. Phys. Lett., 81, 4458.CrossRefGoogle Scholar
  117. 117.
    C.R. Martin (1994). Science, 266, 1961.CrossRefGoogle Scholar
  118. 118.
    S. de Franceschi (2003). Appl. Phys. Lett., 83, 344.CrossRefGoogle Scholar
  119. 119.
    D. Navas, M. Hernández-Vélez, and M. Vázquez, W. Lee and K. Nielsch (2007). Appl. Phys. Lett., 90, 192501.CrossRefGoogle Scholar
  120. 120.
    T. Hanrath and B.A. Korgel (2002). J. Am. Chem. Soc., B 104, 1424.CrossRefGoogle Scholar
  121. 121.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan (2003). Adv. Mater., 15(5) 353.CrossRefGoogle Scholar
  122. 122.
    B. Erdem Alaca, H. Sehitoglu and T. Saif (2004). Appl. Phys. Lett., 84, 4669.CrossRefGoogle Scholar
  123. 123.
    A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez and P.G. Schultz (1996). Nature, 382, 609.CrossRefGoogle Scholar
  124. 124.
    B.D. Martin, D.J. Dermody, B.D. Reiss, M. Fang, L.A. Lyon, M.J. Natan and T.E. Mallouk (1999). Adv. Mater., 11, 1021.CrossRefGoogle Scholar
  125. 125.
    E. Braun, Y. Eichen, U. Sivan and G.B. Yoseph (1998). Nature, 391, 775.CrossRefGoogle Scholar
  126. 126.
    O. Jessensky, F. Müller and U. Gösele (1998). Appl. Phys. Lett., 72(10), 1173.CrossRefGoogle Scholar
  127. 127.
    M. Hernández-Vélez, K.R. Pirota, F. Pászti, D. Navas, A. Climent, and M. Vázquez (2005). Appl. Phys. A, 80, 1701.CrossRefGoogle Scholar
  128. 128.
    J.C. Hulteen and C.R. Martin (1997). J. Mater. Chem., 7, 1075.CrossRefGoogle Scholar
  129. 129.
    G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee and C.A. Grimes (2003). J. Mater. Res., 18, 2588.CrossRefGoogle Scholar
  130. 130.
    V.M. Prida, M. Hernández-Vélez, K.R. Pirota, A. Menéndez and M Vázquez (2005). Nanotechnology, 16, 2696.CrossRefGoogle Scholar
  131. 131.
    K. Nielsch and B. Stadler (2007). Template-based synthesis and characterization of high-density ferromagnetic nanowire arrays, in “Handbook Magn. Adv. Magn. Mater., 4, 2227–2255.Google Scholar
  132. 132.
    J. Choi, K. Nielsch, M. Reiche, R.B. Wehrspohn and U. Gösele (2003). J. Vac. Sci. Technol. B, 21(2), 763.CrossRefGoogle Scholar
  133. 133.
    H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura and K. Nishio (2003). Adv. Mater., 15(2), 161.CrossRefGoogle Scholar
  134. 134.
    M. Hernández-Vélez (2006). Thin Solid Films, 495, 51.CrossRefGoogle Scholar
  135. 135.
    H. Masuda, M. Ohya, H. Asoh and K. Nishio (2001). Jpn. J. Appl. Phys., 40, 217.Google Scholar
  136. 136.
    E.J. Bae, W.B. Choi, K.S. Jeong, J U. Chu, G.-S. Park, S. Song and I.K. Yoo (2002). Adv. Mater., 14, 277.CrossRefGoogle Scholar
  137. 137.
    V.M. Prida, K.R. Pirota, D. Navas, A. Asenjo, M. Hernández-Vélez and M. Vázquez (2007). J. Nanosci. Nanotechnol., 7, 272.Google Scholar
  138. 138.
    O. Sánchez, M. Hernández-Vélez, D. Navas, M.A. Auger, J.L. Baldonedo, R. Sanz, K.R. Pirota and M. Vázquez (2006). Thin Solid Films, 495, 149.CrossRefGoogle Scholar
  139. 139.
    M. Vázquez, M. Hernández-Vélez, A. Asenjo, D. Navas, K.R. Pirota, V. Prida, O. Sánchez and J.L. Baldonedo (2006). Physica B, 384, 36.CrossRefGoogle Scholar
  140. 140.
    W.D. Westwood (1988). MRS Bulletin 46.Google Scholar
  141. 141.
    P.J. Kelly and R.D. Arnell (2000). Vacuum, 56, 159.CrossRefGoogle Scholar
  142. 142.
    J.L. Menéndez, G. Armelles, A. Cebollada, C. Quintana, D. Ravelosona, C. Chappert, F. Peiró and A. Cornet (2002). Appl. Phys. Lett., 81, 1603.CrossRefGoogle Scholar
  143. 143.
    A. Ruiz, L. González, A. Mazuelas and F. Briones (1989). Appl. Phys. A, 49, 729.CrossRefGoogle Scholar
  144. 144.
    D.A. Glocker and S.I. Shah (Eds.) “Handbook of thin film process technology”, 1, Inst. Phys. Pub. (1996).Google Scholar
  145. 145.
    Y. Cho (1971). “Film deposition by MBE techniques”.. J. Vac. Sci. Tehcnol., 8.Google Scholar
  146. 146.
    A. Cebollada, J.L. Martinez, J.M. Gallego, J.J. de Miguel, R. Miranda, S. Ferrer, F. Batallan, G. Fillion and J.P. Rebouillat (1989). Phys. Rev. B 39, 9726.Google Scholar
  147. 147.
    R.F.C. Farrow, S.S.P. Parkin, R.F. Marks, K.M. Krishnana and N. Thangaraj (1996). Appl. Phys. Lett., 69, 13.CrossRefGoogle Scholar
  148. 148.
    W. Kern and V.S. Van (1978). “Chemical vapour deposition of inorganic thin films” in Thin Film Processes, Ch. 3, Academic Press.Google Scholar
  149. 149.
    W. Kern (1989). “Chemical Vapour Deposition” in Microelectronic Materials and Processing, Ch. 6, NATO ASI Series, E164.Google Scholar
  150. 150.
    R. Reif (1990). “Plasma Enhanced Chemical Vapour Deposition of Thin Films for Microelectronic” in Handbook of Plasma Processing Technology”, Noyes Pub.Google Scholar
  151. 151.
    I. Goldstein (1992). in “Scanning Electron Microscopy and X-ray Microanalysis”, Plenum Press., N.Y.CrossRefGoogle Scholar
  152. 152.
    G. Margaritondo (1988). in “Introduction to Synchrotron Radiation”, Oxford Univ. Press, N.Y.Google Scholar
  153. 153.
    G. Martínez-Criado et. al. (2005). Appl. Phys. Lett., 87, 061913.CrossRefGoogle Scholar
  154. 154.
    D.C. Koenigsberger et. al. (1988). in “X-Ray Absorption, Principles and Applications. Tehcniques of EXAFS, SEXAFS and XANES”, Wiley.Google Scholar
  155. 155.
    F. Foner (1959). Rev. Sci. Instrum., 30, 548.CrossRefGoogle Scholar
  156. 156.
    S. Foner (1981). IEEE. Trans. Magn., 17, 3358.CrossRefGoogle Scholar
  157. 157.
    S. Foner (1967). J. Appl. Phys., 38, 1510.CrossRefGoogle Scholar
  158. 158.
    J.S. Philo and W. M. Fairbank (1977). Rev. Sci. Instr., 48, 1529.CrossRefGoogle Scholar
  159. 159.
    M. Jaafar, R. Sanz, M. Vázquez and A. Asenjo, J. Jensen and K. Hjort, S. Flohrer, J. McCord and R. Schäfer (2007). Phys. Stat. Sol. (a), 204, 1724.CrossRefGoogle Scholar
  160. 160.
    C. Luna, P. Morales, C. Serna and M. Vázquez (2004). Nanotechnology 15, 293.CrossRefGoogle Scholar
  161. 161.
    X. Batlle and A. Labarta (2002). J. Phys. D: Appl. Phys., 35, R15.CrossRefGoogle Scholar
  162. 162.
    A.G. Roca, M.P. Morales, K. O’Grady and C.J. Serna (2006). Nanotechnology, 17, 2783.CrossRefGoogle Scholar
  163. 163.
    C. Luna, M.P. Morales, C.J. Serna and M. Vazquez (2004). Nanotechnology, 15, S293.CrossRefGoogle Scholar
  164. 164.
    D. Paccard, C. Schlenker, O. Massanet and R. Montmory. A. Yelon (1966). Phys. Stat. Sol., 16, 301.CrossRefGoogle Scholar
  165. 165.
    R. Jungblut, R. Cowhoorn, M.T. Johnson, J. aan de Stegge and A. Reinders (1994). J. Appl. Phys., 75, 6659.CrossRefGoogle Scholar
  166. 166.
    D. Atkinson and R.P. Cowburn (2004). Appl. Phys. Lett., 85, 1386.CrossRefGoogle Scholar
  167. 167.
    B.C. Choi, M. Below, W.K. Heibert, G.E. Ballentine and M.R. Freeman (2001). Phys. Rev. Lett., 86, 728.CrossRefGoogle Scholar
  168. 168.
    N. Qureshi, S. Wang, M.A. Lowther, A.R. Hawkins, S.Kwon, A. Liddle, J. Bokor and H. Schmidt (2005). Nano Lett., 5, 1413.CrossRefGoogle Scholar
  169. 169.
    A. Hubert and R. Shäfer (1998). “Magnetic Domains” Springer, New York.Google Scholar
  170. 170.
    L. Baril, D. Mauri, J. McCord, S. Gider and T. Lin (2001). J. Appl. Phys., 89, 1320.CrossRefGoogle Scholar
  171. 171.
    G. Chrobok and M. Hofmann(1976). Phys. Lett. A, 57, 257.CrossRefGoogle Scholar
  172. 172.
    K. Koike and K. Hayakawa (1984). Appl. Phys. Lett., 45, 585.CrossRefGoogle Scholar
  173. 173.
  174. 174.
    A. Gavrin and J. Unguris (2000). J. Magn. Magn. Mate., 213, 95.CrossRefGoogle Scholar
  175. 175.
    R.J. Celotta, J. Unguris and D.T. Pierce (2002). in Magnetic Interactions and Spin Transport Electronics, edited by S. Wolf and Y. Idzerda, Hingham, MA:Kluwer Academic/Plenum Publishers, 341.Google Scholar
  176. 176.
    P. Fischer, T. Eimüller, G. Schütz, P. Guttmann, G. Schmahl, K. Prügel and G. Bayreuther (1998). J. Phys. D: Appl. Phys., 31, 649.CrossRefGoogle Scholar
  177. 177.
    J.J. Sáenz, N. García, P. Grütter, E. Meyer, H. Heinzelmann, R. Wiesendanger, L. Rosenthaler, H.R. Hidber and H.-J. Guntherodt (1987). J. Appl. Phys., 62, 4293.CrossRefGoogle Scholar
  178. 178.
    P. Grütter, T. Jung, H. Heinzelmann, A. Wadas, E. Meyer, H.R. Hidber and H.J. Güntherodt (1990). J. Appl. Phys., 67, 1437.CrossRefGoogle Scholar
  179. 179.
    S. Morita, R. Wiesendanger and E. Meyer (2002). Springer, Berlin.Google Scholar
  180. 180.
    A. Asenjo, M. Jaafar, D. Navas and M. Vázquez (2006). J. Appl. Phys., 100, 023909.CrossRefGoogle Scholar
  181. 181.
    J.M. García, A. Thiaville and J. Miltat (2002). J. Magn. Magn. Mat., 249, 163.CrossRefGoogle Scholar
  182. 182.
    A. Asenjo, M. Jaafar, E.M. González, J.I. Martin, M. Vázquez and J.L. Vicent (2007). J. Magn. Magn. Mater., 310, e936.CrossRefGoogle Scholar
  183. 183.
    A. Wachowiak, J. Wiebe, M. Bode,O. Pietzsch, M. Morgenstern and R. Wiesendanger (2002). Science, 298, 577.CrossRefGoogle Scholar
  184. 184.
    L. Ciobanu, D.A. Seeber and C.H. Pennington (2002). J. Magn. Reson., 158, 178.CrossRefGoogle Scholar
  185. 185.
    A. Feintuch, G. Alexandrowicz, T. Tashma, Y. Boasson, A. Grayevsky and N. Kaplan (2000). J. Magn. Reson., 142, 382.CrossRefGoogle Scholar
  186. 186.
    A. Blank, C. R. Dunnam, P.P. Borbat and J.H. Freed (2004). Rev. Sci. Inst., 75 (9) 3050.CrossRefGoogle Scholar
  187. 187.
    U. Dibbern (1989). “Magnetoresistive sensors”, in Magnetic Sensors, 5, ed. by R. Boll, K. Overshott (VCH, Weinheim), 341–380.Google Scholar
  188. 188.
    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas (1988). Phys. Rev. Lett., 61(21), 2472–2475.CrossRefGoogle Scholar
  189. 189.
    G. Binasch, P. Grünberg, F. Saurenbach and W. Zinn (1989). Phys. Rev., B 39(7) 4828–4830.Google Scholar
  190. 190.
    J.S. Moodera, L.R. Kinder, T.M. Wong and R. Meservey (1995). Phys. Rev. Lett., 74, 3273.CrossRefGoogle Scholar
  191. 191.
    M. Vázquez and A. Hernando (1996). J. Phys. D: Appl. Phys., 29, 939.CrossRefGoogle Scholar
  192. 192.
    G.V. Kurlyandskaya, V. Fal Miyar, A. Saad, E. Asua and J. Rodríguez (2007). J. Appl. Phys., 101, 054505.CrossRefGoogle Scholar
  193. 193.
    N. Jaffrezic-Renault, C. Martelet, Y. Chevolot and J.-P. Cloarec (2007). Sensors, 7, 589.CrossRefGoogle Scholar
  194. 194.
    S. Pérez-Rial, I. Rodríguez, J. González, J.M. Pérez-Sánchez F. Herranz, N. Beckmann and J. Ruíz-Cabello (2007). J. Pharm. Sci., (in press).Google Scholar
  195. 195.
    J.-M. Nam, C.S. Thaxton and C.A. Mirkin (2003). Science, 301, 1884.CrossRefGoogle Scholar
  196. 196.
    L.M., Rossi, A.D. Quach and Z. Rosenzweig (2004). Anal. Bioanal. Chem., 380, 606.CrossRefGoogle Scholar
  197. 197.
    Ø. Olsvik, T. opovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad and M. Uhlén (1994). Clin. Microbiol. Rev., 7, 43.Google Scholar
  198. 198.
  199. 199.
    I. Miyashiro, C. Kuo, K. Huynh, A. Iida, D. Morton, A. Bilchik, A. Giuliano and D.S.B. Hoon (2001). Clin. Chem., 47, 505.Google Scholar
  200. 200.
    M. Santandreu, S. Solé, E. Fàbregas and S. Alegret (1998). Biosens. Bioelectron., 13, 7.CrossRefGoogle Scholar
  201. 201.
    A.G. Gehring, J.D. Brewster, P.L. Irwin, S.-I. Tu and L.J. Van Houten (1999). J. Electroanal. Chem., 469, 27.CrossRefGoogle Scholar
  202. 202.
    S. Solé, S. Alegret, F. Céspedes, E. Fàbregas and T. Díez-Caballero (1998). Anal. Chem., 70, 1462.CrossRefGoogle Scholar
  203. 203.
    M. Dequaire, C. Degrand and B. Limoges (1999). Anal. Chem., 71, 2571.CrossRefGoogle Scholar
  204. 204.
    S. Helali, C. Martelet, A. Abdelghani, M.A. Maaref and N. Jaffrezic-Renault (2006). Electrochim. Acta, 51, 5182.CrossRefGoogle Scholar
  205. 205.
    G.-H. Kim, A. Rand, Garth and S.V. Letcher (2003). Biosens. Bioelectr., 18, 91.CrossRefGoogle Scholar
  206. 206.
    S. Solé, A. MerkoçI and S. Alegret, TrAC - Trends Anal. Chem., 20, 102.Google Scholar
  207. 207.
    A. Erdem, F. Sayar, H. Karadeniz, G. Guven, M. Ozsoz and E. Piskin (2001). Electroanalysis, 19, 798.CrossRefGoogle Scholar
  208. 208.
    D.B. Robinson, H.H.J. Persson, H. Zeng, G. Li, N. Pourmand, S. Sun, S.X. Wang (2005). Langmuir, 21, 3096.CrossRefGoogle Scholar
  209. 209.
    H. Zhang and M.E. Meyerhoff (2006). Anal. Chem., 78, 609.CrossRefGoogle Scholar
  210. 210.
    A. Hultgren, M. Tanase, C.S. Chen, G.J. Meyer and D.H. Reich (2003). J. Appl. Phys. 93, 7554.CrossRefGoogle Scholar
  211. 211.
    L. Wang, S. Hong, L. Wang, L. Dong, G. Bian, T. Xia and H. Chen (2006). Spectrochim. Acta - Part A: Mol. Biomol. Spectrosc., 65, 439.CrossRefGoogle Scholar
  212. 212.
    J. Wang, A.-N. Kawde, A. Erdem and M. Salazar (2001). Analyst, 126, 2020.CrossRefGoogle Scholar
  213. 213.
    M. Megens and M. Prins (2005). J. Magn. Magn. Mater. 293, 702.CrossRefGoogle Scholar
  214. 214.
    J. Schotter, P.B. Kamp, A. Becker, A. Pühler, G. Reiss and H. Brückl (2004). Biosens. Bioelectron., 19, 1149.CrossRefGoogle Scholar
  215. 215.
    S.G. Grancharov, H. Zeng, S. Sun, S.X. Wang, S. O'Brien, C.B. Murray, J.R. Kirtley and G.A. Held (2005). J. Phys. Chem. B, 109, 13030.CrossRefGoogle Scholar
  216. 216.
    D.L. Graham, H.A. Ferreira, P.P. Freitas and J.M.S. Cabral (2003). Biosens. Bioelectron., 18, 483.CrossRefGoogle Scholar
  217. 217.
    S.H. Chung, A. Hoffmann, S.D. Bader, C. Liu, B. Kay, L. Makowski and L. Chen (2004). Appl. Phys. Lett., 85, 2971.CrossRefGoogle Scholar
  218. 218.
    K. Kriz, J. Gehrke and D. Kriz (1998). Biosens. Bioelectron., 13, 817.CrossRefGoogle Scholar
  219. 219.
    M. Lu, F. Ibraimi, D. Kriz and K. Kriz (2006). Biosens. Bioelectron., 21, 2248.CrossRefGoogle Scholar
  220. 220.
    S. Pérez-Rial, I. Rodríguez, J. González, J.M. Pérez-Sánchez F. Herranz, N. Beckmann and J. Ruíz-Cabello (2007). J. Pharm. Sci. (in press).Google Scholar
  221. 221.
    I. Hilger, R. Trost, J.R. Reichenbach, W. Linß, M.-R. Lisy, A. Berndt and W.A. Kaiser (2007). Nanotechnology, 18, 135103.CrossRefGoogle Scholar
  222. 222.
    K. Müller, J.N. Skepper, M. Posfai, R. Trivedi, S. Howarth, C. Corot, E. Lancelot, P.W. Thompson, A.P. Brown and J.H. Gillard (2007). Biomaterials, 28, 1629.CrossRefGoogle Scholar
  223. 223.
    C. Corot, P. Robert, J.-M. Idée and M. Port (2006). Adv. Drug Deliv. Rev., 58, 1471.CrossRefGoogle Scholar
  224. 224.
    J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon (2007). Nat. Med., 13, 95.CrossRefGoogle Scholar
  225. 225.
    W.J.M. Mulder, R. Koole, R.J. Brandwijk, G. Storm, P.T.K. Chin, G.J. Strijkers, C. De Mello Donegá, K. Nicolay and A.W. Griffioen (2006). Nano Lett., 6, 1.CrossRefGoogle Scholar
  226. 226.
    C.-W. Lu, Y. Hung, J.-K. Hsiao, M. Yao, T.-H. Chung, Y.-S. Lin, S.-H. Wu and Y.-C. Chen (2007). Nano Lett., 7, 149.CrossRefGoogle Scholar
  227. 227.
    W.J. Rogers, C.H. Meyer and C.M. Kramer (2006). Nat. Clin. Pract. Cardiovasc. Med., 3, 554.CrossRefGoogle Scholar
  228. 228.
    C. Wilhelm, L. Bal, P. Smirnov, I. Galy-Fauroux, O. Clément and F. Gazeau (2007). J. Emmerich, Biomater., 28, 3797.CrossRefGoogle Scholar
  229. 229.
    C. Wilhelm, F. Gazeau and J.-C. Bacri (2002). Eur. Biophys. J., 31, 118.CrossRefGoogle Scholar
  230. 230.
    T.R. Pisanic II, J.D. Blackwell, V.I. Shubayev, R.R. Fiñones and S. Jin (2007). Biomaterials, 28, 2572.CrossRefGoogle Scholar
  231. 231.
    D.E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder and V.Ntziachristos (2007). Circulation, 115, 1384.CrossRefGoogle Scholar
  232. 232.
    A. Punnoose, K.M. Reddy, A. Thurber, J. Hays and M.H. Engelhard (2007). Nanotechnology, 18, art. no. 165502.Google Scholar
  233. 233.
    H. Guerrero, G. Rosa, M.P. Morales, F. Del Monte, E.M. Moreno, D. Levy, R. Pérez del Real, T. Belenguer and C.J. Serna (1997). Appl. Phys. Lett., 71, 2698.CrossRefGoogle Scholar
  234. 234.
    M. Zayat, F. del Monte, M.P. Morales, G. Rosa, H. Guerrero, C.J. Serna and D. Levy (2003). Adv. Mater., 15, 1809.CrossRefGoogle Scholar
  235. 235.
    A. Punnoose, K.M. Reddy, A. Thurber, J. Hays and M.H. Engelhard (2007). Nanotechnology, 18, 165502.CrossRefGoogle Scholar
  236. 236.
    I. Enculescu, M.E. Toimil-Molares, C. Zet, M. Daub, L. Westerberg, R. Neumann and R. Spohr (2007). Appl. Phys. A, 86, 43.CrossRefGoogle Scholar
  237. 237.
    A. Anguelouch, D.H. Reich, C.L. Chien and M. Tondra (2004). IEEE Trans. Magn., 40, 2997.CrossRefGoogle Scholar
  238. 238.
    P.D. McGary, L.W. Tan, J. Zou, B.J.H. Stadler, P.R. Downey and A.B. Flatau (2006). J. Appl. Phys., 99, 08B310.CrossRefGoogle Scholar
  239. 239.
    G. Yang, J. Tang, S. Kato, Q. Zhang, L.C. Qin, M. Woodson, L. Liu, J.W. Kim, P.T. Lillehei, C. Park and O. Zhou (2005). Appl. Phys. Lett., 87, 123507.CrossRefGoogle Scholar
  240. 240.
    A. Winkler, T. Muhl, S. Menzel, R. Kozhuharova-Koseva, S. Hampel, A. Leonhardt and B. Buchner (2006). J. Appl. Phys., 99, 104905.CrossRefGoogle Scholar
  241. 241.
    J.A. Sidles, J.L. Garbini and G.P. Drobny (1992). Rev. Sci. Instrum., 63, 3881.CrossRefGoogle Scholar
  242. 242.
    S.R. Garner, S. Kuehn, J.M. Dawlaty, N.E. Jenkins and J.A. Marohn (2004). Appl. Phys. Lett., 84, 5091.CrossRefGoogle Scholar
  243. 243.
    D. Rugar, O. Zueger, S. Hoen, C.S. Yannoni, H.-M. Vieth and R.D. Kendrick (1994). Science, 264, 1560.CrossRefGoogle Scholar
  244. 244.
    H.J. Mamin, M. Poggio, C.L. Degen and D. Rugar (2007). Nat. Nanotechnol., 2, 301.CrossRefGoogle Scholar
  245. 245.
    D. Rugar, R. Budakian, H.J. Mamin and B.W. Chui (2004). Nature 430, 329.CrossRefGoogle Scholar
  246. 246.
    M. Barbic (2005). Nano Lett. 5, 187.CrossRefGoogle Scholar
  247. 247.
    H.J. Mamin, M. Poggio, C.L. Degen and D. Rugar (2007). Nat. Nanotechnol., 2, 301.CrossRefGoogle Scholar
  248. 248.
    C. Thirion, W. Wernsdorfer and D. Mailly (2003). Nat. Mater., 2, 524.CrossRefGoogle Scholar
  249. 249.
    C.C. Tsuei, J.R. Kirtley, C.C. Chi, L.S. Yujahnes, A. Gupta, T. Shaw, J.Z. Sun and M.B. Ketchen (1994). Phys. Rev. Lett. 73, 593.CrossRefGoogle Scholar
  250. 250.
    Y. Ono, A. Ishiyama, N. Kasai and A. Odawara, IEEE Trans. Appl. Super., 15, 640.Google Scholar
  251. 251.
    A. Sandhu, A. Okamoto, I. Shibasaki and A. Oral (2005). Microel. Eng. 73, 524 (2004).CrossRefGoogle Scholar
  252. 252.
    A. Candini, G. C. Gazzadi, A. Di Bona, M. Affronte, D. Ercolani, G. Biasiol and L. Sorba (2007). J. Magn. Magn. Mater. 310, 2752.CrossRefGoogle Scholar
  253. 253.
    G. Boero, I. Utke, T. Bret, N. Quack, M. Todorova, S. Mouaziz, P. Kejik, J. Brugger, R.S. Popovic and P. Hoffmann (2005). Appl. Phys. Lett., 86, 42503.CrossRefGoogle Scholar
  254. 254.
    S. Mouaziz, G. Boero, R.S. Popovic and J. Brugger (2006). J. Microelectromech. Syst. 15, 4.CrossRefGoogle Scholar
  255. 255.
    A.N. Grigorenko and S.J. Bending G.D. Howells and R.G. Humphreys (2000). Phys. Rev. B, 62, 721.CrossRefGoogle Scholar
  256. 256.
    M. Oszaldowski and T. Berus (2006). Thin Solid Films, 515, 2692.CrossRefGoogle Scholar
  257. 257.
    T. Berus, M. Oszwaldowski and J. Grabowski (2004). Sens. Actuat. A, 116, 75; M. Oszwaldowski (1998). Sens. Act. A, 68, 234.Google Scholar
  258. 258.
  259. 259.
    K. Kirk (2000). Contemp. Phys., 41, 61.CrossRefGoogle Scholar
  260. 260.
    Hitachi Global Storage Technologies web page.Google Scholar
  261. 261.
    D. Weller and T. McDaniel (2006). “Media for extremely high density recording” in “Advanced Magnetic Nanostructures” Ed. D. Sellmyer and R. Skomski, Springer 295.Google Scholar
  262. 262.
    J.C.S. Kools, K. Rook, H. Hegde, S.B. Sant, J. Wong, W. Xiong, B. Druz, A. Lam, A. Devayasaham and I. Wagner (2000). Thin Solid Films, 377, 705.CrossRefGoogle Scholar
  263. 263.
    M. Suzuki, T. Ohwaki and Y. Taga (1997). Thin Solid Films, 304, 333.CrossRefGoogle Scholar
  264. 264.
    W.H. Meiklejohn and C.P. Bean (1957). Phys. Rev., 105, 904.CrossRefGoogle Scholar
  265. 265.
    J. Nogués and I.K. Schuller (1999). J. Magn. Magn. Mater., 192, 203.CrossRefGoogle Scholar
  266. 266.
    K. Li, Y. Wu, G. Han, J. Qiu, Y. Zheng, Z. Guo, L. An and P. Luo (2006). Thin Solid Films, 505, 22.CrossRefGoogle Scholar
  267. 267.
    H. R. Liu, B. J. Qu, T. L. Ren, L. T. Liu, H. L. Xie, C. X. Li and W. J. Ku (2003), J. Magn. Magn. Mater. 267, 386.Google Scholar
  268. 268.
    T. Miyazaki and N. Tezuka (1995). J. Magn. Magn. Mater., 139, L231.Google Scholar
  269. 269.
    S. Tehrani, B. Engel, J. M. Slaughter, E. Chen, M. de Herrera, M. Durlam, P. Naji, R. Whig, J. Janesky and J. Calder (2000). IEEE Trans. Magn. 36, 2752; E. Nakashio, J. Sugawara, S. Onoc and S. Kumagai (2001). J. Appl. Phys. 89, 7356.Google Scholar
  270. 270.
    S.S.P. Parkin, C. Kaiser and A. Panchula (2004). Nat. Mater. 3, 862.CrossRefGoogle Scholar
  271. 271.
    H.X. Wei, T.X. Wang, Z.M. Zeng, X.Q. Zang, J. Zhao and X.F. Han (2006). J. Magn. Magn. Mater. 303, e208.CrossRefGoogle Scholar
  272. 272.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova and D. M. Treger (2001). Science, 294, 1488.CrossRefGoogle Scholar
  273. 273.
    J.S. Moodera, L.R. Kinder, T.M. Wong and R. Meservey (1995). Phys. Rev. Lett., 74, 3273.CrossRefGoogle Scholar
  274. 274.
    J.M. George, L.G. Pereira, A. Barthélémy, F. Petroff, L. Steren, J.L. Duvail, and A. Fert, R. Loloee, P. Holody and P.A. Schroeder (1994). Phys. Rev. Lett., 72, 408.CrossRefGoogle Scholar
  275. 275.
    S. Sahoo, T. Kontos, JU RG Furer, C. Hoffmann, M. Gräber, A. Cottet and C. Schönenberger (2005). Nature Physics, 1, 99.CrossRefGoogle Scholar
  276. 276.
    E. Mirowski, J. Moreland, S. Russek, M. Donahue and K. Hsieh (2007). J. Magn. Magn. Mater., 311, 401.CrossRefGoogle Scholar
  277. 277.
    H. Hauser and M. Evanzin (2006). Sens. Actuat. A: Phys., 129, 231.CrossRefGoogle Scholar
  278. 278.
    P. Ripka and G. Vértesy (2000). J. Magn. Magn. Mat., 795 (215–216).Google Scholar
  279. 279.
    B. Sepúlveda, A. Calle, L.M. Lechuga and G. Armelles (2006). Opt. Lett. 31, 1085.CrossRefGoogle Scholar
  280. 280.
    S.L. Sensia at
  281. 281.
    B. Sepúlveda, G. Armelles and L.M. Lechuga (2007). Sens. Actuat. A, 134, 339.CrossRefGoogle Scholar
  282. 282.
    I. Sandu, L. Presmanes, P. Alphonse and P. Tailhades (2006). Thin Solid Films, 495, 130.CrossRefGoogle Scholar
  283. 283.
    K. Tiefenthaler and W. Lukosz (1985). Thin Solid Films, 126, 205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Manuel Vázquez
    • 1
  • Aqustina Asenjo
    • 1
  • Maria del Puerto Morales
    • 1
  • Kleber Roberto Pirota
    • 1
  • Giovanni Badini-Confalonieri
    • 1
  • Manuel Hernández-Vélez
    • 1
  1. 1.Instituto de Ciencia de MaterialesMadridSpain

Personalised recommendations