Carbon Nanotube and Fullerene Sensors

  • John T. W. Yeow
  • Niraj Sinha


The first fullerene was discovered in 1985 by Sir Harold W. Kroto from the University of Sussex and Richard E. Smalley and Robert F. Curl Jr. from Rice University [1] inadvertently when they were studying the nucleation of carbon in the atmosphere of a cool carbon-rich red giant star. Fullerenes refer to a family of carbon allotropes. Each carbon molecule is composed of at least 60 carbon atoms such as C60. When the atoms are arranged in the form of hollow sphere, it is referred to as buckyballs. Fullerenes that take the form of a cylinder are referred to as carbon nanotubes (CNTs). By 1990, it was relatively easy to synthesize macroscopic quantities of C60. Donald Huffman of University of Arizona and Wolfgang Kratschmer of Max Planck Institute developed a technique by which C60 was produced by evaporating graphite electrodes via resistive heating in an atmosphere of 100 Torr helium [2].


Chemical Vapor Deposition Liquid Phase Oxidation Chiral Angle Graphene Cylinder Ionization Collection Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley (1985). Nature, 318, 162.Google Scholar
  2. 2.
    W. Kratschmer, L. D. Lamb, K. Fostirapoulos, and D. R. Huffman (1990). Nature, 347, 354.Google Scholar
  3. 3.
    S. Ijima (1991). Nature, 354, 56.Google Scholar
  4. 4.
    R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus (1992). Appl. Phys. Lett., 60, 2204.Google Scholar
  5. 5.
    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer (2002). Science, 297, 787.Google Scholar
  6. 6.
    M. Terrones (2003). Ann. Rev. Mat. Res., 33, 419.Google Scholar
  7. 7.
    J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker (1998). Nature, 391, 59.Google Scholar
  8. 8.
    S. G. Louie (2001). Topics in Applied Physics, In: M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (Ed.) Springer, New York, 80, 113.Google Scholar
  9. 9.
    T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber (1998). Nature, 391, 59.Google Scholar
  10. 10.
    T. W. Ebbesen (1997). Carbon Nanotubes: Preparation and Properties, In: T. W. Ebbesen (Ed.) CRC Press, Boca Raton, 139.Google Scholar
  11. 11.
    S. Ijima and T. Ichihashi (1993). Nature, 363, 603.Google Scholar
  12. 12.
    D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers (1993). Nature, 363, 305.Google Scholar
  13. 13.
    C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer (1997). Nature, 388, 756.Google Scholar
  14. 14.
    H. Li, L. Guan, Z. Shi, and Z. Gu (2004). J. Phys. Chem. B, 108, 4573.Google Scholar
  15. 15.
    M. C. Paladugu, K. Maneesh, P. K. Nair, and P. Haridoss (2005). J. Nanosci. Nanotechnol., 5, 747.Google Scholar
  16. 16.
    A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley (1996).Science, 273, 483.Google Scholar
  17. 17.
    S. Arepalli, P. Nikolaev, W. Holmes, and B. S. Files (2001). Appl. Phys. Lett., 78, 1610.Google Scholar
  18. 18.
    C. D. Scott, S. Arepalli, P. Nikolaev, and R. E. Smalley (2001). Appl. Phys. A, 72, 573.Google Scholar
  19. 19.
    N. Braidy, M. A. El Khakani, and G. A. Botton (2002). J. Mat. Res., 17, 2189.Google Scholar
  20. 20.
    S. Takahashi, T. Ikuno, T. Oyama, S. I. Honda, M. Katayama, T. Hirao, and K. Oura (2002). J. Vac. Soc. Jpn, 45, 609.Google Scholar
  21. 21.
    H. Dai (2001). Topics in Applied Physics, In: M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (Ed.) Springer, New York, 80, 29.Google Scholar
  22. 22.
    M. J. Yacaman, M. M. Yoshida, L. Rendon, and J. G. Santiesteban (1993). Appl. Phys. Lett., 62, 202.Google Scholar
  23. 23.
    V. K. Varadan and J. Xie (2002). Smart Mat. Struc., 11, 610.Google Scholar
  24. 24.
    D. Park, Y. H. Kim, and J. K. Lee (2003). Carbon, 41, 1025.Google Scholar
  25. 25.
    B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, and P. M. Ajayan (2002). Nature, 416, 495.Google Scholar
  26. 26.
    T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki (1994). Nature, 367, 519.Google Scholar
  27. 27.
    H. Hiura, T. W. Ebbesen, and K. Tanigaki (1995). Adv. Mat., 7, 275.Google Scholar
  28. 28.
    S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, and P. C. Eklund (1997). J. Phys. Chem. B, 101, 8839.Google Scholar
  29. 29.
    A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez-Macais, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, and R. E. Smalley (1998). Appl. Phys. A, 67, 29.Google Scholar
  30. 30.
    C. Xu, E. Flahaut, S. R. Bailey, G. Brown, J. Sloan, K. S. Coleman, V. C. Williams, and M. L. H. Green (2002). Chem. Res. Chinese Univ., 18, 130.Google Scholar
  31. 31.
    L. P. Biro, N. Q. Khanh, Z. Vertesy, Z. E. Horvath, Z. Osvath, A. Koos, J. Gyulai, A. Kocsonya, Z. Konya, X. B. Zhang, G. V. Tendeloo, A. Fonseca, and J. B. Nagy (2002). Mat. Sci. Eng. C., C19, 9.Google Scholar
  32. 32.
    J. R. Wood and H. D. Wagner (2000). Appl. Phys. Lett., 76, 2883.Google Scholar
  33. 33.
    J. Liu and H. Dai (2002). [Online]. Available: u/Liu.pdf.
  34. 34.
    J. Wu, J. Zang, B. Larade, H. Guo, X. G. Xong, and F. Liu (2004). Phys. Rev. B, 69, 153406.Google Scholar
  35. 35.
    C. K. M. Fung, M. Q. H. Zhang, R. H. M. Chan, and W. J. Li (2005). Proc. 18th IEEE Conf. MEMS, 251.Google Scholar
  36. 36.
    I.-M. Choi and S. -Y. Woo (2006). Metrologia, 43, 84.Google Scholar
  37. 37.
    V. L. Pushparaj, L. Ci, S. Sreekala, A. Kumar, S. Kesapragada, D. Gall, O. Nalamasu, J. Suhr, and P.M. Ajayan (2007). Appl. Phys. Lett., 91, 153116.Google Scholar
  38. 38.
    P. Dharap, Z. Li, S. Nagarajaiah, and E. V. Barrera (2004). Nanotechnology, 15, 379.Google Scholar
  39. 39.
    C. Y. Li and T. W. Chou (2004). Nanotechnology, 15, 1493.Google Scholar
  40. 40.
    A. S. Berdinsky, Y. V. Shevtsov, A. V. Okotrub, S. V. Trubin, L. T. Chadderton, D. Fink, and J. H. Lee (2000). Chem Sustain. Dev., 8, 141.Google Scholar
  41. 41.
    S. Ghosh, A. K. Sood, and N. Kumar (2003). Science, 299, 1042.Google Scholar
  42. 42.
    P. Kral and M. Shapiro (2001). Phys. Rev. Lett., 86, 131.Google Scholar
  43. 43.
    V. T. S. Wong and W. J. Li (2003). Proc. IEEE Int. Symp. Circuits Sys., 4, IV844.Google Scholar
  44. 44.
    J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai (2000). Science, 287, 622.Google Scholar
  45. 45.
    A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan (2003). Nature, 424, 171.Google Scholar
  46. 46.
    Z. Hou, H. Liu, X. Wei, J. Wu, W. Zhou, Y. Zhang, D. Xu, and B. Cai (2007). Sens. Actuators B, 127, 637.Google Scholar
  47. 47.
    Y. M. Wong, W. P. Kang, J. L. Davidson, A. Wisitsora-at, and K. L. Soh (2003). Sens. Actuators B, 93, 327.Google Scholar
  48. 48.
    I. Sayago, E. Terrado, E. Lafuente, M. C. Horrillo, W. K. Maser, A. M. Benito, R. Navarro, E. P. Urriolabeitia, M. T. Martinez, and J. Gutierrez (2005). Synth. Met., 148, 15.Google Scholar
  49. 49.
    Y. Hayakawa, Y. Suda, T. Hashizume, H. Sugawara, and Y. Sakai (2007). Jpn. J. Appl. Phys., 46, L362.Google Scholar
  50. 50.
    J. Suehiro, S.-I. Hidaka, S. Yamane, and K. Imasaka (2007). Sens. Actuators B, 127, 505.Google Scholar
  51. 51.
    S. Chopra, A. Pham, J. Gaillard, A. Parker, and A. M. Rao (2002). Appl. Phys. Lett., 80, 4632.Google Scholar
  52. 52.
    N. D. Hoa, N. V. Quy, Y. Cho, and D. Kim (2007). Sens. Actuators B, 127, 447.Google Scholar
  53. 53.
    F. Picaud, R. Langlet, M. Arab, M. Devel, C. Girardet, S. Natarajan, S. Chopra, and A. M. Rao (2005). J. Appl. Phys., 97, 114316.Google Scholar
  54. 54.
    Q. Zhao, M. B. Nardelli, W. Lu, and J. Bernholc (2005). Nano Lett., 5, 847.Google Scholar
  55. 55.
    P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, and K. J. Cho (2003). Nano Lett., 3, 347.Google Scholar
  56. 56.
    E. Bekyarova, M. Davis, T. Burch, M. E. Itkis, B. Zhao, S. Sunshine, and R. C. Haddon (2004). J. Phys. Chem. B, 108, 19717.Google Scholar
  57. 57.
    M. Lucci, P. Regoliosi, A. Reale, A. D. Carlo, S. Orlanducci, E. Tamburri, M. L. Terranova, P. Lugli, C. D. Natale, A. D’Amico, and R. Paolesse (2005). Sens. Actuators B, 111–112, 181.Google Scholar
  58. 58.
    K. S. V. Santhanam, R. Sangoi, and L. Fuller (2005). Sens. Actuators B, 106, 766.Google Scholar
  59. 59.
    Y. X. Liang, Y. J. Chen, and J. H. Wang (2004). Appl. Phys. Lett., 85, 666.Google Scholar
  60. 60.
    L. Valentini, C. Cantalini, I. Armentano, J. M. Kenny, L. Lozzi, and S. Santucci (2004). Diam. Relat. Mat., 13, 1301.Google Scholar
  61. 61.
    J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan (2003). Nano Lett., 3, 929.Google Scholar
  62. 62.
    F. Qu, M. Yang, J. Jiang, G. Shen, and R. Yu (2005). Anal. Biochem., 344, 108.Google Scholar
  63. 63.
    S. Hrapovic, Y. Liu, K. B. Male, and J. H. T. Luong (2004). Anal. Chem., 76, 1083.Google Scholar
  64. 64.
    R. P. Deo, J. Wang, I. Block, A. Mulchandani, K. A. Joshi, M. Trojanowicz, F. Scholz, W. Chen, and Y. Liu (2005). Anal. Chim. Acta, 530, 185.Google Scholar
  65. 65.
    S. Chopra, K. McGuire, N. Gothard, A. M. Rao, and A. Pham (2003). Appl. Phys. Lett., 83, 2280.Google Scholar
  66. 66.
    T. Someya, J. Small, P. Kim, C. Nuckolls, and J. T. Yardley (2003). Nano Lett., 3, 877.Google Scholar
  67. 67.
    C. Wei, L. Dai, A. Roy, and T. B. Tolle (2006). J. Am. Chem. Soc., 128, 1412.Google Scholar
  68. 68.
    K. Cattanach, R. D. Kulkarni, M. Kozlov, and S. K. Manohar (2006). Nanotechnology, 17, 4123.Google Scholar
  69. 69.
    C. Staii, A. T. Johnson, M. Chen, and A. Gelperin (2005). Nano Lett., 5, 1774.Google Scholar
  70. 70.
    J. T. W. Yeow and J. P. M. She (2006). Nanotechnology, 17, 5441.Google Scholar
  71. 71.
    E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke (2005). Science, 307, 1942.Google Scholar
  72. 72.
    Y. T. Jang, S. I. Moon, J. H. Ahn, Y. H. Lee, and B. K. Ju (2004). Sens. Actuators B, 99, 118.Google Scholar
  73. 73.
    M. Penza, F. Antolini, and M. A. Vittori (2004). Sens. Actuators B, 100, 47.Google Scholar
  74. 74.
    K. G. Ong, K. Zeng, and C. A. Grimes (2002). IEEE Sens. J., 2, 82.Google Scholar
  75. 75.
    I. Szymanska, H. Radecka, J. Radecki, D. Kikut-Ligaj (2001). Biosens. Bioelect., 16, 911.Google Scholar
  76. 76.
    M. L. Y. Sin, G. C. T. Chow, G. M. K. Wong, W. J. Li, P. H. W. Leong, and K. W. Wong (2007). IEEE Trans. Nanotech., 6, 571.Google Scholar
  77. 77.
    M. Penza, P. Aversa, G. Cassano, W. Wlodarski, and K. Kalantar-Zadeh (2007). Sens. Actuators B, 127, 168.Google Scholar
  78. 78.
    R. K. Roy, M. P. Chowdhury, and A. K. Pal (2005). Vacuum 77, 223.Google Scholar
  79. 79.
    Y. Li, M. J. Yang, and Y. Chen (2005). J. Mat. Sc., 40, 245.Google Scholar
  80. 80.
    M. Penza, F. Antolini, and M. A. Vittori (2005). Thin Solid Films, 472, 246.Google Scholar
  81. 81.
    M. Penza, M. A. Tagliente, P. Aversa, and G. Cassano (2005). Chem. Phys. Lett., 409, 349.Google Scholar
  82. 82.
    S. G. Wang, Q. Zhang, R. Wang, and S. F. Yoon (2003). Biochem. Biophys. Res. Comm., 311, 572.Google Scholar
  83. 83.
    P. Young, Y. Lu, R. Terrill, and J. Li (2005). J. Nanosci. Nanotechnol., 5, 1509.Google Scholar
  84. 84.
    B. Perez, M. Pumera, M. del Valle, A. Merkoci, and S. Alegret (2005). J. Nanosci. Nanotechnol., 5, 1694.Google Scholar
  85. 85.
    Y. Lin, F. Lu, Y. Tu, and Z. Ren (2004). Nano Lett., 4, 191.Google Scholar
  86. 86.
    J. Wang and M. Musameh (2003). Anal. Chem., 75, 2075.Google Scholar
  87. 87.
    L. B. da Silva, S. B. Fagan, and R. Mota (2004). Nano Lett., 4, 65.Google Scholar
  88. 88.
    J. Wang, M. Musameh, and Y. Lin (2003). J. Am. Chem. Soc., 125, 2408.Google Scholar
  89. 89.
    M. Penza, G. Cassano, P. Aversa, F. Antolini, A. Cusano, M. Consales, M. Giordano, and L. Nicolais (2005). Sens. Actuators B, 111–112, 171.Google Scholar
  90. 90.
    Y. Zhang, K. Yu, R. Xu, D. Jiang, L. Luo, and Z. Zhu (2005). Sens. Actuators A, 120, 142.Google Scholar
  91. 91.
    J. Suehiro, G. Zhou, and M. Hara (2005). Sens. Actuators B, 105, 164.Google Scholar
  92. 92.
    J. Suehiro, G. Zhou, H. Imakiire, W. Ding, and M. Hara (2005). Sens. Actuators B, 108, 398.Google Scholar
  93. 93.
    M. Zhang, A. Smith, and W. Gorski (2004). Anal. Chem., 76, 5045.Google Scholar
  94. 94.
    J. Wang, G. Liu, and M. R. Jan (2004). J. Am. Chem. Soc., 126, 3010.Google Scholar
  95. 95.
    B. Philip, J. K. Abraham, A. Chandrasedhar, and V. K. Varadan (2003). Smart Mater. Struct., 12, 935.Google Scholar
  96. 96.
    O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, and C. A. Grimes (2001). Sens. Actuators B, 81, 32.Google Scholar
  97. 97.
    I. Sayago, E. Terrado, M. C. Horrillo, M. Aleixandr, M. J. Fernandez, H. Santos, W. K. Maser, A. M. Benito, M. T. Martinez, J. Gutierrez, and E. Munoz (2007). Proc. 2007 Spanish Conf. Elect. Dev., 189.Google Scholar
  98. 98.
    J. Kombakkaran, C. Clewett, and T. Pietra (2007). Chem. Phys. Lett., 441, 282.Google Scholar
  99. 99.
    E. H. Espinosa, R. Ionescu, B. Chambon, G. Bedis, E. Sotter, C. Bittencourt, A. Felten, J.-J. Pireaux, X. Correig, and E. Llobet (2007). Sens. Actuators B, 127, 137.Google Scholar
  100. 100.
    Y. Sun and H. H. Wang (2007). Adv. Mater., 19, 2818.Google Scholar
  101. 101.
    A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya (2007). Appl. Phys. Lett., 91, 133110.Google Scholar
  102. 102.
    S. Sotiropoulou and N.A. Chaniotakis (2003). Anal. Bioanal. Chem., 375, 103.Google Scholar
  103. 103.
    M. Gao, L. Dai, and G. G. Wallace (2003). Electroanalysis, 15, 1089.Google Scholar
  104. 104.
    Y. Lin, F. Lu, Y. Tu, and Z. Ren (2003). Nano Lett., 4, 191.Google Scholar
  105. 105.
    Y.-L. Yao and K.-K. Shiu (2007). Electrochim. Acta, 53, 278.Google Scholar
  106. 106.
    P. He and L. Dai (2004). Chem. Commun., 3, 348.Google Scholar
  107. 107.
    J. Wang, G. Liu, and M. R. Jan (2004). J. Am. Chem. Soc., 126, 3010.Google Scholar
  108. 108.
    H. Boo, R.-A. Jeong, S. Park, K. S. Kim, K. H. An, Y. H. Lee, J. H. Han, H. C. Kim, and T. D. Chung (2006). Anal. Chem., 78, 617.Google Scholar
  109. 109.
    P. W. Barone, S. Baik, D. A. Heller, and M. S. Strano (2005). Nature, 4, 86.Google Scholar
  110. 110.
    D. A. Heller, E. S. Jeng, T.-K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, and M. S. Strano (2006). Science, 311, 508.Google Scholar
  111. 111.
    M. Consales, A. Crescitelli, S. Campopiano, A. Cutolo, M. Penza, P. Aversa, M. Giordano, and A. Cusano (2007). IEEE Sens. J., 7, 1004.Google Scholar
  112. 112.
    M. Zhang and W. Gorski (2005). Anal. Chem., 77, 3960.Google Scholar
  113. 113.
    Y.-C. Tsai and C.-C. Chiu (2007). Sens. Actuators B, 125, 10.Google Scholar
  114. 114.
    Q. Zhou, Q. Xie, Y. Fu, Z. Su, X. Jia, and S. Yao (2007). J. Phys. Chem. B, 111, 11276.Google Scholar
  115. 115.
    L. Zhu, R. Yang, J. Zhai, and C. Tian (2007). Biosens. Bioelect., 23, 528.Google Scholar
  116. 116.
    S. Timur, U. Anik, D. Odaci, and L. Gorton (2007). Electrochem. Commun., 9, 1810.Google Scholar
  117. 117.
    T. Hirata, S. Amiya, M. Akiya, O. Takei, T. Sakai, and R. Hatakeyama (2007). Appl. Phys. Lett., 90, 233106.Google Scholar
  118. 118.
    J. Wei, L.-L. Sun, J.-L. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, and A. Cao (2006). Small, 2, 988.Google Scholar
  119. 119.
    T. Kotani, N. Kawai, S. Chiba, and S. Kitamoto (2005). Physica E., 29, 505.Google Scholar
  120. 120.
    J. Ma, J. T. W. Yeow, J. C. L. Chow, and R. B. Barnett (2007). Int. J. Robot. Autom., 22, 49.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John T. W. Yeow
    • 1
  • Niraj Sinha
    • 1
  1. 1.Department of Systems Design EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations