Non-carbon Nanotubes: Hydrogen Sensors Based on TiO2

  • Kristen E. LaFlamme
  • Craig A. Grimes


Sensors for the detection of gases such as oxygen, water vapor, and hydrogen are becoming increasingly important for a number of areas such as manufacturing, environmental monitoring, medicine, and defense/security [19]. Hydrogen sensing in particular is needed for industrial process control, combustion control, and in medical applications where the presence of hydrogen is indicative of certain types of health conditions [18].


Sensor Network Sensor Node Hydrogen Concentration Lactose Intolerance Sensor Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Capovilla J, VanCouwenberghe C, Miller WA (2000) Noninvasive blood gas monitoring. Crit Care Nurs Q 23:79–86Google Scholar
  2. 2.
    Carter BG, Wiwczaruk D, Hochmann M, Osborne A, Henning R (2001) Performance of transcutaneous PCO2 and pulse oximetry monitors in newborns and infants after cardiac surgery. Anaesth Intens Care 29:260–265Google Scholar
  3. 3.
    Chong SKF, Ramadan AB, Livesey E, Wood G (2002) The use of a portable breath hydrogen analyser in screening for lactose intolerance in paediatric patients with chronic abdominal pain or chronic diarrhoea. Gastroenterology 122:M1827 Suppl. 1821 APRGoogle Scholar
  4. 4.
    Engel RR, Virnig NL (1973) Origin of mural gas in necrotizing enterocolitis. Pediatric Res 7:292AGoogle Scholar
  5. 5.
    Garstin WIH, Boston VE (1987) Sequential assay of expired breath hydrogen as a means of predicting necrotizing enterocolitis in susceptible infants. J Pediatr Surg 22:208CrossRefGoogle Scholar
  6. 6.
    Godoy G, Truss C, Philips J (1986) Breath hydrogen excretion in infants with necrotizing enterocolitis. J Pediatr Res 20:348AGoogle Scholar
  7. 7.
    Grimes CA, Ong KG, Varghese OK, Yang X, Mor G, Paulose M, Dickey EC, Ruan C, Pishko MV, Kendig JW, Mason AJ (2003) A Sentinel sensor network for hydrogen sensing. Sensors 3:69–82CrossRefGoogle Scholar
  8. 8.
    McIntosh N, Becher JC, Cunningham S, Stenson B, Laing IA, Lyon AJ, Badger P (2000) Clinical diagnosis of pneumothorax is late: use of trend data and decision support might allow preclinical detection. Pediatr Res 48:408–415CrossRefGoogle Scholar
  9. 9.
    Mor GK, Carvalho MA, Varghese OK, Pishko MC, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634CrossRefGoogle Scholar
  10. 10.
    Mor GK, Varghese OK, Paulose M, Grimes CA (2003) A self-cleaning, room-temperature titania-nanotube hydrogen gas sensor. Sens Lett 1:42–46CrossRefGoogle Scholar
  11. 11.
    Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 18:2588CrossRefGoogle Scholar
  12. 12.
    Moukarzel AA, Lesicka H, Ament ME (2002) Irritable bowel syndrome and nonspecific diarrhea in infancy and childhood relationship with juice carbohydrate malabsorption. Clin Pediatr (Phila) 41:145–150CrossRefGoogle Scholar
  13. 13.
    Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17:398–402CrossRefGoogle Scholar
  14. 14.
    Pimentel M, Chow EJ, Lin HC (2000) Comparison of peak breath hydrogen production in patients with irritable bowel syndrome, chronic fatigue syndrome and fibromyalgia. Gastroenterology 118:2141 Part 2141 Suppl 2142Google Scholar
  15. 15.
    Riordan SM, McIver CJ, Duncombe VM, Thomas MC, Bolin TD (2000) Evaluation of the rice breath hydrogen test for small intestinal bacterial overgrowth. Am J Gastroenterol 95:2858–2864CrossRefGoogle Scholar
  16. 16.
    Tobias JD, Wilson WR, Jr, Meyer DJ (1999) Transcutaneous monitoring of carbon dioxide tension after cardiothoracic surgery in infants and children. Anesth Analg 88:531–534Google Scholar
  17. 17.
    Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627CrossRefGoogle Scholar
  18. 18.
    Varghese OK, Gong D, Paulouse M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sens Actuat B 93:338–344CrossRefGoogle Scholar
  19. 19.
    Varghese OK, Grimes CA (2003) Metal oxide nanoarchitectures for environmental sensing. J Nanosci Nanotechnol 3:277–293CrossRefGoogle Scholar
  20. 20.
    Varghese OK, Mor GK, Grimes CA, Paulose M, Mukherjee N (2004) A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J Nanosci Nanotechnol 4:733–737CrossRefGoogle Scholar
  21. 21.
    Varghese OK, Yang X, Kendig J, Paulose M, Zeng K, Palmer C, Ong KG, Grimes CA (2006) A transcutaneous hydrogen sensor: From design to application. Sens Lett 4:120–128CrossRefGoogle Scholar
  22. 22.
    Yoriya S, Prakasam HE, Varghese OK, Shankar K, Paulose M, Mor GK, Latempa TA, Grimes CA (2006) Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 mm to 222 mm in length. Sens Lett 4:334–339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kristen E. LaFlamme
    • 1
  • Craig A. Grimes
    • 2
  1. 1.Boston UniversityBostonUSA
  2. 2.The Pennsylvania State University Electrical EngineeringUniversity ParkUSA

Personalised recommendations