Advertisement

Nanosensors: Controlling Transduction Mechanisms at the Nanoscale Using Metal Oxides and Semiconductors

  • Teresa Andreu
  • Jordi Arbiol
  • Andreu Cabot
  • Albert Cirera
  • Joan Daniel Prades
  • Francisco Hernandez-Ramírez
  • Albert Romano-Rodríguez
  • Joan R. Morante

Abstract

Nanotechnology is defined as the design and engineering of functional materials and devices through control of matter in dimensions of roughly 1–100 nm, where unique phenomena enable novel applications [1]. While nanotechnology allows us to take advantage of these exclusive phenomena and related properties, it offers us new possibilities and relationships among the different multidisciplinary effects. Nanotechnology not only occupies the fields of material science and engineering but also applies to fundamental physics, chemistry and biology. Figures 5.1–5.3 show examples of functional semiconductor nanostructures.

Keywords

Nanoscale Level Surface Plasmon Wave Single Nanowire Individual Nanowires Photoconductive Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    W. Göpel, J. Hesse, and J.N. Zemel. Sensor: A comprehensive survey. VCH, Weinheim, Germany, 1991.Google Scholar
  3. 3.
    A.P. Alivisatos, Science, 271, 933–937 (1996).Google Scholar
  4. 4.
    K. Kalyanasundaram and M. Grätzel, Curr Sci, 66, 706–715 (1994).Google Scholar
  5. 5.
    W.J. Aston, Biosens Bioelectron, 7, 161–163 (1992).Google Scholar
  6. 6.
    S.P. Mohanty and E. Kougianos, IEEE Potentials, 25 (2), 35–40 (2006).Google Scholar
  7. 7.
    D. Erickson, S. Mandal, A.H.J. Yang, and B. Cordovez, Microfluidics and Nanofluidics, 4, 33–52 (2008).Google Scholar
  8. 8.
    M. Epifani, R. Diaz, J. Arbiol, E. Comini, N. Sergent, T. Pagnier, P. Siciliano, G. Faglia, and J.R. Morante, Advanced Funct. Mater. 16, 1488–1498 (2006).Google Scholar
  9. 9.
    M. Epifani, J. Arbiol, E. Pellicer, and J.R. Morante, Chem. Mater., 19 (20), 4919–4924 (2007).Google Scholar
  10. 10.
    A.-H. Lu, E.L. Salabas, and F. Schüth, Angew. Chem. Int. Ed., 46, 1222–1244 (2007).Google Scholar
  11. 11.
    X.-M. Lin and A.C.S. Samia, J. Magn. Magn. Mater., 305, 100–109 (2006).Google Scholar
  12. 12.
    A. Cabot, A. Diéguez, A. Romano-Rodríguez, J.R. Morante, and N. Barsan, Sensors Actuat. B, 79, 98–106 (2001).Google Scholar
  13. 13.
    M.C. Daniel and D. Astruc, Chem. Rev., 104, 293–346 (2004).Google Scholar
  14. 14.
    G. Schmid, Chem. Rev., 92, 1709–1727 (1992).Google Scholar
  15. 15.
    A. Dieguez, A. Vila, A. Cabot, A. Romano-Rodriguez, J.R. Morante, J. Kappler, N. Barsan, U. Weimar, and W.Gopel, Sensors Actuat. B-Chem., 68, 94–99, (2000).Google Scholar
  16. 16.
    J. Puigcorbe, A. Vila, J. Cerda, A. Cirera, I. Gracia, C. Cane, and J.R. Morante, Sensors Actuat. A, 97–98, 379–385 (2002).Google Scholar
  17. 17.
    J. Arbiol, Metal additive distribution in TiO2and SnO2 semiconductor gas sensor nanostructured materials. PhD Thesis Dissertation. University of Barcelona (2001) ISBN84-475-2636-4.Google Scholar
  18. 18.
    M. Epifani, E. Comini, J. Arbiol, E. Pellicer, P. Siciliano, G. Faglia, and J.R. Morante, J. Phys. Chemc, 111 (37), 13967–13971 (2007).Google Scholar
  19. 19.
    I.R. Peterson, J. Phys. D, 23, 379–395 (1990).Google Scholar
  20. 20.
    P. Yang and F. Kim, Chemphyschem, 3, 503–506 (2002).Google Scholar
  21. 21.
    L. Vayssieres, Adv. Mater., 15 (5), 464–466 (2003).Google Scholar
  22. 22.
    L. Vayssieres and M. Graetzel, Angew. Chem. Int. Ed., 43, 3666–3670 (2004).Google Scholar
  23. 23.
    L. Vayssieres, Appl. Phys. A, 89 (1), 1–8 (2007).Google Scholar
  24. 24.
    E. Rossinyol, A. Prim, E. Pellicer, J. Rodríguez, F. Peiró, A. Cornet, J.R. Morante, B.Z. Tian, T. Bo, and D. Zhao, Sens Actuat. B, 126, 18–23 (2007).Google Scholar
  25. 25.
    A. Prim, E. Pellicer, E. Rossinyol, F. Peiró, A. Cornet, and J.R. Morante, Adv. Funct. Mater., 17 (15), 2957–2963 (2007).Google Scholar
  26. 26.
    E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernández- Ramírez, F. Peiró, A. Cornet, J.R. Morante, L.A. Solovyov, T. Bozhi, T. Bo, and D. Zhao, Adv. Funct. Mater., 17, 1801–1806 (2007).Google Scholar
  27. 27.
    E. Rossinyol, E. Pellicer, A. Prim, S. Estrade, J. Arbiol, F. Peiró, A. Cornet, and J.R. Morante, J. Nanoparticle Res., 10, 369–375 (2008).Google Scholar
  28. 28.
    A.I. Hochbaum, R. Chen, R. Díaz, W. Liang, E.. Garnett, M.G. Najarian, A. Majumdar, and P. Yang, Nature, 451, 163–167 (2008).Google Scholar
  29. 29.
    J. Arbiol, A. Cirera, F. Peiro, A. Cornet, J.R. Morante, J.J Delgado, and J.J Calvino, Appl. Phys. Lett., 80, 329–31 (2002).Google Scholar
  30. 30.
    Y.S. Kim, S.C. Ha, K. Kim, H. Yang, S.Y Choi, Y.T Kim, J.T. Park, C.H. Lee, J. Choi, J. Paek, and K. Lee,. Appl. Phys. Lett., 86, 213105 (2005).Google Scholar
  31. 31.
    Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science, 293, 1289–1292 (2001).Google Scholar
  32. 32.
    F. Hernández-Ramirez, J.D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jiménez-Diaz, E. Pellicer, J. Rodriguez, M.A. Juli, A. Romano-Rodríguez, J.R. Morante, S. Mathur, A. Helwig, J. Spannhake, and G. Muller, Nanotechnology, 18, 495501–06 (2007).Google Scholar
  33. 33.
    E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z.L. Wang,. Appl. Phys. Lett., 81, 1869 (2002).Google Scholar
  34. 34.
    S. Chopra, A. Pham, J. Gaillard, A. Parker, and A.M. Rao, Appl. Phys. Lett., 80, 4632 (2002).Google Scholar
  35. 35.
    G.K. Mor, O.K. Varghese, C.A. Grimes, M.A. Carvalho, and M.V. Pishko, J. Mater Res., 19, 628–634 (2004).Google Scholar
  36. 36.
    Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science, 291, 1947–1949 (2001).Google Scholar
  37. 37.
    M. Borgstrom, G. Immink, B. Ketelaars, R. Algra, and E. Bakkers, Nature Nanotechnol., 2, 541–544 (2007).Google Scholar
  38. 38.
    R.S. Wagner and W.C. Ellis, Appl. Phys. Lett., 4, 89–90 (1964).Google Scholar
  39. 39.
    E. Bauer and J. H. van der Merwe, Phys. Rev. B, 33, 3657–3671 (1986).Google Scholar
  40. 40.
    Y. Cui, Q. Wei, H. Park, and C. Lieber, Science, 293, 1289 (2001).Google Scholar
  41. 41.
    J. Arbiol, B. Kalache, P. Rocai Cabarrocas, J. R. Morante, and A Fontcuberta i Morral, Nanotechnology, 18, 305606–14 (2007).Google Scholar
  42. 42.
    A. Fontcuberta i Morral, C. Colombo, G. Abstreiteer, J. Arbiol, and J.R. Morante, Appl. Phys. Lett., 92, 063112 (2008).Google Scholar
  43. 43.
    A.L. Giermann and C.V. Thompson, Appl. Phys. Lett., 86, 121903 (2005).Google Scholar
  44. 44.
    W.K. Choi, T.H. Liew, H.G. Chew, F. Zheng, C.V. Thompson, Y. Wang, M.H. Hong, X.D. Wang, L. Li, and J. Yun, Small, 4, 330–333 (2008).Google Scholar
  45. 45.
    H.A. Pohl, Dielectrophoresis: the behaviour of neutral matter in nonuniform electric field, Cambridge University Press, Cambridge, UK (1978)Google Scholar
  46. 46.
    P.J. Burke, Encyclopedia of Nanoscience and Nanotechnology, In: H.S. Nalwa (Ed.) Vol 6 American Scientific Publishers, Los Angeles, CA 2004, pp 623–641.Google Scholar
  47. 47.
    Q. Wan, E. Dattoli, and W. Lu, Small, 4 (2008).Google Scholar
  48. 48.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber, Nature, 449, 885–890 (2007).Google Scholar
  49. 49.
    Z. Zhong, C. Yang, and C.M. Lieber, Nanosilicon, 176–216. (Ed. V. Kumar, Elsevier (2008) ).Google Scholar
  50. 50.
    A. Vomiero, M. Ferroni, E. Comini, G. Faglia, and G. Sberveglieri, Nano Lett., 7, 3553–3558 (2007).Google Scholar
  51. 51.
    A. Fontcuberta i Morral, D. Spirkoska, J. Arbiol, M. Heigoldt, J.R. Morante, and G. Abstreiter, Small, 4, 899–903 (2008).Google Scholar
  52. 52.
    K.Q. Peng, Y.J. Yan, S.P. Gao, and J. Zhu, Adv. Mater., 14, 1164–1167 (2002).Google Scholar
  53. 53.
    P. Gorostiza, M.A. Kulandainathan, R. Diaz, F. Sanz, P. Allongue, and J.R. Morante, J. Electrochem. Soc., Society, 147, 1026 (2000).Google Scholar
  54. 54.
    P. Gorostiza, P. Allongue, R. Díaz, J.R. Morante, F. Sanz, J.Phys.Chem. B, 107, 6454–6461 (2003).Google Scholar
  55. 55.
    A.R. Leach, Molecular modelling principles & applications. Addison Wesley Publishing Company, USA (1997).Google Scholar
  56. 56.
    J.D. Prades, A. Cirera, and J.R. Morante, Quantum chemical calculations of surfaces and interfaces of materials, In: V.A. Basluk and P. Ugllengo (Eds.) American Scientific Publisher California, USA (2008).Google Scholar
  57. 57.
    J.D. Prades, A. Cirera, and J.R. Morante, J. Electrochem. Soc., 154 (8), H675–H680 (2007).Google Scholar
  58. 58.
    M. Batzill and U. Diebold, Prog. Surf. Sci., 79, 47 (2005).Google Scholar
  59. 59.
    C.N. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Chem. Lett., 1990(3), 441 (1990).Google Scholar
  60. 60.
    C.N. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Tech. Digest of 9th Sensor Symp., Tokyo, Japan, p.95 (1990).Google Scholar
  61. 61.
    C.N. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sens. Actuat. B, 3, 147 (1991).Google Scholar
  62. 62.
    J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, and N. Yamazoe, J. Electrochem. Soc., 141, 2208 (1994).Google Scholar
  63. 63.
    Y.- G. Choi, G. Sakai, K. Shimanoe, N. Miura, and N. Yamazoe, Sens. Actuat. B, 95, 258, (2003).Google Scholar
  64. 64.
    A. Cabot, J. Arbiol, E. Rossinyol, J.R. Morante, F. Chen, and M. Liu, Electrochem. Solid State Lett., 7 (5), G93–G97 (2004).Google Scholar
  65. 65.
    M.N. Rumyantseva, A. Gaskov, N. Rosman, T. Pagnier, and J.R. Morante, Chem. Mater., 17, 893–901 (2005).Google Scholar
  66. 66.
    A. Cabot, J. Arbiol, A. Cornet, J.R. Morante, F. Chen, and M. Liu, Thin Solid Film, 436, 64–69 (2003).Google Scholar
  67. 67.
    W. Gopel and K.D. Schierbaum, Sens. Actuat. B, 26, 1–12 (1995).Google Scholar
  68. 68.
    N. Barsan, D. Koziej, and U. Weimar, Sens. Actuat. B, 121, 18–35 (2007).Google Scholar
  69. 69.
    J. Jortner and C.N.R. Rao, Pure Appl. Chem., 74, 1489–1783 (2002).Google Scholar
  70. 70.
    M. Law, J. Goldberger, and P. Yang. Annu. Rev. Mater. Res., 34, 83–122 (2004).Google Scholar
  71. 71.
    A. Cabot, A. Diéguez, A. Romano-Rodríguez, J.R. Morante, and N. Barsan, Sens. Actuat. B, 79, 98–106, (2001).Google Scholar
  72. 72.
    A. Dieguez, A. Vila, A. Cabot, A. Romano-Rodriguez, J.R. Morante, J. Kappler, N. Barsan, U. Weimar, and W. Gopel, Sens. Actuat. B-Chem., 68, 94–9, (2000).Google Scholar
  73. 73.
    J. Kappler, N. Barsan, U. Weimar, A. Dieguez, J.L. Alay, A. Romano-Rodríguez, J.R. Morante, W. Göpel, and Fresenius, J. Anal. Chem., 361, 110–114 (1998).Google Scholar
  74. 74.
  75. 75.
    J. Tamaki, J. Niimi, S. Ogura, and S. Konishi, Sens. Actuat. B, 117, 353–358 (2006).Google Scholar
  76. 76.
    J. Tamaki, A. Miyaji, J. Makinodan, S. Ogura, and S. Konishi, Sens. Actuat. B, 108, 202–206 (2005).Google Scholar
  77. 77.
    J. Tamaki, Y. Okochi, and S. Konishi, Electrochemistry, 74, 159–162 (2006).Google Scholar
  78. 78.
    F. Hernandez-Ramirez, Fabrication strategies and characterization of nanodevices fabricated with focused ion beam techniques. PhD Thesis Dissertation, University of Barcelona (2007).Google Scholar
  79. 79.
    G.J. Li and S. Kawi, Matter. Lett., 34, 99–102 (1998).Google Scholar
  80. 80.
    P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindnyo, and T.E. Mallouk, Chem.-Eur. J., 8, 4355 (2002).Google Scholar
  81. 81.
    M.E. Toimil-Morales, E.M. Höhberger, C.H. Schaeflein, R.H. Blick, R. Neumann, and C. Trautmann, Appl. Phys. Lett., 82, 2139 (2003).Google Scholar
  82. 82.
    “Focused ion beam technology, capabilities and applications”. FEI Company (2004). Brochure available at (www.feicompany.com)
  83. 83.
    S. Reyntjens and R. Puers, J. Micromech. Microeng., 11, 287–300 (2001).Google Scholar
  84. 84.
    S. Matsui and Y. Ochiai, Nanotechnology, 7, 247–258 (1996).Google Scholar
  85. 85.
    G. de Marzi, D. Iacopino, A.J. Quinn, and G. Redmond, J. Appl. Phys., 96, 6 (2004).Google Scholar
  86. 86.
    L. Rotkina, J-F. Lin, and J. P. Bird, Appl. Phys. Lett., 83, 4426 (2003).Google Scholar
  87. 87.
    F. Hernandez-Ramirez, O. Casals, J. Rodríguez, A. Vila, A. Romano-Rodriguez, J.R. Morante, M. Abid, S. Valizadeh, Mat. Res. Soc., Symp. Proc., J 5.2 (2005).Google Scholar
  88. 88.
    V. Gopal, V.R. Radmilovic, C. Daraio, S. Jin, P. Yang, and E. Stach, Nano. Lett., 4, 2059 (2004).Google Scholar
  89. 89.
    A. Vila, F. Hernandez-Ramirez, J. Rodriguez, O. Casals, A. Romano-Rodriguez, J.R. Morante, and M. Abid, Mater. Sci. Eng. C., 26, 1063–1066 (2006).Google Scholar
  90. 90.
    M. Law, H. Kind, B. Messe, F. Kim, and Y. Peidong, Angew. Chem., 114, 2511 (2002).Google Scholar
  91. 91.
    F. Hernández-Ramírez, J. Rodríguez, O. Casals, E. Russinyol, A. Vilà, A. Romano-Rodríguez, J.R. Morante, and M. Abid, Sens. Actuat. B, 118, 98–203 (2006).Google Scholar
  92. 92.
    F. Hernandez-Ramirez, J.D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jiménez– Diaz, E. Pellicer, J. Rodriguez, M.A. Juli, A. Romano-Rodriguez, J.R. Morante, S. Mathur, A. Helwig, J. Spannhake, and G. Mueller, Nanotechnology, 18, 495501–06 (2007).Google Scholar
  93. 93.
    F. Hernández-Ramírez, A. Tarancón, O. Casals, J. Arbiol, A. Romano-Rodríguez, and J.R. Morante, Sens. Actuat. B, 121, 3–17 (2007).Google Scholar
  94. 94.
    Z.R. Dai, Z.W. Pan, and Z.L. Wang, Adv. Funct. Mater., 13, 9–24 (2003).Google Scholar
  95. 95.
    R.S. Wagner and W.C. Ellis, Appl. Phys. Lett., 4, 89–90, (1964).Google Scholar
  96. 96.
    Y. Ding, P.X. Gao, and Z.L. Wang, J.Am. Chem. Soc., 126, 2066 (2004).Google Scholar
  97. 97.
    S. Mathur, S. Barth, H. Shen, J.-C. Pyun, and U. Werner, Small, 1, 7, 713–717 (2005).Google Scholar
  98. 98.
    S. Lenaerts, M. Honore, G. Huyberechts, J. Roggen, and G. Maes, Sensor and Actuators B, 18/19, 478 (1994).Google Scholar
  99. 99.
    A. Cabot, J. Arbiol, E. Rossinyol, J.R. Morante, F.L. Chen, M.L. Liu, Electrochem. Solid State Lett., 7, G93 (2004).Google Scholar
  100. 100.
    M.N. Rumyantseva, A.M. Gaskov, N. Rossman, T. Pagnier, J.R. Morante, Chem. Mater., 17, 893 (2005).Google Scholar
  101. 101.
    D. Li, Y. Wu, L. Shi, P. Yang, and A. Majumdar, Appl. Phys.Lett., 83,14 (2003).Google Scholar
  102. 102.
    C. Yu, Nanomaterials characterization and bio-chemical sensing using microfabricated devices. Thesis Dissertation, University of Texas (2004).Google Scholar
  103. 103.
    S. Mathur, S. Barth, H. Shen, J.C. Pyun, and U. Werner, Small, 1, 713 (2005).Google Scholar
  104. 104.
    F. Hernandez-Ramırez, A. Tarancon, O. Casals, E. Pellicer, J. Rodrıguez, A. Romano-Rodrıguez, J.R. Morante, S. Barth, and S. Mathur, Phys. Rev. B, 76, 085429 (2007).Google Scholar
  105. 105.
    G. Decher, Science, 277, 1232–1237 (1997).Google Scholar
  106. 106.
    A. Ulman, An introduction to ultra thin organic films from Langmuir Blodgett to self-assembly. Academic Press, New York, USA (1991).Google Scholar
  107. 107.
    J. Zhang, Z.L. Wang, J. Liu, S. Chen, and G.Y. Liu, Self assembled nanostructures. Kluwer Academic/Plenum Publishing, New York, USA (2003).Google Scholar
  108. 108.
    M. La Barbera, Science, 289, 1882 (2000).Google Scholar
  109. 109.
    C.M. Niemeyer and C.A. Mirkin, Nanobiotechnology: Concepts, applications and perspectives. Wiley-VCH, Dortmund, Germany, (2004).Google Scholar
  110. 110.
    N. Wickramasinghe, S. Choudhary, and E. Geisler, Int. J. Biomed. Eng. Technol., 1, 41–58 (2007).Google Scholar
  111. 111.
    S. Vikas and C. Pundir, Sens. Trans., 82, 1405–1417 (2007).Google Scholar
  112. 112.
    D. Fraser, An introduction to in vivo biosensing: progress and problems, In: Fraser, D. (Ed.), Biosensors in the body, continuous in vivo monitoring. Wiley, London, 10–56 (1997).Google Scholar
  113. 113.
    M. Pumera, S. Sanchez, I. Ichinose, and J. Tang, Sens. Actuat. B, 123, 1195–1205 (2007).Google Scholar
  114. 114.
    X.-J. Huanga and Y.K. Choi, Sens. Actuat. B, 122, 659–671 (2007).Google Scholar
  115. 115.
    V. Chukharev, T. Vuorinen, A. Efimov, N.V. Tkachenko, M. Kimura, S. Fukuzumi, H. Imahori, and H. Lemmetyinen, Langmuir, 21, 6385–6391 (2005).Google Scholar
  116. 116.
    P. Avouris and J. Chen, Mater. Today, 9, 10, 46–54 (2006).Google Scholar
  117. 117.
    D.J. Sirbuly, M. Law, H.Q. Yan, et al., J. Phys. Chem. B, 109, 32, 15190–15213, (2005).Google Scholar
  118. 118.
    H.E. Maes, C. Claeys, R. Mertens, et al., Adv. Eng. Mater., 3, 10781–787 (2001).Google Scholar
  119. 119.
    E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol., 18, R33–R51 (2003).Google Scholar
  120. 120.
    A. Rose, Concepts in photoconductivity and allied problems. Interscience Publishers: New York (1963).Google Scholar
  121. 121.
    R.H. Bube, Photoelectronic properties of semiconductors. Cambridge University Press: Cambridge (1992).Google Scholar
  122. 122.
    S.M. Sze, “Physics of semiconductor devices”. John Wiley & Sons, Inc: New York (1981).Google Scholar
  123. 123.
    H. Yoshikawa and S. Adachi, Jpn, J. Appl. Phys., 36, 10, 6237–6243, (1997).Google Scholar
  124. 124.
    S. Kumar, S. Rajaraman, R.A. Gerhardt, Z.L. Wang, and P.J. Hesketh, Electrochim. Acta, 51, 943–951, (2005).Google Scholar
  125. 125.
    J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, Nanotechnology, 17, 2567–2573 (2006).Google Scholar
  126. 126.
    This resolution value was taken as a rough approximation to the minimal feature of current lithography techniques.Google Scholar
  127. 127.
    H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. (Weinheim, Germany) 14 (2), 158–160 (2002).Google Scholar
  128. 128.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, and D. Wang, Nano Lett., 7 (4), 1003–1009, (2007).Google Scholar
  129. 129.
    X.G. Zheng, Q. Sh. Li, J.P. Zhao, D. Chen, B. Zhao, Y.J. Yang, L. Ch. Zhang, Appl. Surf. Sci., 253, 2264–2267 (2006).Google Scholar
  130. 130.
    S. Mathur, S. Barth, H. Shen, J.-C. Pyun, and U. Werner, Small, 1, 77, 713–717 (2005).Google Scholar
  131. 131.
    J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, and S.T. Lee, Nano Lett., 6, 9, 1887–1892 (2006).Google Scholar
  132. 132.
    Z.Y. Fan, P.C. Chang, J.G. Lu, E.C. Walter, R.M. Penner, C.H. Lin, and H.P. Lee, Appl. Phys. Lett., 85, 25, 6128–6130 (2004).Google Scholar
  133. 133.
    Y.W. Heo, B.S. Kang, L.C. Tien, D.P. Norton, F. Ren, J.R. La Roche, and S.J. Pearton, Appl. Phys. A: Mater. Sci. Process., 80, 3, 497–499 (2005).Google Scholar
  134. 134.
    S.A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys., 87, 5, 2413–2421 (2000).Google Scholar
  135. 135.
    C.S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A.K. Sood, D.L. Polla, Z.L. Wang, J. Am. Chem. Soc., 129 (40), 12096–12097 (2007).Google Scholar
  136. 136.
    P.-C. Chang, C.-J. Chien, D. Stichtenoth, C. Ronning, and J.G. Lu, Appl. Phys. Lett., 90, 113101 (3 pages) (2007).Google Scholar
  137. 137.
    Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, Appl. Phys. Lett., 85, 5923 (2004).Google Scholar
  138. 138.
    P. -C. Chang, Z. Fan, D. Wang, W.. - Y. Tseng, W. - A. Chiou, J. Hong, J.G. Lu, Chem. Mater., 16, 5133–5137 (2004).Google Scholar
  139. 139.
    P. Chang, Z. Fan, C. Chien, D. Stichtenoth, C. Ronning, J.G. Lu, Appl. Phys. Lett., 89, 133113 (2006).Google Scholar
  140. 140.
    L. Hu and G. Chen, Nano Lett. 7, 11, 3249–3252 (2007).Google Scholar
  141. 141.
    A. Ohtomo and A. Tsukazaki, Semicond. Sci. Technol., 20, S1–S12 (2005).Google Scholar
  142. 142.
    Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater., 29, 69–74 (2000).Google Scholar
  143. 143.
    K. Q. Peng, Z.P. Huang, and J. Zhu, Adv. Mater., 16, 73–76 (2004).Google Scholar
  144. 144.
    Chen Yang, Zhaohui Zhong, and Charles M. Lieber, 310, 1304–1307 (2005).Google Scholar
  145. 145.
    L.J. Lauhon, M.S. Gudiksen, D.Wang, and C.M. Lieber, Nature, 420, 57–61 (2002).Google Scholar
  146. 146.
    Y.-L. Chueh, L.-J. Chou, and Z.L. Wang, Angew. Chem. Int. Ed., 45, 7773–7778 (2006).Google Scholar
  147. 147.
    B. Pradhan, S.K. Batabyal, and A.J. Pal, Appl. Phys. Lett., 89, 233109,(2006).Google Scholar
  148. 148.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nat. Mat., 4, 455 (2005).Google Scholar
  149. 149.
    X.D. Wang, J.H. Song, J. Liu, and Z.L. Wang, Science, 316, 102 (2007).Google Scholar
  150. 150.
    M. Gratzel, Nature, 414, 338 (2001), and B. O’Regan, M. Grätzel, Nature, 353, 737 (1991).Google Scholar
  151. 151.
    W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science, 295, 242 (2002).Google Scholar
  152. 152.
    L.E. Greene, M. Law, B.D. Yuhas, and P.D. Yang (2007). J. Phys. Chem. Lett., 111,18451 (2007).Google Scholar
  153. 153.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Liebre, Nature, 449, 885–889 (2007).Google Scholar
  154. 154.
    Chanda Ranjit Yonzon, Douglas A. Stuart, Xiaoyu Zhang, Adam D. McFarland, Christy L. Haynes, and Richard P. Van Duyne, Talanta, 67, 438–448 (2005).Google Scholar
  155. 155.
    Adam D. McFarland and Richard P. Van Duyne, Nano Lett., 3, 1057 (2003).Google Scholar
  156. 156.
    J.J. Mock, David R. Smith, and Sheldon Schultz, Nano Lett., 3, 485 (2003).Google Scholar
  157. 157.
    T.R. Jensen, M.D. Malinsky, C.L. Haynes, and R.P. Van Duyne, J. Phys. Chem. B, 104, 10549–10556 (2000).Google Scholar
  158. 158.
    J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, and S. Schultz, J. Chem. Phys., 116, 6755 (2002).Google Scholar
  159. 159.
    C. Sönnichsen, B.M. Reinhard, J. Liphardt, and A.P. Alivisatos, Nature Biotechnol., 23, 741–745 (2005).Google Scholar
  160. 160.
    B.M. Reinhard, S. Sheikholeslami, A. Mastroianni, A.P. Alivisatos, and J. Liphardt, Proc. Natl. Acad. Sci., USA 104, 2667–2672 (2007).Google Scholar
  161. 161.
    J. Dostálek, J. Tyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Pirkovác, J. Kvord, and J. Schröfele, Sens. Actuat. B: 76, 8–12 (2001).Google Scholar
  162. 162.
    J. Homola, Ivo Koudela b, and Sinclair S. Yee, Sens. Actuat. B, 54, 16–24 (1999).Google Scholar
  163. 163.
    J. Homola, S.S. Yee, and G. Gauglitz, Sens. Actuat. B, 54, 3–15 (1999).Google Scholar
  164. 164.
    J. Homola, Anal. Bioanal. Chem., 377, 528–539 (2003) .Google Scholar
  165. 165.
    Carsten Sönnichsen, Björn M Reinhard, Jan Liphardt, and A Paul Alivisatos, Nat. Biotechnol., 23, 741–745 (2005).Google Scholar
  166. 166.
    Björn M. Reinhard, Sassan Sheikholeslami, Alexander Mastroianni, A.P. Alivisatos, and Jan Liphardt, Use of Plasmon Rulers to Reveal the Dynamics of DNA Bending and Cleavage by Single EcoRV Restriction Enzymes, Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).Google Scholar
  167. 167.
    E. Hao and G.C. Schatza, J. Chem. Phys., 120, 1 (2004).Google Scholar
  168. 168.
    H. Xu, J. Aizpurua, M. Kall, and P. Apell, Phys. Rev. E, 62, 4318 (2000).Google Scholar
  169. 169.
    D.A. Genov, A.K. Sarychev, V.M. Shalaev, and Alexander Wei Resonant, Nano Lett., 4, 1 (2004).Google Scholar
  170. 170.
    C.L. Haynes, C.R. Yonzon, X. Zhang, and R.P. Van Duyne, J. Raman Spectrosc., 36, 471–484 (2005).Google Scholar
  171. 171.
    Z. Zhul, T. Zhu, and Z. Liu, Nanotechnology, 15, 357–364 (2004).Google Scholar
  172. 172.
    Zhong-Qun Tian, Bin Ren, and De-Yin Wu, J. Phys. Chem. B,, 106, 37 (2002).Google Scholar
  173. 173.
    Martin Moskovits, J. Raman Spectrosc., 36, 485–496,(2005).Google Scholar
  174. 174.
    Katrin Kneipp, Yang Wang, Harald Kneipp, Lev T. Perelman, Irving Itzkan, Ramachandra R. Dasari, and Michael S. Feld, Phys. Rev. Lett.,, 78, 1667 (1997).Google Scholar
  175. 175.
    Shuming Nie and Steven R. Emory, Science,, 275, 1102 (1997).Google Scholar
  176. 176.
    David L. Stokes and Tuan Vo-Dinh, Sens. Actuat. B: Chem., 69, 28–36 (2000).Google Scholar
  177. 177.
    Chanda Ranjit Yonzon, Christy L. Haynes, Xiaoyu Zhang, Joseph T. Walsh, Jr., and Richard P. Van Duyne, Anal. Chem., 76, 78–85 (2004).Google Scholar
  178. 178.
    A. Stuart, Jonathan M. Yuen, Nilam Shah, Olga Lyandres, Chanda R. Yonzon, Matthew R. Glucksberg, Joseph T. Walsh, and Richard P. Van Duyne, Anal. Chem., 78, 7211–7215 (2006).Google Scholar
  179. 179.
    Raoul M. Stöckle, Yung Doug Suh, Volker Deckert1, and Renato Zenobi, Chem. Phys. Lett., 318, 131–136 (2000).Google Scholar
  180. 180.
    Raoul M. Stöckle, Yung Doug Suh, Volker Deckert1, and Renato Zenobi, Chem. Phys. Lett., 318, 131–136 (2000).Google Scholar
  181. 181.
    V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T.A. Arias, P.L. McEuen, Nature, 431, 284–287 (2004).Google Scholar
  182. 182.
    G. Abadal, Z.J. Davis, B. Helbo, X. Borrisé, R. Ruiz, A. Boisen, F. Campabadal, J. Esteve, E. Figueras, F. Pérez-Muranso, and N. Barniol, Nanotechnology, 12, 1–5 (2001).Google Scholar
  183. 183.
    J. Yang, T. Ono, and M. Esashi, Sens. Actuat. B, 82, 102–107,(2000).Google Scholar
  184. 184.
    A.N. Cleland and M.L. Roukes, Appl. Phys. Lett., 69, 2653–2655 (1996).Google Scholar
  185. 185.
    Z.J. Davis, G. Abadal, B. Helbo, O. Hansen, F. Campabadal, F. Pérez-Murano, J. Esteve, E. Figueras, J. Verd, N. Barniol, and A. Boisen, Sens. Actuat. A, 105, 311–319 (2003).Google Scholar
  186. 186.
    A. Boisen, K. Birkelund, O. Hansen, and F. Grey, J. Vac. Sci. Technol. B, 16, 2977–2981 (1998).Google Scholar
  187. 187.
    P. Engels, S. Salewski, H. Levsen, K. Sengstock and W. Ertmer, Appl. Phys. B, 69, 407–412 (1999).Google Scholar
  188. 188.
    A.S. Bell, B. Brezger, U. Drodofsky, S. Nowak, T. Pfau, J. Stuhler,T.H. Schulze, and J. Mlynek, Surf. Sci., 433–435, 40–47 (1999).Google Scholar
  189. 189.
    Z.J. Davis, G. Abadal, O. Kuhn, O. Hansen, F. Grey, and A. Boisen, J. Vac. Sci. Technol. B, 18, 612–616 (2000).Google Scholar
  190. 190.
    G. Abadala, Z.J. Davis, X. Borris!e, O. Hansen, A. Boisen, N. Barniol, F. P!erez-Murano, and F. Serra, Ultramicroscopy, 97,127–133 (2003).Google Scholar
  191. 191.
    C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, Nature, 414, 293–296 (2001).Google Scholar
  192. 192.
    G.U. Lee, L.A. Chrisey, and R.J. Colton, Science, 266, 771–773 (1994).Google Scholar
  193. 193.
    M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, and H.E. Gaub, Science, 276, 1109–112 (1997).Google Scholar
  194. 194.
    J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P.Vettiger, E. Meyer, H.-J. Guntherodt, C.H. Gerber, and J.K. Gimzewski, Science, 288, 316–318 (2000).Google Scholar
  195. 195.
    F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H.E. Gaub, and D.J. Muller, Science, 288,143–146 (2000).Google Scholar
  196. 196.
    J.A. Harley, and T.W. Kenny, Appl. Phys. Lett., 75, 289–291 (1999).Google Scholar
  197. 197.
    E.L. Florin, V.T. Moy, and H.E. Gaub, Science, 264, 415–417 (1994).Google Scholar
  198. 198.
    G. Villanueva, J. Montserrat, F.P_erez-Murano, G. Rius, and J. Bausells, Microelectr. Eng., 73–74, 480–486 (2004).Google Scholar
  199. 199.
    P.A. Rasmussen, J. Thaysen, O. Hansen,, S.C. Eriksen, and A. Boisen, Ultramicroscopy, 97, 371–376 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Teresa Andreu
    • 1
  • Jordi Arbiol
    • 1
  • Andreu Cabot
    • 1
  • Albert Cirera
    • 1
  • Joan Daniel Prades
    • 1
  • Francisco Hernandez-Ramírez
    • 1
  • Albert Romano-Rodríguez
    • 1
  • Joan R. Morante
    • 1
  1. 1.Department of Electronics, Faculty of PhysicsUniversity of BarcelonaBarcelonaSpain

Personalised recommendations