Quantum Dots for Sensing

  • Javier Goicoechea
  • Francisco J. Arregui
  • Ignacio R. Matias


Quantum confinement has become a powerful tool for creating new materials with extraordinary properties. Since 1980s, the quantum effects on materials have become relevant as far as the scientific community has focused its attention on smaller devices. When certain particle scale is trespassed, quantum confinement effects start to play a relevant role in the macroscopic properties of the matter. Since their beginning, quantum-confined structures have been widely used in optoelectronic device technology rather than in sensor applications. Nevertheless, sensor applications based on quantum dots experiment a real boost thanks to the semiconductor nanocrystals. The possibility of having high-quality, industrially scaled-up, biocompatible quantum dot nanocrystals has supposed a real breakthrough in the biological and medical fields. Quantum dots significantly improve the sensing tools in applications such as cellular assays, cancer detection, or DNA sequencing. This chapter summarizes the state of the art of the use of quantum dots in the sensor field.


Quantum Well Molecularly Imprint Polymer Quantum Confinement Live HeLa Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brus LE (1984). Electron–electron and electron–hole interactions in small semiconductor crystallites – the size dependence of the lowest excited electronic state, J Chem Phys, 80, 9: 4403–4409.Google Scholar
  2. 2.
    Gaponenko SV (1998). Optical Properties of Semiconductor nanocrystals. Cambridge University Press, Cambridge.Google Scholar
  3. 3.
    Murphy CJ and Coffer JL (2002). Quantum dots: A primer, Appl Spectrosc, 56, 1: 16A–27A.Google Scholar
  4. 4.
    Bryant GW and Solomon GS (2005). Optics of Quantum Dots and Wires. Artech House, Boston, MA.Google Scholar
  5. 5.
    Neumann W, Kirmse H, Hausler I, et al. (2004). Quantitative TEM analysis of quantum structures, J Alloy Comp, 382, 1–2: 2–9.Google Scholar
  6. 6.
    Tachibana K, Someya T, Ishida S, et al. (2000). Formation of uniform 10-nm-scale InGaN quantum dots by selective MOCVD growth and their micro-photoluminescence intensity images, J Cryst Growth, 221: 576–580.Google Scholar
  7. 7.
    Henini M, Sanguinetti S, Brusaferri L, et al. (1997). Structural and optical characterization of self-assembled InAs-GaAs quantum dots grown on high index surfaces, Microelectron J, 28: 933–938.Google Scholar
  8. 8.
    Cao YW and Banin U (2000). Growth and properties of semiconductor core/shell nanocrystals with in as cores, J Am Chem Soc, 122, 40: 9692–9702.Google Scholar
  9. 9.
    Hardman R (2006). A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors, Environ Health Perspect, 114, 2: 165–172.Google Scholar
  10. 10.
    Colvin VL (2003). The potential environmental impact of engineered nanomaterials, Nat Biotech, 21, 10: 1166–1170.Google Scholar
  11. 11.
    Hoet PH, Nemmar A, Nemery B (2004). Health impact of nanomaterials? Nat Biotech, 22, 19.Google Scholar
  12. 12.
    Tsay JM and Michalet X (2005). New light on quantum dot cytotoxicity, Chem Biol, 12, 11: 1159–1161.Google Scholar
  13. 13.
    Peng XG, Schlamp MC, Kadavanich AV, et al. (1997). Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility, J Am Chem Soc, 119, 30: 7019–7029.Google Scholar
  14. 14.
    Han MY, Gao XH, Su JZ, et al. (2001). Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat Biotech, 19, 7: 631–635.Google Scholar
  15. 15.
    Bruchez M, Moronne M, Gin P, et al. (1998). Semiconductor nanocrystals as fluorescent biological labels, Science, 281, 5385: 2013–2016.Google Scholar
  16. 16.
    Koyama T, Ohtsuka S, Nagata H, Tanaka S (1992). Fabrication of microcrystallites of II-VI-compound semiconductors by laser ablation method, J Cryst Growth, 117, 1–4: 156–160.Google Scholar
  17. 17.
    Danek M, Jensen KF, Murray CB, et al. (1994). Electrospray organometallic chemical-vapor-deposition – a novel technique for preparation of II-VI quantum-dot composites, Appl Phys Lett, 65, 22: 2795–2797.Google Scholar
  18. 18.
    Sooklal K, Hanus LH, Ploehn HJ, et al. (1998). A blue-emitting CdS/dendrimer nanocomposite, Adv Mater, 10: 1083.Google Scholar
  19. 19.
    Huang JM, Sooklal K, Murphy CJ, et al. (1999). Polyamine-quantum dot nanocomposites: Linear versus starburst stabilizer architectures, Chem Mater, 11: 3595–3601.Google Scholar
  20. 20.
    Spanhel L, Haase M, Weller H, et al. (1987). Photochemistry of colloidal semiconductors 20 surface modification and stability of strong luminescing CdS particles, J Am Chem Soc, 109: 5649–5655.Google Scholar
  21. 21.
    Murray CB, Norris DJ, Bawendi MG (1993). Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J Am Chem Soc, 115: 8706–8715.Google Scholar
  22. 22.
    Peng ZA and Peng XG (2001). Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor, J Am Chem Soc, 123: 183–184.Google Scholar
  23. 23.
    Kim S, Lim YT, Soltesz EG, et al. (2004). Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nat Biotechnol, 22: 93–97.Google Scholar
  24. 24.
    Medintz IL, Uyeda HT, Goldman ER, et al. (2005). Quantum dot bioconjugates for imaging, labelling and sensing, Nat Mater, 4: 435–446.Google Scholar
  25. 25.
    Costa-Fernandez JM, Pereiro R, and Sanz-Medel A (2006). The use of luminescent quantum dots for optical sensing, Trends Anal Chem, 25, 3: 207–218.Google Scholar
  26. 26.
    Ludolph B, Malik MA, O'Brien P, et al. (1998). Novel single molecule precursor routes for the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide, Chem Commun, 17: 1849–1850.Google Scholar
  27. 27.
    Crouch DJ, O'Brien P, Malik MA, et al. (2003). A one-step synthesis of cadmium selenide quantum dots from a novel single source precursor, Chem Commun, 12: 1454–1455.Google Scholar
  28. 28.
    Dabbousi BO, RodriguezViejo J, Mikulec FV, et al. (1997). (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J Phys Chem B, 101, 46: 9463–9475.Google Scholar
  29. 29.
    Hines MA and Guyot-Sionnest P (1996). Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals, J Phys Chem, 100, 2: 468–471.Google Scholar
  30. 30.
    Chan WCW and Nie SM (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, 281, 5385: 2016–2018.Google Scholar
  31. 31.
    Wu XY, Liu HJ, Liu JQ, et al. (2003). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nat Biotechnol, 21, 1: 41–46.Google Scholar
  32. 32.
    Lim JG, Park YJ, Park YM, et al. (2005). Effect of InxGa1-xAs strain release layers on the microstructural and interband transition properties of InAs/GaAs quantum dots, J Cryst Growth, 275, 3–4: 415–421.Google Scholar
  33. 33.
    Sheehan JC, Boshart GL and Cruickshank PA (1961). Convenient synthesis of water-soluble carbodiimides, J Org Chem, 26, 7: 2525.Google Scholar
  34. 34.
    Bodanszky M (1992). The myth of coupling reagents. Pept Res, 5, 3: 134–139.Google Scholar
  35. 35.
    Kloepfer JA, Mielke RE, Wong MS, et al. (2003). Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol, 69, 7: 4205–4213.Google Scholar
  36. 36.
    Akerman ME, Chan WCW, Laakkonen P, et al. (2002). Nanocrystal targeting in vivo, Proc Natl Acad Sci, 99, 20: 12617–12621.Google Scholar
  37. 37.
    Pinaud F, King D, Moore HP, et al. (2004). Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides, J Am Chem Soc, 126, 19: 6115–6123.Google Scholar
  38. 38.
    Clapp AR, Medintz IL, Mauro JM, et al. (2004). Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors, J Am Chem Soc, 126, 1: 301–310.Google Scholar
  39. 39.
    Medintz IL, Trammell SA, Mattoussi H, et al. (2004). Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor, J Am Chem Soc, 126, 1: 30–31.Google Scholar
  40. 40.
    Medintz IL, Konnert JH, Clapp AR, et al. (2004). A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly, Proc Natl Acad Sci, 101, 26: 9612–9617.Google Scholar
  41. 41.
    Yu WW, Chang E, Drezek R, et al. (2006). Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun, 348, 3: 781–786.Google Scholar
  42. 42.
    Dubertret B, Skourides P, Norris DJ, et al. (2002). In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science, 298, 5599: 1759–1762.Google Scholar
  43. 43.
    Gao XH, Cui YY, Levenson RM, et al. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots, Nat Biotechnol, 22, 8: 969–976.Google Scholar
  44. 44.
    Edgar R, McKinstry M, Hwang J, et al. (2006). High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes, Proc Natl Acad Sci, 103, 13: 4841–4845.Google Scholar
  45. 45.
    Dahan M, Levi S, Luccardini C, et al. (2003). Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking, Science, 302, 5644: 442–445.Google Scholar
  46. 46.
    Marshall D, Pedley RB, Boden JA, et al. (1996). Polyethylene glycol modification of a galactosylated streptavidin clearing agent: Effects on immunogenicity and clearance of a biotinylated anti-tumour antibody, Br J Cancer, 73, 5: 565–572.Google Scholar
  47. 47.
    Rogach AL, Kornowski A, Gao MY, et al. (1999). Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals, J Phys Chem B, 103, 16: 3065–3069.Google Scholar
  48. 48.
    Pathak S, Choi SK, Arnheim N, et al. (2001). Hydroxylated quantum dots as luminescent probes for in situ hybridization, J Am Chem Soc, 123, 17: 4103–4104.Google Scholar
  49. 49.
    Goldman ER, Anderson GP, Tran PT, et al (2002). Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays, Anal Chem, 74, 4: 841–847.Google Scholar
  50. 50.
    Mattoussi H, Mauro JM, Goldman ER, et al. (2000). Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J Am Chem Soc, 122, 49: 12142–12150.Google Scholar
  51. 51.
    Mattoussi H, Mauro JM, Goldman ER, et al. (2001). Bioconjugation of highly luminescent colloidal CdSe-ZnS quantum dots with an engineered two-domain recombinant protein, Phys Status Solidi B- Basic Res, 224, 1: 277–283.Google Scholar
  52. 52.
    Moore DE and Patel K (2001). Q-CdS photoluminescence activation on Zn2+ and Cd2+ salt introduction, Langmuir, 17, 8: 2541–2544.Google Scholar
  53. 53.
    Lynes MA, Kang YJ, Sensi SL, Perdrizet GA, et al. (2007). Heavy metal ions in normal physiology, toxic stress, and cytoprotection, Ann N Y Acad Sci, 1113: 159–172.Google Scholar
  54. 54.
    Duffus JH (2002). “Heavy metals” – A meaningless term? Pure Appl Chem, 74, 5: 793–807.Google Scholar
  55. 55.
    Chen YF and Rosenzweig Z (2002). Luminescent CdS quantum dots as selective ion probes, Anal Chem, 74, 19: 5132–5138.Google Scholar
  56. 56.
    Li J, Bao DS, Hong X, et al. (2005). Luminescent CdTe quantum dots and nanorods as metal ion probes, Colloids Surf A, 257, 58: 267–271.Google Scholar
  57. 57.
    Chen JL and Zhu CQ (2005). Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal Chim Acta, 546, 2: 147–153.Google Scholar
  58. 58.
    Wang XJ, Ruedas-Rama MJ, and Hall EAH (2007). The emerging use of quantum dots in analysis, Anal Lett, 40, 8: 1497–1520.Google Scholar
  59. 59.
    Isarov AV and Chrysochoos J (1997). Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: Surface modification with copper(II) ions, Langmuir, 13, 12: 3142–3149.Google Scholar
  60. 60.
    Liang JG, Ai XP, He ZK, et al. (2004). Functionalized CdSe quantum dots as selective silver ion chemodosimeter, Analyst, 129, 7: 610.Google Scholar
  61. 61.
    Xie HY, Liang HG, Zhang ZL, et al. (2004). Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe, Spectrochim Acta Part A, 60, 11: 2527–2530.Google Scholar
  62. 62.
    Bo C and Ping Z (2005). A new determining method of copper(III) ions at ng ml(-1) levels based on quenching of the water-soluble nanocrystals fluorescence, Anal Bioanal Chem, 381, 4: 986–992.Google Scholar
  63. 63.
    Fernandez-Arguelles MT, Jin WJ, Costa-Fernandez JM, et al. (2005). Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements, Anal Chim Acta, 549, 1–2: 20–25.Google Scholar
  64. 64.
    Gattas-Asfura KA and Leblanc RM (2003). Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I), Chem Commun, 21: 2684–2685.Google Scholar
  65. 65.
    Lakowicz JR, Gryczynski I, Gryczynski Z, et al. (1999). Luminescence spectral properties of CdS nanoparticles, J Phys Chem B, 103, 36: 7613–7620.Google Scholar
  66. 66.
    Sarkar SK, Chandrasekharan N, Gorer S, et al. (2002). Reversible adsorption-enhanced quantum confinement in semiconductor quantum dots, Appl Phys Lett, 81, 26: 5045–5047.Google Scholar
  67. 67.
    Jin WJ, Fernandez-Arguelles MT, Costa-Fernandez JM, et al. (2005). Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions, Chem Commun, 7: 883–885.Google Scholar
  68. 68.
    Chen CY, Cheng CT, Lai CW, et al. (2006). Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O, Chem Commun, 3: 263–265.Google Scholar
  69. 69.
    Goldman ER, Balighian ED, Mattoussi H, et al. (2002). Avidin: A natural bridge for quantum dot-antibody conjugates, J Am Chem Soc, 124, 22: 6378–6382.Google Scholar
  70. 70.
    Goldman ER, Balighian ED, Kuno MK, et al (2002). Luminescent quantum dot-adaptor protein-antibody conjugates for use in fluoroimmunoassays, Phys Stat Solidi B, 229, 1: 407–414.Google Scholar
  71. 71.
    Makrides SC, Gasbarro C, and Bello JM (2005). Bioconjugation of quantum dot luminescent probes for Western blot analysis, Biotechnology, 39, 4: 501–506.Google Scholar
  72. 72.
    Hoshino A, Fujioka K, Manabe N, et al. (2005). Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiol Immun, 49, 5: 461–470.Google Scholar
  73. 73.
    Bakalova R, Zhelev Z, Ohba H, et al (2005). Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins, J Am Chem Soc, 127, 26: 9328–9329.Google Scholar
  74. 74.
    Goldman ER, Clapp AR, Anderson GP, et al. (2003). Multiplexed toxin analysis using four colors of quantum dot fluororeagents, Anal Chem, 76, 3: 684–688.Google Scholar
  75. 75.
    Michalet X, Pinaud FF, Bentolila LA, et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics, Science, 307, 5709: 538–544.Google Scholar
  76. 76.
    RG. Neuhauser RG, Shimizu KT, Woo WK, et al. (2000). Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots, Phys Rev Lett, 85, 15: 3301–3304.Google Scholar
  77. 77.
    Tada H, Higuchi H, Wanatabe TM, et al. (2007). In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice, Cancer Res, 67, 3: 1138–1144.Google Scholar
  78. 78.
    Courty S, Luccardini C, Bellaiche Y, et al. (2006). Tracking Individual Kinesin Motors in Living Cells Using Single Quantum-Dot Imaging, Nano Lett, 6, 7: 1491–1495.Google Scholar
  79. 79.
    Xiao Y and Barker PE (2004). Semiconductor nanocrystal probes for human metaphase chromosomes, Nucl Ac Res, 32, 3: E28.Google Scholar
  80. 80.
    Wu SM, Zha X, Zhang ZL, et al. (2006). Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli, Chemphyschem, 7, 5: 1062–1067.Google Scholar
  81. 81.
    Xu HX, Sha MY, Wong EY, et al. (2003). Multiplexed SNP genotyping using the Qbead (TM) system: a quantum dot-encoded microsphere-based assay, Nucl Ac Res, 31, 8: E43.Google Scholar
  82. 82.
    Gerion D, Chen FQ, Kannan B, et al. (2003). Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays, Anal Chem, 75, 18: 4766–4772.Google Scholar
  83. 83.
    Patolsky F, Gill R, Weizmann Y, et al. (2003). Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots, J Am Chem Soc, 125, 46: 13918–13919.Google Scholar
  84. 84.
    Kim JH, Morikis D, and Ozkan M (2004). Adaptation of inorganic quantum dots for stable molecular beacons, Sens Act B, 102, 2: 315–319.Google Scholar
  85. 85.
    Tyagi S and Kramer FR (1996). Molecular beacons: Probes that fluoresce upon hybridization, Nat Biotech, 14, 3: 303–308.Google Scholar
  86. 86.
    Cai W, Hsu AR, Li ZB, et al (2007). Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett, 2, 6: 265–281.Google Scholar
  87. 87.
    Tokumasu F and Dvorak J (2003). Development and application of quantum dots for immunocytochemistry of human erythrocytes, J Microsc, 211: 256–261.Google Scholar
  88. 88.
    Lacoste TD, Michalet X, Pinaud F, et al. (2000). Ultrahigh-resolution multicolor colocalization of single fluorescent probes, Proc Natl Acad Sci, 97, 17: 9461–9466.Google Scholar
  89. 89.
    Smith AM, Dave S, Nie SM, et al. (2006). Multicolor quantum dots for molecular diagnostics of cancer, Exp Rev Mol Diagn, 6, 2: 231–244.Google Scholar
  90. 90.
    Jaiswal JK, Mattoussi H, Mauro JM, et al. (2003). Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat Biotech, 21, 1: 47–51.Google Scholar
  91. 91.
    Lidke DS, Nagy P, Heintzmann R, et al. (2004). Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction, Nat Biotech, 22, 2: 198–203.Google Scholar
  92. 92.
    Sukhanova A, Devy J, Venteo L, et al. (2004). Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells, Anal Biochem, 324, 1: 60–67.Google Scholar
  93. 93.
    Minet O, Dressler C, and Beuthan J (2004). Heat stress induced redistribution of fluorescent quantum dots in breast tumor cells, J Fluoresc, 14, 3: 241–247.Google Scholar
  94. 94.
    Rosenthal SJ, Tomlinson A, Adkins EM, et al. (2002). Targeting cell surface receptors with ligand-conjugated nanocrystals, J Am Chem Soc, 124, 17: 4586–4594.Google Scholar
  95. 95.
    Yao J, Larson DR, Vishwasrao HD, et al. (2005). Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution, Proc Natl Acad Sci, 102, 40: 14284–14289.Google Scholar
  96. 96.
    Hohng S and Ha T (2004). Near-complete suppression of quantum dot blinking in ambient conditions, J Am Chem Soc, 126: 1324–1325.Google Scholar
  97. 97.
    Larson DR, Zipfel WR, Williams RM, et al. (2003). Water-soluble quantum dots for multiphoton fluorescence imaging in vivo, Science, 300: 1434–1436.Google Scholar
  98. 98.
    Dahan M, Levi S, Luccardini C, et al. (2003). Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking, Science, 302: 442–445.Google Scholar
  99. 99.
    Hanaki K, Momo A, Oku T, et al. (2003). Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker, Biochem Biophys Res Commun, 302, 3: 496–501.Google Scholar
  100. 100.
    Chen FQ and Gerion D (2004). Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells, Nano Lett. 4, 10: 1827–1832.Google Scholar
  101. 101.
    Kaul Z, Yaguchi T, Kaul SC, et al. (2003). Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates, Cell Res, 13, 6: 503–507.Google Scholar
  102. 102.
    Mansson A, Sundberg M, Balaz M, et al. (2004). In vitro sliding of actin filaments labelled with single quantum dots, Biochem Biophys Chem Commun, 314, 2: 529–534.Google Scholar
  103. 103.
    Ishii D, Kinbara K, Ishida Y, et al. (2003). Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles, Nature, 423, 6940: 628–632.Google Scholar
  104. 104.
    Zhu L, Ang S, and Liu WT (2004). Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia, App Environ Microbiol, 7, 1: 597–598.Google Scholar
  105. 105.
    Tully E, Hearty S, Leonard P, et al. (2006). The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins, Int J Biol Macromol, 39, 1–3: 127–134.Google Scholar
  106. 106.
    Hahn MA, Tabb JS, and Krauss TD (2005). Detection of single bacterial pathogens with semiconductor quantum dots, Anal Chem, 77, 15: 4861–4869.Google Scholar
  107. 107.
    Yang LJ and Li YB (2006). Simultaneous detection of Escherichia coli O157 : H7 and Salmonella Typhimurium using quantum dots as fluorescence labels, Analyst, 131, 3: 394–401.Google Scholar
  108. 108.
    Mattheakis LC, Dias JM, Choi YJ, et al. (2004). Optical coding of mammalian cells using semiconductor quantum dots, Anal Biochem, 327, 2: 200–208.Google Scholar
  109. 109.
    Ramachandran S, Merrill NE, Blick RH, et al. (2005). Colloidal quantum dots initiating current bursts in lipid bilayers, Biosens Bioelectr, 20, 10: 2173–2176.Google Scholar
  110. 110.
    Maysinger D, Lovric J, Eisenberg A, et al. (2007). Fate of micelles and quantum dots in cells, Eur J Pharma Biopharma, 65: 270–281.Google Scholar
  111. 111.
    Pellegrino T, Parak WJ, Boudreau R, et al. (2003). Quantum dot-based cell motility assay, Differentiation, 71: 542–548.Google Scholar
  112. 112.
    Winter JO, Liu TY, Korgel BA, et al. (2001). Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells, Adv Mat, 13, 22: 1673–1677.Google Scholar
  113. 113.
    Lim YT, Kim S, Nakayama A, et al. (2003). Selection of quantum dot wavelengths for biomedical assays and imaging, Mol Imaging, 2, 1: 50–64.Google Scholar
  114. 114.
    Bremer C, Tung CH, and Weissleder R (2001). In vivo molecular target assessment of matrix metalloproteinase inhibition, Nat Med, 7: 743–748.Google Scholar
  115. 115.
    Weissleder R, Tung CH, and Mahmood U (1999). In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nat Biotech, 17: 375–378.Google Scholar
  116. 116.
    Cerussi AE, Berger AJ, Bevilacqua F, et al. (2001). Sources of absorption and scattering contrast for near-infrared optical mammography, Acad Radiol. 8, 3: 211–218.Google Scholar
  117. 117.
    Voura EB, Jaiswal JK, Mattoussi H, et al. (2004). Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy, Nat Med, 10, 9: 993–998.Google Scholar
  118. 118.
    Rieger S, Kulkarni RP, Darcy D, et al. (2005). Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos, Dev Dyn, 234, 3: 670–681.Google Scholar
  119. 119.
    Serrano EE and Knight VB, (2005). Multiphoton imaging of quantum dot bioconjugates in cultured cells following Nd: YLF laser excitation, Proc SPIE, 5705: 225–234.Google Scholar
  120. 120.
    Levene MJ, Dombeck DA, Kasischke KA, et al. (2004). In Vivo Multiphoton Microscopy of Deep Brain Tissue, J Neurophysiol, 91: 1908–1912.Google Scholar
  121. 121.
    Stroh M, Zimmer JP, Duda DG, et al. (2005). Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo, Nat Med, 11, 678–682.Google Scholar
  122. 122.
    Smith JD, Fisher GW, Waggoner AS, et al. (2007). The use of quantum dots for analysis of chick CAM vasculature, Microvasc Res, 73, 2: 75–83.Google Scholar
  123. 123.
    Leng T, Miller JM, Bilbao KV, et al. (2004). The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation, Retina 24, 3: 427–434.Google Scholar
  124. 124.
    Ballou B, Lagerholm BC, Ernst LA, et al. (2004). Noninvasive imaging of quantum dots in mice, Bioconj Chem, 15, 1: 79–86.Google Scholar
  125. 125.
    Kim S, Fisher B, Eisler HJ, et al. (2003). Type-II Quantum Dots: CdTe/CdSe (Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures, J Am Chem Soc, 125, 38: 11466–11467.Google Scholar
  126. 126.
    Kim SW, Zimmer JP, Ohnishi S, et al. (2005). Engineering InAsxP1-x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared, J Am Chem Soc, 127, 30: 10526–10532.Google Scholar
  127. 127.
    Parungo CP, Colson YL, Kim SW, et al. (2005). Sentinel lymph node mapping of the pleural space, Chest, 127, 5: 1799–1804.Google Scholar
  128. 128.
    Parungo CP, Soybel DI, Colson YL, et al. (2007). Lymphatic drainage of the peritoneal space: a pattern dependent on bowel lymphatics, Ann Surg Oncol, 14, 2: 286–298.Google Scholar
  129. 129.
    Frangioni JV, Kim SW, Ohnishi S, et al. (2007). Sentinel lymph node mapping with type-II quantum dots, Methods Mol Biol, 374: 147–159.Google Scholar
  130. 130.
    Soltesz EG, Kim S, Laurence RG, et al. (2005). Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots, Ann Thorac Surg, 79, 1: 269–277.Google Scholar
  131. 131.
    Parungo CP, Ohnishi S, Kim SW, et al. (2005). Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging, J Thorac Cardiovasc Sur, 125, 4: 844–850.Google Scholar
  132. 132.
    Soltesz EG, Kim S, Kim SW, et al (2006). Sentinel lymph node mapping of the gastrointestinal tract by using invisible light, Ann Surg Oncol, 13, 3: 386–396.Google Scholar
  133. 133.
    Thorne RG and Nicholson C (2006). In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space, Proc Natl Acad Sci, 103, 14: 5567–5572.Google Scholar
  134. 134.
    Muhammad O, Popescu A, and Toms SA (2007). Macrophage-mediated colocalization of quantum dots in experimental glioma, Methods Mol Biol, 374: 161–171.Google Scholar
  135. 135.
    Popescu MA and Toms SA (2006). In vivo optical imaging using quantum dots for the management of brain tumors, Exp Rev Mol Diagn, 6, 6: 879–890.Google Scholar
  136. 136.
    Jackson H, Muhammad O, Daneshvar H, et al. (2007). Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas, Neurosurgery, 60, 3: 524–529.Google Scholar
  137. 137.
    Derfus AM, Chan WCW, and Bhatia SN (2004). Probing the cytotoxicity of semiconductor quantum dots, Nano Lett, 4, 1: 11–18.Google Scholar
  138. 138.
    Jiang W, Singhal A, and Kim BY (2008). Assessing near-infrared quantum dots for deep tissue, organ, and animal imaging applications, J Assoc Lab Autom, 13, 1: 6–12.Google Scholar
  139. 139.
    Cai W, Shin DW, Chen K, et al. (2006). Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects, Nano Lett, 6, 4: 669–676.Google Scholar
  140. 140.
    Yu X, Chen L, Li K, et al. (2007). Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo, J Biomed Opt, 12, 1: 014008.Google Scholar
  141. 141.
    Alivisatos AP, Gu WW, and Larabell C (2005). Quantum dots as cellular probes, Annual Rev Biomed Eng, 7: 55–76.Google Scholar
  142. 142.
    Landin L, Miller MS, Pistol ME, et al. (1998). Optical studies of individual InAs quantum dots in GaAs: few-particle effects, Science, 280: 262–264.Google Scholar
  143. 143.
    Tanaka N, Yamasaki J, Fuchi S, et al. (2004). First Observation of InxGa1-xAs Quantum Dots in GaP by Spherical-Aberration-Corrected HRTEM in Comparison with ADF-STEM and Conventional HRTEM, Microsc Microanal, 10, 1: 139–145.Google Scholar
  144. 144.
    Zimmer JP, Kim SW, Ohnishi S, et al. (2006). Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging, J Am Chem Soc, 128, 8: 2526–2527.Google Scholar
  145. 145.
    Liu Y, Kim M, Wang Y, et al. (2006). Highly Luminescent, Stable, and Water-Soluble CdSe/CdS Core-Shell Dendron Nanocrystals with Carboxylate Anchoring Groups, Langmuir, 22, 14: 6341–6345.Google Scholar
  146. 146.
    So MK, Xu C, Loening AM, Gambhir SS, et al. (2006). Self-illuminating quantum dot conjugates for in vivo imaging, Nat Biotech, 24: 339–343.Google Scholar
  147. 147.
    Walker GW, Sundar VC, and Rudzinski CM (2003). Quantum-dot optical temperature probes, Appl Phys Lett, 83: 3555–3557.Google Scholar
  148. 148.
    de Bastida G, Arregui FJ, Goicoechea J, et al. (2006). Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer, IEEE Sens J, 6, 6: 1378–1379.Google Scholar
  149. 149.
    Bravo J, Matias IR, Del Villar I, et al. (2006). Nanofilms on hollow core fiber-based structures: an optical study, J Lightwave Technol, 24, 5: 2100–2107.Google Scholar
  150. 150.
    Matias IR, Arregui FJ, and Corres JM (2007). Evanescent field fiber-optic sensors for humidity monitoring based on nanocoatings, IEEE Sens J, 7, 1: 89–95.Google Scholar
  151. 151.
    Bravo J, Goicoechea J, Corres JM, et al. (2007). Fiber optic temperature sensor depositing quantum dots inside hollow core fibers using the layer by layer technique, Proc SPIE, doi: 10.1117/12.738388.Google Scholar
  152. 152.
    Constantine CA, Gattás-Asfura KM, Mello SV, et al. (2003). Layer-by-layer biosensor assembly incorporating functionalized quantum dots, Langmuir, 19, 23: 9863–9867.Google Scholar
  153. 153.
    Constantine CA, Gattás-Asfura KM, Mello SV, et al. (2003). Layer-by-Layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon, J Phys Chem B, 107, 50: 13762–13764.Google Scholar
  154. 154.
    Goldman ER, Medintz IL, Whitley JL, et al. (2005). A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor, J Am Chem Soc, 127, 18: 6744–6751.Google Scholar
  155. 155.
    Yildiz I, Tomasulo M, and Raymo FM (2006). A mechanism to signal receptor-substrate interactions with luminescent quantum dots, Proc Natl Acad Sci, 103, 31: 11457–11460.Google Scholar
  156. 156.
    Suffern D, Clarke SJ, Hollmann CA, et al. (2006). Labeling of subcellular redox potential with dopamine-conjugated quantum dots, Proc. SPIE, 6096: 60960O.Google Scholar
  157. 157.
    Clarke SJ, Hollmann CA, Zhang Z, et al. (2006). Photophysics of dopamine-modified quantum dots and effects on biological systems, Nat Mater, 5, 5: 409–417.Google Scholar
  158. 158.
    Jiang H, Yao X, Che J, et al. (2004). Preparation of ZnSe quantum dots embedded in SiO2 thin films by sol-gel process, Ceram Int, 30, 7: 1685–1689.Google Scholar
  159. 159.
    Lin I, Joseph AK, Chang CK, et al. (2004). Synthesis and photoluminescence study of molecularly imprinted polymers appended onto CdSe/ZnS core-shells, Biosens Bioelectr, 20, 1: 127–131.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Javier Goicoechea
    • 1
  • Francisco J. Arregui
    • 1
  • Ignacio R. Matias
    • 1
  1. 1.Electric and Electronic Engineering DepartmentUniversidad Publica de Navarra, Edificio de los TejosPamplonaSpain

Personalised recommendations