Nanostructured Flexible Materials: Metal Rubber™ Strain Sensors

  • Christelle Jullian
  • Jennifer Lalli
  • Bradley Davis
  • Richard Claus


Strain sensors are fundamental building blocks in measurement of materials and structures. Conventional foil strain gages are based on macroscopic principles of bulk material deformation due to stress, and changes in the electrical resistance of deformed bulk metal geometries. Nanostructured strain sensors that operate based on very different physical principles may be envisioned. This chapter discusses such nanostructured strain sensor devices based on self-assembled Metal Rubber™ materials. The first part of the chapter reviews the background on self-assembly processing. The second part of the chapter discusses Metal Rubber™ manufacturing and Metal Rubber™ strain sensor operation.


Surface Pressure Strain Sensor Amphiphile Molecule Hydrophobic Tail Metal Nanoclusters 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Langmuir, I., The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc., 1917. 39: pp. 1848–1906.CrossRefGoogle Scholar
  2. 2.
    Langmuir, I., The mechanism of the surface phenomena of flotation. Trans. Faraday Soc., 1920. 15: pp. 62–74.CrossRefGoogle Scholar
  3. 3.
    K. S. V. Instruments LTD, Langmuir and Langmuir-Blodgett films, Application Note #117.Google Scholar
  4. 4.
    Hann, R. A., Molecular Structure Monolayer Properties, in Langmuir-Blodgett Films, ed. G. Roberts, 1990, Plenum Press.Google Scholar
  5. 5.
    Hamachi, I.; Noda, S.; Kunitake, T., Layered arrangement of oriented myoglobins in cast films of a phosphate bilayer membrane. J. Am. Chem. Soc., 1990. 112: pp. 6744–6745.CrossRefGoogle Scholar
  6. 6.
    Prime, K. L.; Whitesides, G. M., Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. J. Am. Chem. Soc., 1993. 115: pp. 10714–10721.CrossRefGoogle Scholar
  7. 7.
    Ventra, M. D.; Evoy, S.; Heflin, J. R. Jr., Introduction to Nanoscale Science and Technology, ed. M. D. Ventra; S. Evoy; J. R. Heflin Jr., 2004, Springer.Google Scholar
  8. 8.
    Decher, G.; Hong, J. D.; Schmitt, J., Buildup of ultrathin multilayer films by self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 1992. 210–211: pp. 831–835.CrossRefGoogle Scholar
  9. 9.
    Iler, R. K., Multilayers of colloidal particles. J. Colloid Inter. Sci , 1966. 21: pp. 569–594.CrossRefGoogle Scholar
  10. 10.
    Liu, Y.; Claus, R. O., Layer-by-layer electrostatic self-assembly of nanoscale Fe 3 O 4 particles and polyimide precursor on silicon and silica surfaces. Appl. Phys. Lett., 1997. 71: pp. 2265–2267.CrossRefGoogle Scholar
  11. 11.
    Wang, Y.-X.; Du, W.; Spillman, W. B., Jr.; Claus, R. O., Biocompatible thin film coatings fabricated using the electrostatic self-assembly process. Proc. SPIE, 2001: 4265: pp. 142–151.Google Scholar
  12. 12.
    Lvov, Y.; Decher, G.; Sukhorukov, G., Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules, 1993. 26: pp. 5396–5399.CrossRefGoogle Scholar
  13. 13.
    Keller, S. W.; Kim, H.-N.; Mallouk, T. E., Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: Toward molecular “Beaker” epitaxy. J. Am. Chem. Soc., 1994. 116: pp. 8817–8818.CrossRefGoogle Scholar
  14. 14.
    Feldheim, D. L.; Grabar, K. C.; Natan, M. J.; Mallouk, T. E., Electron transfer in self-assembled inorganic polyelectrolyte/metal nanoparticle heterostructures. J. Am. Chem. Soc., 1996. 118: pp. 7640–7641.CrossRefGoogle Scholar
  15. 15.
    Liu, Y.; Wang, Y.; Y.-X.; Claus, R. O., Layer-by-layer ionic self-assembly of Au colloids into multilayer thin-films with bulk metal conductivity. Chem. Phys. Lett., 1998. 298: pp. 315–319.CrossRefGoogle Scholar
  16. 16.
    Eckle, M.; Decher, G., Tuning the performance of layer-by-layer assembled by controlling the position of isolating clay barrier sheets. Nano Lett., 2001. 1: pp. 45–49.CrossRefGoogle Scholar
  17. 17.
    Kunitake, T., Anisotropic incorporation of functional molecules and synthesis of low-dimensional clusters in cast multibilayer films. Mol. Cryst. Liq. Cryst., 1994. 255: pp. 7–16.CrossRefGoogle Scholar
  18. 18.
    Malmsten, M., Biopolymers at Interfaces, ed. M. Malmsten, 2003, Marcel Dekker, Inc.Google Scholar
  19. 19.
    Lvov, Y.; Decher, G.; Mohwald, H., Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir, 1993. 9: pp. 481–486.CrossRefGoogle Scholar
  20. 20.
    Schmitt, J.; Grunewald, T.; Decher, G.; Pershan, P. S.; Kjaer, K.; Losche, M., Internal structure of layer-by-layer adsorbed polyelectrolyte films: A neutron and X-ray reflectivity study. Macromolecules, 1993. 26: pp. 7058–7063.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christelle Jullian
    • 1
  • Jennifer Lalli
    • 2
  • Bradley Davis
    • 2
  • Richard Claus
    • 2
  1. 1.Department of Materials Science and EngineeringVirginia TechBlacksburgUSA
  2. 2.NanoSonic Inc.BlacksburgUSA

Personalised recommendations