Skip to main content
  • 1179 Accesses

Abstract

The first fullerene was discovered in 1985 by Sir Harold W. Kroto from the University of Sussex and Richard E. Smalley and Robert F. Curl Jr. from Rice University [1] inadvertently when they were studying the nucleation of carbon in the atmosphere of a cool carbon-rich red giant star. Fullerenes refer to a family of carbon allotropes. Each carbon molecule is composed of at least 60 carbon atoms such as C60. When the atoms are arranged in the form of hollow sphere, it is referred to as buckyballs. Fullerenes that take the form of a cylinder are referred to as carbon nanotubes (CNTs). By 1990, it was relatively easy to synthesize macroscopic quantities of C60. Donald Huffman of University of Arizona and Wolfgang Kratschmer of Max Planck Institute developed a technique by which C60 was produced by evaporating graphite electrodes via resistive heating in an atmosphere of 100 Torr helium [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley (1985). Nature, 318, 162.

    CAS  Google Scholar 

  2. W. Kratschmer, L. D. Lamb, K. Fostirapoulos, and D. R. Huffman (1990). Nature, 347, 354.

    Google Scholar 

  3. S. Ijima (1991). Nature, 354, 56.

    Google Scholar 

  4. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus (1992). Appl. Phys. Lett., 60, 2204.

    CAS  Google Scholar 

  5. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer (2002). Science, 297, 787.

    CAS  Google Scholar 

  6. M. Terrones (2003). Ann. Rev. Mat. Res., 33, 419.

    CAS  Google Scholar 

  7. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker (1998). Nature, 391, 59.

    CAS  Google Scholar 

  8. S. G. Louie (2001). Topics in Applied Physics, In: M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (Ed.) Springer, New York, 80, 113.

    Google Scholar 

  9. T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber (1998). Nature, 391, 59.

    Google Scholar 

  10. T. W. Ebbesen (1997). Carbon Nanotubes: Preparation and Properties, In: T. W. Ebbesen (Ed.) CRC Press, Boca Raton, 139.

    Google Scholar 

  11. S. Ijima and T. Ichihashi (1993). Nature, 363, 603.

    Google Scholar 

  12. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers (1993). Nature, 363, 305.

    Google Scholar 

  13. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer (1997). Nature, 388, 756.

    CAS  Google Scholar 

  14. H. Li, L. Guan, Z. Shi, and Z. Gu (2004). J. Phys. Chem. B, 108, 4573.

    CAS  Google Scholar 

  15. M. C. Paladugu, K. Maneesh, P. K. Nair, and P. Haridoss (2005). J. Nanosci. Nanotechnol., 5, 747.

    CAS  Google Scholar 

  16. A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley (1996).Science, 273, 483.

    CAS  Google Scholar 

  17. S. Arepalli, P. Nikolaev, W. Holmes, and B. S. Files (2001). Appl. Phys. Lett., 78, 1610.

    CAS  Google Scholar 

  18. C. D. Scott, S. Arepalli, P. Nikolaev, and R. E. Smalley (2001). Appl. Phys. A, 72, 573.

    CAS  Google Scholar 

  19. N. Braidy, M. A. El Khakani, and G. A. Botton (2002). J. Mat. Res., 17, 2189.

    CAS  Google Scholar 

  20. S. Takahashi, T. Ikuno, T. Oyama, S. I. Honda, M. Katayama, T. Hirao, and K. Oura (2002). J. Vac. Soc. Jpn, 45, 609.

    CAS  Google Scholar 

  21. H. Dai (2001). Topics in Applied Physics, In: M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (Ed.) Springer, New York, 80, 29.

    Google Scholar 

  22. M. J. Yacaman, M. M. Yoshida, L. Rendon, and J. G. Santiesteban (1993). Appl. Phys. Lett., 62, 202.

    Google Scholar 

  23. V. K. Varadan and J. Xie (2002). Smart Mat. Struc., 11, 610.

    CAS  Google Scholar 

  24. D. Park, Y. H. Kim, and J. K. Lee (2003). Carbon, 41, 1025.

    CAS  Google Scholar 

  25. B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, and P. M. Ajayan (2002). Nature, 416, 495.

    CAS  Google Scholar 

  26. T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki (1994). Nature, 367, 519.

    Google Scholar 

  27. H. Hiura, T. W. Ebbesen, and K. Tanigaki (1995). Adv. Mat., 7, 275.

    CAS  Google Scholar 

  28. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, and P. C. Eklund (1997). J. Phys. Chem. B, 101, 8839.

    CAS  Google Scholar 

  29. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macais, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley (1998). Appl. Phys. A, 67, 29.

    CAS  Google Scholar 

  30. C. Xu, E. Flahaut, S. R. Bailey, G. Brown, J. Sloan, K. S. Coleman, V. C. Williams, and M. L. H. Green (2002). Chem. Res. Chinese Univ., 18, 130.

    CAS  Google Scholar 

  31. L. P. Biro, N. Q. Khanh, Z. Vertesy, Z. E. Horvath, Z. Osvath, A. Koos, J. Gyulai, A. Kocsonya, Z. Konya, X. B. Zhang, G. V. Tendeloo, A. Fonseca, and J. B. Nagy (2002). Mat. Sci. Eng. C., C19, 9.

    CAS  Google Scholar 

  32. J. R. Wood and H. D. Wagner (2000). Appl. Phys. Lett., 76, 2883.

    CAS  Google Scholar 

  33. J. Liu and H. Dai (2002). [Online]. Available: http://www.nnf.cornell.edu/2002re u/Liu.pdf.

  34. J. Wu, J. Zang, B. Larade, H. Guo, X. G. Xong, and F. Liu (2004). Phys. Rev. B, 69, 153406.

    Google Scholar 

  35. C. K. M. Fung, M. Q. H. Zhang, R. H. M. Chan, and W. J. Li (2005). Proc. 18th IEEE Conf. MEMS, 251.

    Google Scholar 

  36. I.-M. Choi and S. -Y. Woo (2006). Metrologia, 43, 84.

    CAS  Google Scholar 

  37. V. L. Pushparaj, L. Ci, S. Sreekala, A. Kumar, S. Kesapragada, D. Gall, O. Nalamasu, J. Suhr, and P.M. Ajayan (2007). Appl. Phys. Lett., 91, 153116.

    Google Scholar 

  38. P. Dharap, Z. Li, S. Nagarajaiah, and E. V. Barrera (2004). Nanotechnology, 15, 379.

    CAS  Google Scholar 

  39. C. Y. Li and T. W. Chou (2004). Nanotechnology, 15, 1493.

    CAS  Google Scholar 

  40. A. S. Berdinsky, Y. V. Shevtsov, A. V. Okotrub, S. V. Trubin, L. T. Chadderton, D. Fink, and J. H. Lee (2000). Chem Sustain. Dev., 8, 141.

    Google Scholar 

  41. S. Ghosh, A. K. Sood, and N. Kumar (2003). Science, 299, 1042.

    CAS  Google Scholar 

  42. P. Kral and M. Shapiro (2001). Phys. Rev. Lett., 86, 131.

    CAS  Google Scholar 

  43. V. T. S. Wong and W. J. Li (2003). Proc. IEEE Int. Symp. Circuits Sys., 4, IV844.

    Google Scholar 

  44. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai (2000). Science, 287, 622.

    CAS  Google Scholar 

  45. A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan (2003). Nature, 424, 171.

    CAS  Google Scholar 

  46. Z. Hou, H. Liu, X. Wei, J. Wu, W. Zhou, Y. Zhang, D. Xu, and B. Cai (2007). Sens. Actuators B, 127, 637.

    CAS  Google Scholar 

  47. Y. M. Wong, W. P. Kang, J. L. Davidson, A. Wisitsora-at, and K. L. Soh (2003). Sens. Actuators B, 93, 327.

    CAS  Google Scholar 

  48. I. Sayago, E. Terrado, E. Lafuente, M. C. Horrillo, W. K. Maser, A. M. Benito, R. Navarro, E. P. Urriolabeitia, M. T. Martinez, and J. Gutierrez (2005). Synth. Met., 148, 15.

    CAS  Google Scholar 

  49. Y. Hayakawa, Y. Suda, T. Hashizume, H. Sugawara, and Y. Sakai (2007). Jpn. J. Appl. Phys., 46, L362.

    CAS  Google Scholar 

  50. J. Suehiro, S.-I. Hidaka, S. Yamane, and K. Imasaka (2007). Sens. Actuators B, 127, 505.

    CAS  Google Scholar 

  51. S. Chopra, A. Pham, J. Gaillard, A. Parker, and A. M. Rao (2002). Appl. Phys. Lett., 80, 4632.

    CAS  Google Scholar 

  52. N. D. Hoa, N. V. Quy, Y. Cho, and D. Kim (2007). Sens. Actuators B, 127, 447.

    CAS  Google Scholar 

  53. F. Picaud, R. Langlet, M. Arab, M. Devel, C. Girardet, S. Natarajan, S. Chopra, and A. M. Rao (2005). J. Appl. Phys., 97, 114316.

    Google Scholar 

  54. Q. Zhao, M. B. Nardelli, W. Lu, and J. Bernholc (2005). Nano Lett., 5, 847.

    CAS  Google Scholar 

  55. P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, and K. J. Cho (2003). Nano Lett., 3, 347.

    CAS  Google Scholar 

  56. E. Bekyarova, M. Davis, T. Burch, M. E. Itkis, B. Zhao, S. Sunshine, and R. C. Haddon (2004). J. Phys. Chem. B, 108, 19717.

    CAS  Google Scholar 

  57. M. Lucci, P. Regoliosi, A. Reale, A. D. Carlo, S. Orlanducci, E. Tamburri, M. L. Terranova, P. Lugli, C. D. Natale, A. D’Amico, and R. Paolesse (2005). Sens. Actuators B, 111–112, 181.

    Google Scholar 

  58. K. S. V. Santhanam, R. Sangoi, and L. Fuller (2005). Sens. Actuators B, 106, 766.

    CAS  Google Scholar 

  59. Y. X. Liang, Y. J. Chen, and J. H. Wang (2004). Appl. Phys. Lett., 85, 666.

    CAS  Google Scholar 

  60. L. Valentini, C. Cantalini, I. Armentano, J. M. Kenny, L. Lozzi, and S. Santucci (2004). Diam. Relat. Mat., 13, 1301.

    CAS  Google Scholar 

  61. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan (2003). Nano Lett., 3, 929.

    CAS  Google Scholar 

  62. F. Qu, M. Yang, J. Jiang, G. Shen, and R. Yu (2005). Anal. Biochem., 344, 108.

    CAS  Google Scholar 

  63. S. Hrapovic, Y. Liu, K. B. Male, and J. H. T. Luong (2004). Anal. Chem., 76, 1083.

    CAS  Google Scholar 

  64. R. P. Deo, J. Wang, I. Block, A. Mulchandani, K. A. Joshi, M. Trojanowicz, F. Scholz, W. Chen, and Y. Liu (2005). Anal. Chim. Acta, 530, 185.

    CAS  Google Scholar 

  65. S. Chopra, K. McGuire, N. Gothard, A. M. Rao, and A. Pham (2003). Appl. Phys. Lett., 83, 2280.

    CAS  Google Scholar 

  66. T. Someya, J. Small, P. Kim, C. Nuckolls, and J. T. Yardley (2003). Nano Lett., 3, 877.

    CAS  Google Scholar 

  67. C. Wei, L. Dai, A. Roy, and T. B. Tolle (2006). J. Am. Chem. Soc., 128, 1412.

    CAS  Google Scholar 

  68. K. Cattanach, R. D. Kulkarni, M. Kozlov, and S. K. Manohar (2006). Nanotechnology, 17, 4123.

    CAS  Google Scholar 

  69. C. Staii, A. T. Johnson, M. Chen, and A. Gelperin (2005). Nano Lett., 5, 1774.

    CAS  Google Scholar 

  70. J. T. W. Yeow and J. P. M. She (2006). Nanotechnology, 17, 5441.

    CAS  Google Scholar 

  71. E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke (2005). Science, 307, 1942.

    CAS  Google Scholar 

  72. Y. T. Jang, S. I. Moon, J. H. Ahn, Y. H. Lee, and B. K. Ju (2004). Sens. Actuators B, 99, 118.

    CAS  Google Scholar 

  73. M. Penza, F. Antolini, and M. A. Vittori (2004). Sens. Actuators B, 100, 47.

    CAS  Google Scholar 

  74. K. G. Ong, K. Zeng, and C. A. Grimes (2002). IEEE Sens. J., 2, 82.

    CAS  Google Scholar 

  75. I. Szymanska, H. Radecka, J. Radecki, D. Kikut-Ligaj (2001). Biosens. Bioelect., 16, 911.

    CAS  Google Scholar 

  76. M. L. Y. Sin, G. C. T. Chow, G. M. K. Wong, W. J. Li, P. H. W. Leong, and K. W. Wong (2007). IEEE Trans. Nanotech., 6, 571.

    Google Scholar 

  77. M. Penza, P. Aversa, G. Cassano, W. Wlodarski, and K. Kalantar-Zadeh (2007). Sens. Actuators B, 127, 168.

    CAS  Google Scholar 

  78. R. K. Roy, M. P. Chowdhury, and A. K. Pal (2005). Vacuum 77, 223.

    CAS  Google Scholar 

  79. Y. Li, M. J. Yang, and Y. Chen (2005). J. Mat. Sc., 40, 245.

    Google Scholar 

  80. M. Penza, F. Antolini, and M. A. Vittori (2005). Thin Solid Films, 472, 246.

    CAS  Google Scholar 

  81. M. Penza, M. A. Tagliente, P. Aversa, and G. Cassano (2005). Chem. Phys. Lett., 409, 349.

    CAS  Google Scholar 

  82. S. G. Wang, Q. Zhang, R. Wang, and S. F. Yoon (2003). Biochem. Biophys. Res. Comm., 311, 572.

    CAS  Google Scholar 

  83. P. Young, Y. Lu, R. Terrill, and J. Li (2005). J. Nanosci. Nanotechnol., 5, 1509.

    CAS  Google Scholar 

  84. B. Perez, M. Pumera, M. del Valle, A. Merkoci, and S. Alegret (2005). J. Nanosci. Nanotechnol., 5, 1694.

    CAS  Google Scholar 

  85. Y. Lin, F. Lu, Y. Tu, and Z. Ren (2004). Nano Lett., 4, 191.

    CAS  Google Scholar 

  86. J. Wang and M. Musameh (2003). Anal. Chem., 75, 2075.

    CAS  Google Scholar 

  87. L. B. da Silva, S. B. Fagan, and R. Mota (2004). Nano Lett., 4, 65.

    Google Scholar 

  88. J. Wang, M. Musameh, and Y. Lin (2003). J. Am. Chem. Soc., 125, 2408.

    CAS  Google Scholar 

  89. M. Penza, G. Cassano, P. Aversa, F. Antolini, A. Cusano, M. Consales, M. Giordano, and L. Nicolais (2005). Sens. Actuators B, 111–112, 171.

    Google Scholar 

  90. Y. Zhang, K. Yu, R. Xu, D. Jiang, L. Luo, and Z. Zhu (2005). Sens. Actuators A, 120, 142.

    CAS  Google Scholar 

  91. J. Suehiro, G. Zhou, and M. Hara (2005). Sens. Actuators B, 105, 164.

    CAS  Google Scholar 

  92. J. Suehiro, G. Zhou, H. Imakiire, W. Ding, and M. Hara (2005). Sens. Actuators B, 108, 398.

    CAS  Google Scholar 

  93. M. Zhang, A. Smith, and W. Gorski (2004). Anal. Chem., 76, 5045.

    CAS  Google Scholar 

  94. J. Wang, G. Liu, and M. R. Jan (2004). J. Am. Chem. Soc., 126, 3010.

    CAS  Google Scholar 

  95. B. Philip, J. K. Abraham, A. Chandrasedhar, and V. K. Varadan (2003). Smart Mater. Struct., 12, 935.

    CAS  Google Scholar 

  96. O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, and C. A. Grimes (2001). Sens. Actuators B, 81, 32.

    CAS  Google Scholar 

  97. I. Sayago, E. Terrado, M. C. Horrillo, M. Aleixandr, M. J. Fernandez, H. Santos, W. K. Maser, A. M. Benito, M. T. Martinez, J. Gutierrez, and E. Munoz (2007). Proc. 2007 Spanish Conf. Elect. Dev., 189.

    Google Scholar 

  98. J. Kombakkaran, C. Clewett, and T. Pietra (2007). Chem. Phys. Lett., 441, 282.

    Google Scholar 

  99. E. H. Espinosa, R. Ionescu, B. Chambon, G. Bedis, E. Sotter, C. Bittencourt, A. Felten, J.-J. Pireaux, X. Correig, and E. Llobet (2007). Sens. Actuators B, 127, 137.

    CAS  Google Scholar 

  100. Y. Sun and H. H. Wang (2007). Adv. Mater., 19, 2818.

    CAS  Google Scholar 

  101. A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya (2007). Appl. Phys. Lett., 91, 133110.

    Google Scholar 

  102. S. Sotiropoulou and N.A. Chaniotakis (2003). Anal. Bioanal. Chem., 375, 103.

    CAS  Google Scholar 

  103. M. Gao, L. Dai, and G. G. Wallace (2003). Electroanalysis, 15, 1089.

    CAS  Google Scholar 

  104. Y. Lin, F. Lu, Y. Tu, and Z. Ren (2003). Nano Lett., 4, 191.

    Google Scholar 

  105. Y.-L. Yao and K.-K. Shiu (2007). Electrochim. Acta, 53, 278.

    CAS  Google Scholar 

  106. P. He and L. Dai (2004). Chem. Commun., 3, 348.

    Google Scholar 

  107. J. Wang, G. Liu, and M. R. Jan (2004). J. Am. Chem. Soc., 126, 3010.

    CAS  Google Scholar 

  108. H. Boo, R.-A. Jeong, S. Park, K. S. Kim, K. H. An, Y. H. Lee, J. H. Han, H. C. Kim, and T. D. Chung (2006). Anal. Chem., 78, 617.

    CAS  Google Scholar 

  109. P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano (2005). Nature, 4, 86.

    CAS  Google Scholar 

  110. D. A. Heller, E. S. Jeng, T.-K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, and M. S. Strano (2006). Science, 311, 508.

    CAS  Google Scholar 

  111. M. Consales, A. Crescitelli, S. Campopiano, A. Cutolo, M. Penza, P. Aversa, M. Giordano, and A. Cusano (2007). IEEE Sens. J., 7, 1004.

    CAS  Google Scholar 

  112. M. Zhang and W. Gorski (2005). Anal. Chem., 77, 3960.

    CAS  Google Scholar 

  113. Y.-C. Tsai and C.-C. Chiu (2007). Sens. Actuators B, 125, 10.

    CAS  Google Scholar 

  114. Q. Zhou, Q. Xie, Y. Fu, Z. Su, X. Jia, and S. Yao (2007). J. Phys. Chem. B, 111, 11276.

    CAS  Google Scholar 

  115. L. Zhu, R. Yang, J. Zhai, and C. Tian (2007). Biosens. Bioelect., 23, 528.

    CAS  Google Scholar 

  116. S. Timur, U. Anik, D. Odaci, and L. Gorton (2007). Electrochem. Commun., 9, 1810.

    CAS  Google Scholar 

  117. T. Hirata, S. Amiya, M. Akiya, O. Takei, T. Sakai, and R. Hatakeyama (2007). Appl. Phys. Lett., 90, 233106.

    Google Scholar 

  118. J. Wei, L.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, and A. Cao (2006). Small, 2, 988.

    CAS  Google Scholar 

  119. T. Kotani, N. Kawai, S. Chiba, and S. Kitamoto (2005). Physica E., 29, 505.

    CAS  Google Scholar 

  120. J. Ma, J. T. W. Yeow, J. C. L. Chow, and R. B. Barnett (2007). Int. J. Robot. Autom., 22, 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yeow, J.T.W., Sinha, N. (2009). Carbon Nanotube and Fullerene Sensors. In: Arregui, F. (eds) Sensors Based on Nanostructured Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77753-5_2

Download citation

Publish with us

Policies and ethics