Skip to main content

Nanosensors: Controlling Transduction Mechanisms at the Nanoscale Using Metal Oxides and Semiconductors

  • Chapter

Abstract

Nanotechnology is defined as the design and engineering of functional materials and devices through control of matter in dimensions of roughly 1–100 nm, where unique phenomena enable novel applications [1]. While nanotechnology allows us to take advantage of these exclusive phenomena and related properties, it offers us new possibilities and relationships among the different multidisciplinary effects. Nanotechnology not only occupies the fields of material science and engineering but also applies to fundamental physics, chemistry and biology. Figures 5.1–5.3 show examples of functional semiconductor nanostructures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. http://www.nano.gov

  2. W. Göpel, J. Hesse, and J.N. Zemel. Sensor: A comprehensive survey. VCH, Weinheim, Germany, 1991.

    Google Scholar 

  3. A.P. Alivisatos, Science, 271, 933–937 (1996).

    CAS  Google Scholar 

  4. K. Kalyanasundaram and M. Grätzel, Curr Sci, 66, 706–715 (1994).

    Google Scholar 

  5. W.J. Aston, Biosens Bioelectron, 7, 161–163 (1992).

    Google Scholar 

  6. S.P. Mohanty and E. Kougianos, IEEE Potentials, 25 (2), 35–40 (2006).

    Google Scholar 

  7. D. Erickson, S. Mandal, A.H.J. Yang, and B. Cordovez, Microfluidics and Nanofluidics, 4, 33–52 (2008).

    CAS  Google Scholar 

  8. M. Epifani, R. Diaz, J. Arbiol, E. Comini, N. Sergent, T. Pagnier, P. Siciliano, G. Faglia, and J.R. Morante, Advanced Funct. Mater. 16, 1488–1498 (2006).

    CAS  Google Scholar 

  9. M. Epifani, J. Arbiol, E. Pellicer, and J.R. Morante, Chem. Mater., 19 (20), 4919–4924 (2007).

    CAS  Google Scholar 

  10. A.-H. Lu, E.L. Salabas, and F. Schüth, Angew. Chem. Int. Ed., 46, 1222–1244 (2007).

    CAS  Google Scholar 

  11. X.-M. Lin and A.C.S. Samia, J. Magn. Magn. Mater., 305, 100–109 (2006).

    CAS  Google Scholar 

  12. A. Cabot, A. Diéguez, A. Romano-Rodríguez, J.R. Morante, and N. Barsan, Sensors Actuat. B, 79, 98–106 (2001).

    CAS  Google Scholar 

  13. M.C. Daniel and D. Astruc, Chem. Rev., 104, 293–346 (2004).

    CAS  Google Scholar 

  14. G. Schmid, Chem. Rev., 92, 1709–1727 (1992).

    CAS  Google Scholar 

  15. A. Dieguez, A. Vila, A. Cabot, A. Romano-Rodriguez, J.R. Morante, J. Kappler, N. Barsan, U. Weimar, and W.Gopel, Sensors Actuat. B-Chem., 68, 94–99, (2000).

    CAS  Google Scholar 

  16. J. Puigcorbe, A. Vila, J. Cerda, A. Cirera, I. Gracia, C. Cane, and J.R. Morante, Sensors Actuat. A, 97–98, 379–385 (2002).

    Google Scholar 

  17. J. Arbiol, Metal additive distribution in TiO2and SnO2 semiconductor gas sensor nanostructured materials. PhD Thesis Dissertation. University of Barcelona (2001) ISBN84-475-2636-4.

    Google Scholar 

  18. M. Epifani, E. Comini, J. Arbiol, E. Pellicer, P. Siciliano, G. Faglia, and J.R. Morante, J. Phys. Chemc, 111 (37), 13967–13971 (2007).

    CAS  Google Scholar 

  19. I.R. Peterson, J. Phys. D, 23, 379–395 (1990).

    CAS  Google Scholar 

  20. P. Yang and F. Kim, Chemphyschem, 3, 503–506 (2002).

    CAS  Google Scholar 

  21. L. Vayssieres, Adv. Mater., 15 (5), 464–466 (2003).

    CAS  Google Scholar 

  22. L. Vayssieres and M. Graetzel, Angew. Chem. Int. Ed., 43, 3666–3670 (2004).

    CAS  Google Scholar 

  23. L. Vayssieres, Appl. Phys. A, 89 (1), 1–8 (2007).

    CAS  Google Scholar 

  24. E. Rossinyol, A. Prim, E. Pellicer, J. Rodríguez, F. Peiró, A. Cornet, J.R. Morante, B.Z. Tian, T. Bo, and D. Zhao, Sens Actuat. B, 126, 18–23 (2007).

    CAS  Google Scholar 

  25. A. Prim, E. Pellicer, E. Rossinyol, F. Peiró, A. Cornet, and J.R. Morante, Adv. Funct. Mater., 17 (15), 2957–2963 (2007).

    CAS  Google Scholar 

  26. E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernández- Ramírez, F. Peiró, A. Cornet, J.R. Morante, L.A. Solovyov, T. Bozhi, T. Bo, and D. Zhao, Adv. Funct. Mater., 17, 1801–1806 (2007).

    CAS  Google Scholar 

  27. E. Rossinyol, E. Pellicer, A. Prim, S. Estrade, J. Arbiol, F. Peiró, A. Cornet, and J.R. Morante, J. Nanoparticle Res., 10, 369–375 (2008).

    CAS  Google Scholar 

  28. A.I. Hochbaum, R. Chen, R. Díaz, W. Liang, E.. Garnett, M.G. Najarian, A. Majumdar, and P. Yang, Nature, 451, 163–167 (2008).

    CAS  Google Scholar 

  29. J. Arbiol, A. Cirera, F. Peiro, A. Cornet, J.R. Morante, J.J Delgado, and J.J Calvino, Appl. Phys. Lett., 80, 329–31 (2002).

    CAS  Google Scholar 

  30. Y.S. Kim, S.C. Ha, K. Kim, H. Yang, S.Y Choi, Y.T Kim, J.T. Park, C.H. Lee, J. Choi, J. Paek, and K. Lee,. Appl. Phys. Lett., 86, 213105 (2005).

    Google Scholar 

  31. Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science, 293, 1289–1292 (2001).

    CAS  Google Scholar 

  32. F. Hernández-Ramirez, J.D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jiménez-Diaz, E. Pellicer, J. Rodriguez, M.A. Juli, A. Romano-Rodríguez, J.R. Morante, S. Mathur, A. Helwig, J. Spannhake, and G. Muller, Nanotechnology, 18, 495501–06 (2007).

    Google Scholar 

  33. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z.L. Wang,. Appl. Phys. Lett., 81, 1869 (2002).

    CAS  Google Scholar 

  34. S. Chopra, A. Pham, J. Gaillard, A. Parker, and A.M. Rao, Appl. Phys. Lett., 80, 4632 (2002).

    CAS  Google Scholar 

  35. G.K. Mor, O.K. Varghese, C.A. Grimes, M.A. Carvalho, and M.V. Pishko, J. Mater Res., 19, 628–634 (2004).

    CAS  Google Scholar 

  36. Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science, 291, 1947–1949 (2001).

    CAS  Google Scholar 

  37. M. Borgstrom, G. Immink, B. Ketelaars, R. Algra, and E. Bakkers, Nature Nanotechnol., 2, 541–544 (2007).

    Google Scholar 

  38. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett., 4, 89–90 (1964).

    CAS  Google Scholar 

  39. E. Bauer and J. H. van der Merwe, Phys. Rev. B, 33, 3657–3671 (1986).

    CAS  Google Scholar 

  40. Y. Cui, Q. Wei, H. Park, and C. Lieber, Science, 293, 1289 (2001).

    CAS  Google Scholar 

  41. J. Arbiol, B. Kalache, P. Rocai Cabarrocas, J. R. Morante, and A Fontcuberta i Morral, Nanotechnology, 18, 305606–14 (2007).

    Google Scholar 

  42. A. Fontcuberta i Morral, C. Colombo, G. Abstreiteer, J. Arbiol, and J.R. Morante, Appl. Phys. Lett., 92, 063112 (2008).

    Google Scholar 

  43. A.L. Giermann and C.V. Thompson, Appl. Phys. Lett., 86, 121903 (2005).

    Google Scholar 

  44. W.K. Choi, T.H. Liew, H.G. Chew, F. Zheng, C.V. Thompson, Y. Wang, M.H. Hong, X.D. Wang, L. Li, and J. Yun, Small, 4, 330–333 (2008).

    CAS  Google Scholar 

  45. H.A. Pohl, Dielectrophoresis: the behaviour of neutral matter in nonuniform electric field, Cambridge University Press, Cambridge, UK (1978)

    Google Scholar 

  46. P.J. Burke, Encyclopedia of Nanoscience and Nanotechnology, In: H.S. Nalwa (Ed.) Vol 6 American Scientific Publishers, Los Angeles, CA 2004, pp 623–641.

    Google Scholar 

  47. Q. Wan, E. Dattoli, and W. Lu, Small, 4 (2008).

    Google Scholar 

  48. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber, Nature, 449, 885–890 (2007).

    CAS  Google Scholar 

  49. Z. Zhong, C. Yang, and C.M. Lieber, Nanosilicon, 176–216. (Ed. V. Kumar, Elsevier (2008) ).

    Google Scholar 

  50. A. Vomiero, M. Ferroni, E. Comini, G. Faglia, and G. Sberveglieri, Nano Lett., 7, 3553–3558 (2007).

    CAS  Google Scholar 

  51. A. Fontcuberta i Morral, D. Spirkoska, J. Arbiol, M. Heigoldt, J.R. Morante, and G. Abstreiter, Small, 4, 899–903 (2008).

    Google Scholar 

  52. K.Q. Peng, Y.J. Yan, S.P. Gao, and J. Zhu, Adv. Mater., 14, 1164–1167 (2002).

    CAS  Google Scholar 

  53. P. Gorostiza, M.A. Kulandainathan, R. Diaz, F. Sanz, P. Allongue, and J.R. Morante, J. Electrochem. Soc., Society, 147, 1026 (2000).

    CAS  Google Scholar 

  54. P. Gorostiza, P. Allongue, R. Díaz, J.R. Morante, F. Sanz, J.Phys.Chem. B, 107, 6454–6461 (2003).

    CAS  Google Scholar 

  55. A.R. Leach, Molecular modelling principles & applications. Addison Wesley Publishing Company, USA (1997).

    Google Scholar 

  56. J.D. Prades, A. Cirera, and J.R. Morante, Quantum chemical calculations of surfaces and interfaces of materials, In: V.A. Basluk and P. Ugllengo (Eds.) American Scientific Publisher California, USA (2008).

    Google Scholar 

  57. J.D. Prades, A. Cirera, and J.R. Morante, J. Electrochem. Soc., 154 (8), H675–H680 (2007).

    CAS  Google Scholar 

  58. M. Batzill and U. Diebold, Prog. Surf. Sci., 79, 47 (2005).

    CAS  Google Scholar 

  59. C.N. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Chem. Lett., 1990(3), 441 (1990).

    Google Scholar 

  60. C.N. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Tech. Digest of 9th Sensor Symp., Tokyo, Japan, p.95 (1990).

    Google Scholar 

  61. C.N. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sens. Actuat. B, 3, 147 (1991).

    CAS  Google Scholar 

  62. J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, and N. Yamazoe, J. Electrochem. Soc., 141, 2208 (1994).

    Google Scholar 

  63. Y.- G. Choi, G. Sakai, K. Shimanoe, N. Miura, and N. Yamazoe, Sens. Actuat. B, 95, 258, (2003).

    CAS  Google Scholar 

  64. A. Cabot, J. Arbiol, E. Rossinyol, J.R. Morante, F. Chen, and M. Liu, Electrochem. Solid State Lett., 7 (5), G93–G97 (2004).

    CAS  Google Scholar 

  65. M.N. Rumyantseva, A. Gaskov, N. Rosman, T. Pagnier, and J.R. Morante, Chem. Mater., 17, 893–901 (2005).

    CAS  Google Scholar 

  66. A. Cabot, J. Arbiol, A. Cornet, J.R. Morante, F. Chen, and M. Liu, Thin Solid Film, 436, 64–69 (2003).

    CAS  Google Scholar 

  67. W. Gopel and K.D. Schierbaum, Sens. Actuat. B, 26, 1–12 (1995).

    Google Scholar 

  68. N. Barsan, D. Koziej, and U. Weimar, Sens. Actuat. B, 121, 18–35 (2007).

    CAS  Google Scholar 

  69. J. Jortner and C.N.R. Rao, Pure Appl. Chem., 74, 1489–1783 (2002).

    Google Scholar 

  70. M. Law, J. Goldberger, and P. Yang. Annu. Rev. Mater. Res., 34, 83–122 (2004).

    CAS  Google Scholar 

  71. A. Cabot, A. Diéguez, A. Romano-Rodríguez, J.R. Morante, and N. Barsan, Sens. Actuat. B, 79, 98–106, (2001).

    CAS  Google Scholar 

  72. A. Dieguez, A. Vila, A. Cabot, A. Romano-Rodriguez, J.R. Morante, J. Kappler, N. Barsan, U. Weimar, and W. Gopel, Sens. Actuat. B-Chem., 68, 94–9, (2000).

    CAS  Google Scholar 

  73. J. Kappler, N. Barsan, U. Weimar, A. Dieguez, J.L. Alay, A. Romano-Rodríguez, J.R. Morante, W. Göpel, and Fresenius, J. Anal. Chem., 361, 110–114 (1998).

    Google Scholar 

  74. http://mathforum.org/library/drmath/view/65234.html

  75. J. Tamaki, J. Niimi, S. Ogura, and S. Konishi, Sens. Actuat. B, 117, 353–358 (2006).

    CAS  Google Scholar 

  76. J. Tamaki, A. Miyaji, J. Makinodan, S. Ogura, and S. Konishi, Sens. Actuat. B, 108, 202–206 (2005).

    CAS  Google Scholar 

  77. J. Tamaki, Y. Okochi, and S. Konishi, Electrochemistry, 74, 159–162 (2006).

    CAS  Google Scholar 

  78. F. Hernandez-Ramirez, Fabrication strategies and characterization of nanodevices fabricated with focused ion beam techniques. PhD Thesis Dissertation, University of Barcelona (2007).

    Google Scholar 

  79. G.J. Li and S. Kawi, Matter. Lett., 34, 99–102 (1998).

    Google Scholar 

  80. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindnyo, and T.E. Mallouk, Chem.-Eur. J., 8, 4355 (2002).

    Google Scholar 

  81. M.E. Toimil-Morales, E.M. Höhberger, C.H. Schaeflein, R.H. Blick, R. Neumann, and C. Trautmann, Appl. Phys. Lett., 82, 2139 (2003).

    Google Scholar 

  82. “Focused ion beam technology, capabilities and applications”. FEI Company (2004). Brochure available at (www.feicompany.com)

  83. S. Reyntjens and R. Puers, J. Micromech. Microeng., 11, 287–300 (2001).

    CAS  Google Scholar 

  84. S. Matsui and Y. Ochiai, Nanotechnology, 7, 247–258 (1996).

    CAS  Google Scholar 

  85. G. de Marzi, D. Iacopino, A.J. Quinn, and G. Redmond, J. Appl. Phys., 96, 6 (2004).

    Google Scholar 

  86. L. Rotkina, J-F. Lin, and J. P. Bird, Appl. Phys. Lett., 83, 4426 (2003).

    CAS  Google Scholar 

  87. F. Hernandez-Ramirez, O. Casals, J. Rodríguez, A. Vila, A. Romano-Rodriguez, J.R. Morante, M. Abid, S. Valizadeh, Mat. Res. Soc., Symp. Proc., J 5.2 (2005).

    Google Scholar 

  88. V. Gopal, V.R. Radmilovic, C. Daraio, S. Jin, P. Yang, and E. Stach, Nano. Lett., 4, 2059 (2004).

    CAS  Google Scholar 

  89. A. Vila, F. Hernandez-Ramirez, J. Rodriguez, O. Casals, A. Romano-Rodriguez, J.R. Morante, and M. Abid, Mater. Sci. Eng. C., 26, 1063–1066 (2006).

    CAS  Google Scholar 

  90. M. Law, H. Kind, B. Messe, F. Kim, and Y. Peidong, Angew. Chem., 114, 2511 (2002).

    Google Scholar 

  91. F. Hernández-Ramírez, J. Rodríguez, O. Casals, E. Russinyol, A. Vilà, A. Romano-Rodríguez, J.R. Morante, and M. Abid, Sens. Actuat. B, 118, 98–203 (2006).

    Google Scholar 

  92. F. Hernandez-Ramirez, J.D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jiménez– Diaz, E. Pellicer, J. Rodriguez, M.A. Juli, A. Romano-Rodriguez, J.R. Morante, S. Mathur, A. Helwig, J. Spannhake, and G. Mueller, Nanotechnology, 18, 495501–06 (2007).

    CAS  Google Scholar 

  93. F. Hernández-Ramírez, A. Tarancón, O. Casals, J. Arbiol, A. Romano-Rodríguez, and J.R. Morante, Sens. Actuat. B, 121, 3–17 (2007).

    Google Scholar 

  94. Z.R. Dai, Z.W. Pan, and Z.L. Wang, Adv. Funct. Mater., 13, 9–24 (2003).

    Google Scholar 

  95. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett., 4, 89–90, (1964).

    CAS  Google Scholar 

  96. Y. Ding, P.X. Gao, and Z.L. Wang, J.Am. Chem. Soc., 126, 2066 (2004).

    CAS  Google Scholar 

  97. S. Mathur, S. Barth, H. Shen, J.-C. Pyun, and U. Werner, Small, 1, 7, 713–717 (2005).

    Google Scholar 

  98. S. Lenaerts, M. Honore, G. Huyberechts, J. Roggen, and G. Maes, Sensor and Actuators B, 18/19, 478 (1994).

    Google Scholar 

  99. A. Cabot, J. Arbiol, E. Rossinyol, J.R. Morante, F.L. Chen, M.L. Liu, Electrochem. Solid State Lett., 7, G93 (2004).

    CAS  Google Scholar 

  100. M.N. Rumyantseva, A.M. Gaskov, N. Rossman, T. Pagnier, J.R. Morante, Chem. Mater., 17, 893 (2005).

    CAS  Google Scholar 

  101. D. Li, Y. Wu, L. Shi, P. Yang, and A. Majumdar, Appl. Phys.Lett., 83,14 (2003).

    Google Scholar 

  102. C. Yu, Nanomaterials characterization and bio-chemical sensing using microfabricated devices. Thesis Dissertation, University of Texas (2004).

    Google Scholar 

  103. S. Mathur, S. Barth, H. Shen, J.C. Pyun, and U. Werner, Small, 1, 713 (2005).

    CAS  Google Scholar 

  104. F. Hernandez-Ramırez, A. Tarancon, O. Casals, E. Pellicer, J. Rodrıguez, A. Romano-Rodrıguez, J.R. Morante, S. Barth, and S. Mathur, Phys. Rev. B, 76, 085429 (2007).

    Google Scholar 

  105. G. Decher, Science, 277, 1232–1237 (1997).

    CAS  Google Scholar 

  106. A. Ulman, An introduction to ultra thin organic films from Langmuir Blodgett to self-assembly. Academic Press, New York, USA (1991).

    Google Scholar 

  107. J. Zhang, Z.L. Wang, J. Liu, S. Chen, and G.Y. Liu, Self assembled nanostructures. Kluwer Academic/Plenum Publishing, New York, USA (2003).

    Google Scholar 

  108. M. La Barbera, Science, 289, 1882 (2000).

    Google Scholar 

  109. C.M. Niemeyer and C.A. Mirkin, Nanobiotechnology: Concepts, applications and perspectives. Wiley-VCH, Dortmund, Germany, (2004).

    Google Scholar 

  110. N. Wickramasinghe, S. Choudhary, and E. Geisler, Int. J. Biomed. Eng. Technol., 1, 41–58 (2007).

    CAS  Google Scholar 

  111. S. Vikas and C. Pundir, Sens. Trans., 82, 1405–1417 (2007).

    Google Scholar 

  112. D. Fraser, An introduction to in vivo biosensing: progress and problems, In: Fraser, D. (Ed.), Biosensors in the body, continuous in vivo monitoring. Wiley, London, 10–56 (1997).

    Google Scholar 

  113. M. Pumera, S. Sanchez, I. Ichinose, and J. Tang, Sens. Actuat. B, 123, 1195–1205 (2007).

    CAS  Google Scholar 

  114. X.-J. Huanga and Y.K. Choi, Sens. Actuat. B, 122, 659–671 (2007).

    Google Scholar 

  115. V. Chukharev, T. Vuorinen, A. Efimov, N.V. Tkachenko, M. Kimura, S. Fukuzumi, H. Imahori, and H. Lemmetyinen, Langmuir, 21, 6385–6391 (2005).

    CAS  Google Scholar 

  116. P. Avouris and J. Chen, Mater. Today, 9, 10, 46–54 (2006).

    Google Scholar 

  117. D.J. Sirbuly, M. Law, H.Q. Yan, et al., J. Phys. Chem. B, 109, 32, 15190–15213, (2005).

    Google Scholar 

  118. H.E. Maes, C. Claeys, R. Mertens, et al., Adv. Eng. Mater., 3, 10781–787 (2001).

    Google Scholar 

  119. E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol., 18, R33–R51 (2003).

    CAS  Google Scholar 

  120. A. Rose, Concepts in photoconductivity and allied problems. Interscience Publishers: New York (1963).

    Google Scholar 

  121. R.H. Bube, Photoelectronic properties of semiconductors. Cambridge University Press: Cambridge (1992).

    Google Scholar 

  122. S.M. Sze, “Physics of semiconductor devices”. John Wiley & Sons, Inc: New York (1981).

    Google Scholar 

  123. H. Yoshikawa and S. Adachi, Jpn, J. Appl. Phys., 36, 10, 6237–6243, (1997).

    Google Scholar 

  124. S. Kumar, S. Rajaraman, R.A. Gerhardt, Z.L. Wang, and P.J. Hesketh, Electrochim. Acta, 51, 943–951, (2005).

    CAS  Google Scholar 

  125. J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, Nanotechnology, 17, 2567–2573 (2006).

    CAS  Google Scholar 

  126. This resolution value was taken as a rough approximation to the minimal feature of current lithography techniques.

    Google Scholar 

  127. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. (Weinheim, Germany) 14 (2), 158–160 (2002).

    CAS  Google Scholar 

  128. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, and D. Wang, Nano Lett., 7 (4), 1003–1009, (2007).

    CAS  Google Scholar 

  129. X.G. Zheng, Q. Sh. Li, J.P. Zhao, D. Chen, B. Zhao, Y.J. Yang, L. Ch. Zhang, Appl. Surf. Sci., 253, 2264–2267 (2006).

    CAS  Google Scholar 

  130. S. Mathur, S. Barth, H. Shen, J.-C. Pyun, and U. Werner, Small, 1, 77, 713–717 (2005).

    Google Scholar 

  131. J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, and S.T. Lee, Nano Lett., 6, 9, 1887–1892 (2006).

    Google Scholar 

  132. Z.Y. Fan, P.C. Chang, J.G. Lu, E.C. Walter, R.M. Penner, C.H. Lin, and H.P. Lee, Appl. Phys. Lett., 85, 25, 6128–6130 (2004).

    Google Scholar 

  133. Y.W. Heo, B.S. Kang, L.C. Tien, D.P. Norton, F. Ren, J.R. La Roche, and S.J. Pearton, Appl. Phys. A: Mater. Sci. Process., 80, 3, 497–499 (2005).

    Google Scholar 

  134. S.A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys., 87, 5, 2413–2421 (2000).

    Google Scholar 

  135. C.S. Lao, M.-C. Park, Q. Kuang, Y. Deng, A.K. Sood, D.L. Polla, Z.L. Wang, J. Am. Chem. Soc., 129 (40), 12096–12097 (2007).

    CAS  Google Scholar 

  136. P.-C. Chang, C.-J. Chien, D. Stichtenoth, C. Ronning, and J.G. Lu, Appl. Phys. Lett., 90, 113101 (3 pages) (2007).

    Google Scholar 

  137. Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng, J.G. Lu, Appl. Phys. Lett., 85, 5923 (2004).

    CAS  Google Scholar 

  138. P. -C. Chang, Z. Fan, D. Wang, W.. - Y. Tseng, W. - A. Chiou, J. Hong, J.G. Lu, Chem. Mater., 16, 5133–5137 (2004).

    CAS  Google Scholar 

  139. P. Chang, Z. Fan, C. Chien, D. Stichtenoth, C. Ronning, J.G. Lu, Appl. Phys. Lett., 89, 133113 (2006).

    Google Scholar 

  140. L. Hu and G. Chen, Nano Lett. 7, 11, 3249–3252 (2007).

    Google Scholar 

  141. A. Ohtomo and A. Tsukazaki, Semicond. Sci. Technol., 20, S1–S12 (2005).

    CAS  Google Scholar 

  142. Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater., 29, 69–74 (2000).

    CAS  Google Scholar 

  143. K. Q. Peng, Z.P. Huang, and J. Zhu, Adv. Mater., 16, 73–76 (2004).

    CAS  Google Scholar 

  144. Chen Yang, Zhaohui Zhong, and Charles M. Lieber, 310, 1304–1307 (2005).

    Google Scholar 

  145. L.J. Lauhon, M.S. Gudiksen, D.Wang, and C.M. Lieber, Nature, 420, 57–61 (2002).

    CAS  Google Scholar 

  146. Y.-L. Chueh, L.-J. Chou, and Z.L. Wang, Angew. Chem. Int. Ed., 45, 7773–7778 (2006).

    CAS  Google Scholar 

  147. B. Pradhan, S.K. Batabyal, and A.J. Pal, Appl. Phys. Lett., 89, 233109,(2006).

    Google Scholar 

  148. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nat. Mat., 4, 455 (2005).

    CAS  Google Scholar 

  149. X.D. Wang, J.H. Song, J. Liu, and Z.L. Wang, Science, 316, 102 (2007).

    CAS  Google Scholar 

  150. M. Gratzel, Nature, 414, 338 (2001), and B. O’Regan, M. Grätzel, Nature, 353, 737 (1991).

    Google Scholar 

  151. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science, 295, 242 (2002).

    Google Scholar 

  152. L.E. Greene, M. Law, B.D. Yuhas, and P.D. Yang (2007). J. Phys. Chem. Lett., 111,18451 (2007).

    CAS  Google Scholar 

  153. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Liebre, Nature, 449, 885–889 (2007).

    CAS  Google Scholar 

  154. Chanda Ranjit Yonzon, Douglas A. Stuart, Xiaoyu Zhang, Adam D. McFarland, Christy L. Haynes, and Richard P. Van Duyne, Talanta, 67, 438–448 (2005).

    Google Scholar 

  155. Adam D. McFarland and Richard P. Van Duyne, Nano Lett., 3, 1057 (2003).

    Google Scholar 

  156. J.J. Mock, David R. Smith, and Sheldon Schultz, Nano Lett., 3, 485 (2003).

    CAS  Google Scholar 

  157. T.R. Jensen, M.D. Malinsky, C.L. Haynes, and R.P. Van Duyne, J. Phys. Chem. B, 104, 10549–10556 (2000).

    CAS  Google Scholar 

  158. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, and S. Schultz, J. Chem. Phys., 116, 6755 (2002).

    CAS  Google Scholar 

  159. C. Sönnichsen, B.M. Reinhard, J. Liphardt, and A.P. Alivisatos, Nature Biotechnol., 23, 741–745 (2005).

    Google Scholar 

  160. B.M. Reinhard, S. Sheikholeslami, A. Mastroianni, A.P. Alivisatos, and J. Liphardt, Proc. Natl. Acad. Sci., USA 104, 2667–2672 (2007).

    CAS  Google Scholar 

  161. J. Dostálek, J. Tyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Pirkovác, J. Kvord, and J. Schröfele, Sens. Actuat. B: 76, 8–12 (2001).

    Google Scholar 

  162. J. Homola, Ivo Koudela b, and Sinclair S. Yee, Sens. Actuat. B, 54, 16–24 (1999).

    CAS  Google Scholar 

  163. J. Homola, S.S. Yee, and G. Gauglitz, Sens. Actuat. B, 54, 3–15 (1999).

    CAS  Google Scholar 

  164. J. Homola, Anal. Bioanal. Chem., 377, 528–539 (2003) .

    CAS  Google Scholar 

  165. Carsten Sönnichsen, Björn M Reinhard, Jan Liphardt, and A Paul Alivisatos, Nat. Biotechnol., 23, 741–745 (2005).

    Google Scholar 

  166. Björn M. Reinhard, Sassan Sheikholeslami, Alexander Mastroianni, A.P. Alivisatos, and Jan Liphardt, Use of Plasmon Rulers to Reveal the Dynamics of DNA Bending and Cleavage by Single EcoRV Restriction Enzymes, Proc. Natl. Acad. Sci. USA 104, 2667–2672 (2007).

    Google Scholar 

  167. E. Hao and G.C. Schatza, J. Chem. Phys., 120, 1 (2004).

    Google Scholar 

  168. H. Xu, J. Aizpurua, M. Kall, and P. Apell, Phys. Rev. E, 62, 4318 (2000).

    CAS  Google Scholar 

  169. D.A. Genov, A.K. Sarychev, V.M. Shalaev, and Alexander Wei Resonant, Nano Lett., 4, 1 (2004).

    Google Scholar 

  170. C.L. Haynes, C.R. Yonzon, X. Zhang, and R.P. Van Duyne, J. Raman Spectrosc., 36, 471–484 (2005).

    CAS  Google Scholar 

  171. Z. Zhul, T. Zhu, and Z. Liu, Nanotechnology, 15, 357–364 (2004).

    Google Scholar 

  172. Zhong-Qun Tian, Bin Ren, and De-Yin Wu, J. Phys. Chem. B,, 106, 37 (2002).

    Google Scholar 

  173. Martin Moskovits, J. Raman Spectrosc., 36, 485–496,(2005).

    Google Scholar 

  174. Katrin Kneipp, Yang Wang, Harald Kneipp, Lev T. Perelman, Irving Itzkan, Ramachandra R. Dasari, and Michael S. Feld, Phys. Rev. Lett.,, 78, 1667 (1997).

    Google Scholar 

  175. Shuming Nie and Steven R. Emory, Science,, 275, 1102 (1997).

    Google Scholar 

  176. David L. Stokes and Tuan Vo-Dinh, Sens. Actuat. B: Chem., 69, 28–36 (2000).

    Google Scholar 

  177. Chanda Ranjit Yonzon, Christy L. Haynes, Xiaoyu Zhang, Joseph T. Walsh, Jr., and Richard P. Van Duyne, Anal. Chem., 76, 78–85 (2004).

    Google Scholar 

  178. A. Stuart, Jonathan M. Yuen, Nilam Shah, Olga Lyandres, Chanda R. Yonzon, Matthew R. Glucksberg, Joseph T. Walsh, and Richard P. Van Duyne, Anal. Chem., 78, 7211–7215 (2006).

    CAS  Google Scholar 

  179. Raoul M. Stöckle, Yung Doug Suh, Volker Deckert1, and Renato Zenobi, Chem. Phys. Lett., 318, 131–136 (2000).

    Google Scholar 

  180. Raoul M. Stöckle, Yung Doug Suh, Volker Deckert1, and Renato Zenobi, Chem. Phys. Lett., 318, 131–136 (2000).

    Google Scholar 

  181. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T.A. Arias, P.L. McEuen, Nature, 431, 284–287 (2004).

    CAS  Google Scholar 

  182. G. Abadal, Z.J. Davis, B. Helbo, X. Borrisé, R. Ruiz, A. Boisen, F. Campabadal, J. Esteve, E. Figueras, F. Pérez-Muranso, and N. Barniol, Nanotechnology, 12, 1–5 (2001).

    Google Scholar 

  183. J. Yang, T. Ono, and M. Esashi, Sens. Actuat. B, 82, 102–107,(2000).

    CAS  Google Scholar 

  184. A.N. Cleland and M.L. Roukes, Appl. Phys. Lett., 69, 2653–2655 (1996).

    CAS  Google Scholar 

  185. Z.J. Davis, G. Abadal, B. Helbo, O. Hansen, F. Campabadal, F. Pérez-Murano, J. Esteve, E. Figueras, J. Verd, N. Barniol, and A. Boisen, Sens. Actuat. A, 105, 311–319 (2003).

    CAS  Google Scholar 

  186. A. Boisen, K. Birkelund, O. Hansen, and F. Grey, J. Vac. Sci. Technol. B, 16, 2977–2981 (1998).

    CAS  Google Scholar 

  187. P. Engels, S. Salewski, H. Levsen, K. Sengstock and W. Ertmer, Appl. Phys. B, 69, 407–412 (1999).

    CAS  Google Scholar 

  188. A.S. Bell, B. Brezger, U. Drodofsky, S. Nowak, T. Pfau, J. Stuhler,T.H. Schulze, and J. Mlynek, Surf. Sci., 433–435, 40–47 (1999).

    Google Scholar 

  189. Z.J. Davis, G. Abadal, O. Kuhn, O. Hansen, F. Grey, and A. Boisen, J. Vac. Sci. Technol. B, 18, 612–616 (2000).

    CAS  Google Scholar 

  190. G. Abadala, Z.J. Davis, X. Borris!e, O. Hansen, A. Boisen, N. Barniol, F. P!erez-Murano, and F. Serra, Ultramicroscopy, 97,127–133 (2003).

    Google Scholar 

  191. C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, and H. Baltes, Nature, 414, 293–296 (2001).

    CAS  Google Scholar 

  192. G.U. Lee, L.A. Chrisey, and R.J. Colton, Science, 266, 771–773 (1994).

    CAS  Google Scholar 

  193. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, and H.E. Gaub, Science, 276, 1109–112 (1997).

    CAS  Google Scholar 

  194. J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P.Vettiger, E. Meyer, H.-J. Guntherodt, C.H. Gerber, and J.K. Gimzewski, Science, 288, 316–318 (2000).

    CAS  Google Scholar 

  195. F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H.E. Gaub, and D.J. Muller, Science, 288,143–146 (2000).

    CAS  Google Scholar 

  196. J.A. Harley, and T.W. Kenny, Appl. Phys. Lett., 75, 289–291 (1999).

    CAS  Google Scholar 

  197. E.L. Florin, V.T. Moy, and H.E. Gaub, Science, 264, 415–417 (1994).

    CAS  Google Scholar 

  198. G. Villanueva, J. Montserrat, F.P_erez-Murano, G. Rius, and J. Bausells, Microelectr. Eng., 73–74, 480–486 (2004).

    Google Scholar 

  199. P.A. Rasmussen, J. Thaysen, O. Hansen,, S.C. Eriksen, and A. Boisen, Ultramicroscopy, 97, 371–376 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Andreu, T. et al. (2009). Nanosensors: Controlling Transduction Mechanisms at the Nanoscale Using Metal Oxides and Semiconductors. In: Arregui, F. (eds) Sensors Based on Nanostructured Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77753-5_5

Download citation

Publish with us

Policies and ethics