Advertisement

Motors and Generators

  • Jeffrey H. Lang
  • Sauparna Das
Chapter
Part of the MEMS Reference Shelf book series (MEMSRS)

Abstract

This chapter describes the development of motors and generators as PowerMEMS machines. It also discusses aspects of the larger electromechanical energy conversion systems into which they fit. When coupled to microturbomachinery, typical applications of these machines might include motor/compressors, motor/pumps, and turbine/generators, all perhaps part of much larger systems such as a microengine or a microrocket.

Keywords

Parasitic Capacitance Stator Core Power Factor Correction Stator Electrode Radial Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. E. Fitzgerald, C. Kingsley, and S. D. Umans, Electric Machinery, Sixth Edition, McGraw Hill, New York 2003.Google Scholar
  2. 2.
    H. H. Woodson and J. R. Melcher, Electromechanical Dynamics: Parts I & II, Wiley, New York 1968.Google Scholar
  3. 3.
    W. Leonhard, Control of Electrical Drives, Springer-Verlag, Berlin 1985.Google Scholar
  4. 4.
    B. K. Bose, Power Electronics and AC Drives, Prentice-Hall, Englewood Cliffs 1987.Google Scholar
  5. 5.
    H. A. Haus and J. R. Melcher, Electromagnetic Fields and Energy, Prentice Hall, Englewood Cliffs 1989.Google Scholar
  6. 6.
    F. Paschen, “Ueber die zum funkenübergang in luft, wasserstof und kohlensäure bei verschiedenen drucken erforderliche potentialdifferenz”; Annal der Physik, 37, 69–96, 1889.CrossRefGoogle Scholar
  7. 7.
    J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases, John Wiley & Sons, New York 1978.Google Scholar
  8. 8.
    M. Zahn, “Solid, liquid, and gaseous electrical insulation”, Encyclopedia of Applied Physics, 18, 431–466, VCH Publishers, Weinheim 1997.Google Scholar
  9. 9.
    S. F. Bart, T. A. Lober, R. T. Howe, J. H. Lang, and M. F. Schlecht, “Design considerations for micromachined electric actuators”; Sensors and Actuators, 14, 269–292, July 1988.CrossRefGoogle Scholar
  10. 10.
    M. Mehregany, P. Nagarkar, S. D. Senturia, and J. H. Lang, “Operation of microfabricated harmonic and ordinary side-drive motors”; Proceedings: IEEE Workshop on Micro Electro Mechanical Systems, 1–8, Napa Valley, CA, February 12–14, 1990.Google Scholar
  11. 11.
    M. Mehregany, S. F. Bart, L. S. Tavrow, J. H. Lang, S. D. Senturia, and M. F. Schlecht, “A study of three microfabricated variable-capacitance motors”; Sensors and Actuators, A-21,22,23, 173–179, February–April 1990.Google Scholar
  12. 12.
    S. F. Bart, M. Mehregany, L. S. Tavrow, J. H. Lang, and S. D. Senturia, “Electric micromotor dynamics”; IEEE Transactions on Electron Devices, 39, 566–575, March 1992.CrossRefGoogle Scholar
  13. 13.
    C. H. Ahn, Y. J. Kim, and M. G. Allen, “A planar variable-reluctance magnetic micromotor with fully integrated stator and wrapped coils”, Proceedings: IEEE Workshop on Micro Electro Mechanical Systems, 1–6, Fort Lauderdale, FL, February 7–10, 1993.Google Scholar
  14. 14.
    H. Guckel, T. R. Christenson, K. J. Skorbis, T. S. Jung, J. Klein, K. V. Hartojo, and I. Widjaja, “A first functional current excited planar rotational magnetic micromotor”, Proceedings: IEEE Workshop on Micro Electro Mechanical Systems, 7–11, Fort Lauderdale, FL, February 7–10, 1993.Google Scholar
  15. 15.
    W. C. Young and R. G. Budynas, Roark’s Formulas for Stress and Strain, 7TH Edition, p. 745, McGraw-Hill, New York 2002.Google Scholar
  16. 16.
    M. W. Layland, “Generalized electrostatic machine theory”, IEE Proceedings, 116, 403–405, 1969.Google Scholar
  17. 17.
    T. J. E. Miller, Switched Reluctance Motors and their Control, Magna Physics Publishing and Oxford University Press, London 1993.Google Scholar
  18. 18.
    D. A. Torrey and J. H. Lang, “Optimal-efficiency excitation of variable-reluctance motor drives”, IEE Proceedings Part B, 138, 1–14, January 1991.Google Scholar
  19. 19.
    D. E. Cameron and J. H. Lang, “The control of high-speed variable-reluctance generators in electric power systems”, IEEE Transactions on Industry Applications, 29, 1106–1109, November/December 1993.CrossRefGoogle Scholar
  20. 20.
    Y. Tada, “Theoretical characteristics of generalized electret generator using polymer film electrets”, IEEE Transactions on Electrical Insulation, 21, 457–464, June 1986.CrossRefGoogle Scholar
  21. 21.
    Y. Arakawa, Y. Suzuki, and N. Kasagi, “Micro seismic power generator using electret polymer film”, Proceedings: PowerMEMS Conference, 187–190, Kyoto, Japan, November 28–30, 2004.Google Scholar
  22. 22.
    Y. Sakane, Y. Suzuki, and N. Kasagi, “Development of high-performance purfluorinated polymer electret”, Proceedings: IEEE Symposium on Electrets, 13, Tokyo, Japan, September 15–17, 2008.Google Scholar
  23. 23.
    W. Olthuis and P. Bergveld, “On the charge storage and decay mechanism in silicon dioxide”, IEEE Transactions on Electrical Insulation, 27, 691–697 April 1992.CrossRefGoogle Scholar
  24. 24.
    H. Köşer, Development of Magnetic Induction Machines for Micro Turbo Machinery, Ph. D. Thesis, EECS Department, MIT, June 2002.Google Scholar
  25. 25.
    F. Cros, Developpement D’une Micromachine Induction Magnetique - Developpement do Techniques de Microfabrication pour Micro-electroaimants, Ph. D. Thesis, Ecole Doctorale de Toulouse, France, September 2002.Google Scholar
  26. 26.
    H. Köşer and J. H. Lang, “Magnetic induction micro machine – Part I: design and analysis”; IEEE/ASME Journal of Microelectromechanical Systems, 15, 415–426, April 2006.CrossRefGoogle Scholar
  27. 27.
    F. Cros, H. Köşer, M. G. Allen, and J. H. Lang, “Magnetic induction micro machine – Part II: fabrication and testing”; IEEE/ASME Journal of Microelectromechanical Systems, 15, 427–439, April 2006.CrossRefGoogle Scholar
  28. 28.
    H. Köşer and J. H. Lang; “Magnetic induction micro machines – Part III: eddy currents and nonlinear effects”; IEEE/ASME Journal of Microelectromechanical Systems, 15, 440–456, April 2006.CrossRefGoogle Scholar
  29. 29.
    J. R. Melcher, Continuum Electromechanical Dynamics, MIT Press, Cambridge.Google Scholar
  30. 30.
    L. G. Frechette, Development of a Microfabricated Silicon Motor-Driven Compression System, Ph. D. Thesis, AA Department, MIT, September 2000.Google Scholar
  31. 31.
    S. F. Nagle, Analysis, Design and Fabrication of an Electric Induction Micromotor for a Micro Gas-Turbine Generator, Ph. D. Thesis, EECS Department, MIT, October 2000.Google Scholar
  32. 32.
    S. F. Bart and J. H. Lang; “Electroquasistatic induction micromotors”; Proceedings: IEEE Workshop on Micro Electromechanical Systems Workshop, 7–12, Salt Lake City, UT, February 20–22, January 1989.Google Scholar
  33. 33.
    S. F. Bart and J. H. Lang; “An analysis of electroquasistatic induction micromotors”; Sensors and Actuators, 20, 97–106, November 1989.CrossRefGoogle Scholar
  34. 34.
    L. G. Frechette, S. F. Nagle, R. Ghodssi, S. D. Umans, M. A. Schmidt, and J. H. Lang; “An electrostatic induction micromotor supported on gas-lubricated bearings”; Proceedings: IEEE Workshop on Micro Electro Mechanical Systems, 290–293, Interlaken, Switzerland, January 21–25, 2001.Google Scholar
  35. 35.
    C. Livermore, A. Forte, T. Lyszczarz, S. D. Umans, A. A. Ayon, and J. H. Lang; “A high-powerMEMS electric induction motor”; IEEE/ASME Journal of Microelectromechanical Systems, 13, 465–471, June 2004.CrossRefGoogle Scholar
  36. 36.
    S. F. Nagle, C. Livermore, L. G. Frechette, R. Ghodssi, and J. H. Lang, “An Electric Induction Micromotor”, IEEE/ASME Journal of Microelectromechanical Systems, 14, 1127–1143, October 2005.CrossRefGoogle Scholar
  37. 37.
    J. L. Steyn, A Microfabricated Electroquasistatic Induction Turbine Generator, Ph. D. Thesis, AA Department, MIT, June 2005.Google Scholar
  38. 38.
    J. L. Steyn, S. H. Kendig, R. Khanna, T. M. Lyszczarz, S. D. Umans, J. U. Yoon, C. Livermore, and J. H. Lang; “Generating electric power with a MEMS electroquasistatic induction turbine generator”; Proceedings: IEEE Workshop on Micro Electromechanical Systems, 614–617, Miami, FL, January 30–February 3, 2005.Google Scholar
  39. 39.
    J. L. Steyn, S. H. Kendig, R. Khanna, T. M. Lyszczarz, S. D. Umans, J. U. Yoon, C. Livermore, and J. H. Lang, “A self-excited MEMS electroquasistatic induction turbine-generator”; IEEE/ASME Journal of Microelectromechanical Systems, 18, 424–432, April 09.Google Scholar
  40. 40.
    C. Kooy, “Torque on a resistive rotor in a quasi electrostatic rotating field”; Applications of Scientific Research, 20, 161–172, February 1969.CrossRefGoogle Scholar
  41. 41.
    B. Bollee, “Electrostatic motors”; Phillips Technical Review, 30, 178–194, June–July 1969.Google Scholar
  42. 42.
    J. Ubbink, “Optimization of the rotor surface resistance of the asynchronous electrostatic motor”; Applications of Scientific Research, 22, 442–448, October 1970.Google Scholar
  43. 43.
    S. D. Choi and D. A. Dunn, “A surface-charge induction motor”; IEEE Proceedings, 59, 737–748, May 1971.CrossRefGoogle Scholar
  44. 44.
    P. T. Krein and J. M. Crowley, “Harmonics affects in electrostatic induction motors”; Electric Machines and Power Systems, 10, 479–497, May–June, 1985.CrossRefGoogle Scholar
  45. 45.
    E. R. Mognashi and J. H. Calderwood, “Asynchronous dielectric induction motor”; IEE Proceedings A, 137, 331–338, November 1990.Google Scholar
  46. 46.
    S. F. Bart, L. S. Tavrow, M. Mehregany, and J. H. Lang, “Microfabricated electrohydrodynamic pumps”; Sensors and Actuators, A-21,22,23, 193–197, February–April 1990.Google Scholar
  47. 47.
    S. Hardt and F. Schoenfeld, Microfluidic Technologies for Miniaturized Analysis Systems; Springer, New York 2007.Google Scholar
  48. 48.
    J. R. Melcher and M. S. Firebaugh, “Traveling wave bulk electroconvection induced across a temperature gradient”; Physics of Fluids, 10, 1178–1185, 1967.CrossRefGoogle Scholar
  49. 49.
    T. Kamins, Polycrystalline Silicon For Integrated Circuits And Displays, 2nd Edition; Kluwer Academic Publishers, Dordrecht, 1998.CrossRefGoogle Scholar
  50. 50.
    T. C. Nuegebauer, D. J. Perreault, J. H. Lang, and C. Livermore, “A six-phase multilevel inverter for MEMS electrostatic induction micromotors”; IEEE Transactions on Circuits and Systems II: Express Briefs, 51, 49–56, February 2004.CrossRefGoogle Scholar
  51. 51.
    A. M. Flynn and S. R. Sanders, “Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers”; IEEE Transactions on Power Electronics, 17, 8–14, January 2002.CrossRefGoogle Scholar
  52. 52.
    C. C. Lin, R. Ghodssi, A. A. Ayon, D. Z. Chen, S. A. Jacobson, K. S. Breuer, A. H. Epstein and M. A. Schmidt, “Fabrication and characterization of a micro turbine/bearing rig”; Proceedings: IEEE Micro Electro Mechanical Systems Workshop, 529–533 Orlando, FL, 1999.Google Scholar
  53. 53.
    L. G. Frechette, S. A. Jacobson, F. F. Ehrich, R. Ghodssi, R. Khanna, C. W. Wong, X. Zhang, K. S. Breuer, M. A. Schmidt, and A. H. Epstein, “Demonstration of a microfabricated high-speed turbine supported on gas bearings”; Proceedings: Solid-State Sensor and Actuator Workshop, 43–47, Hilton Head, SC, June 2000.Google Scholar
  54. 54.
    R. Ghodssi, L. G. Frechette, S. F. Nagle, X. Zhang, A. A. Ayon, S. D. Senturia, and M. A. Schmidt, “Thick buried oxide in silicon (TBOS): an integrated fabrication technology for multi-stack wafer bonded MEMS processes”; Proceedings: Tenth International Conference on Solid State Sensors, 1456–1459, Sendai, Japan, June 1999.Google Scholar
  55. 55.
    B. Yen, A Fully-Integrated Mult-Watt Permanent-Magnet Turbine/Generator, Ph. D. Thesis, EECS Department, MIT, June 2008.Google Scholar
  56. 56.
    F. Herrault, Microfabricated Air-Turbine and Heat-Engine-Driven Permanent Magnet Generators, Ph.D. Thesis, Institut National des Sciences Appliquées, Toulouse, France, February 2009.Google Scholar
  57. 57.
    B. Wagner, M. Kreutzer, and W. Benecke, “Permanent magnet micromotors on silicon substrates”; Journal of Microelectromechanical System, 2, 1, pp. 23–29, March 1993.CrossRefGoogle Scholar
  58. 58.
    K.-P. Kamper, et al., “Electromagnetic permanent magnet micromotor with integrated micro gear box”; Proceedings of the 5th International Conference on New Actuators (Actuator ‘96), June 1996, pp. 429–432.Google Scholar
  59. 59.
    U. Berg, et al., “Series production and testing of a micro motor”; Proceedings of the 6th International Conference on New Actuators (Actuator ‘98), June 1998, pp. 552–555.Google Scholar
  60. 60.
    P.-A. Gilles, J. Delamare, O. Cugat, and J.-L. Schanen, “Design of a permanent magnet planar synchronous micromotor”; Proceedings of the 35th Mtg. IEEE Industry Appl. Soc., 1, October 2000, 223–227.Google Scholar
  61. 61.
    C. Yang, et al., “An axial flux electromagnetic micromotor”; Journal of. Micromechanics and Microengineering, 11, 113–117, 2001.CrossRefGoogle Scholar
  62. 62.
    A. S. Holmes, G. Hong, and K. R. Buffard, “Axial-flux permanent magnet machines for micropower generation”; Journal of Microelectromechanical System, 14, 1, 54–62, February 2005.CrossRefGoogle Scholar
  63. 63.
    H. Raisigel, et al., “Magnetic planar micro generator,” in Digest Tech. Papers Transducers ’05 Conference, Seoul, South Korea, June 10–14, 2005, 757–761.Google Scholar
  64. 64.
    S. Das, “Magnetic machines and power electronics for power MEMS applications,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, September 2005.Google Scholar
  65. 65.
    S. Das, D. P. Arnold, I. Zana, J. -W. Park, M. G. Allen, and J. H. Lang, “Microfabricated high-speed axial-air-gap multi-watt permanent-magnet generators – Part I: modeling”; Journal of Microelectromechanical System, 15, 5, 1330–1350, October 2006.CrossRefGoogle Scholar
  66. 66.
    M. Zahn, Electromagnetic Field Theory: A Problem Solving Approach, Kreiger, Malabar, 1979.Google Scholar
  67. 67.
    J. G. Kassakian, M. F. Schlecht, and G. C. Verghese, Principles of Power Electronics, Addison Wesley, Reading, 1991.Google Scholar
  68. 68.
    D. P. Arnold, S. Das, I. Zana, J. -W. Park, J. H. Lang, and M. G. Allen, “Microfabricated high-speed axial-air-gap multi-watt permanent-magnet generators – Part II: Design, Fabrication and Testing,” Journal of Microelectromechanical System, 15, 5, 1330–1350, October 2006.CrossRefGoogle Scholar
  69. 69.
    D. P. Arnold et al., “Design optimization of an 8 W microscale, axial-flux, permanent-magnet generator”; Journal of Micromechanics Microengineering, 16, 290–296, 2006.CrossRefGoogle Scholar
  70. 70.
    R. M. Bozorth, Ferromagnetism, IEEE Press, New York, Reissue, 1993.CrossRefGoogle Scholar
  71. 71.
    “MMPA Standard No. 0100-00, Standard Specifications for Permanent Magnet Materials,” published by International Magnetics Association (formerly Magnetic Materials Producers Association), Available: http://www.intl-magnetics.org/pdfs/0100-00.pdf.
  72. 72.
    E. H. Ismail and R. Erickson, “Single-Switch 3-Phase PWM Low Harmonic Rectifiers”; IEEE Transaction on Power Electron, 11, 2, 338–346, March 1996.CrossRefGoogle Scholar
  73. 73.
    A. R. Prasad, P. D. Ziogas, and S. Manias, “An active power factor correction technique for three-phase diode rectifiers”; IEEE Transaction on Power Electron, 6, 83–92, January 1991.CrossRefGoogle Scholar
  74. 74.
    D. Simonetti, J. L. Vieira, and G. Sousa, “Modeling of the high-power-factor discontinuous boost rectifiers”; IEEE Transaction on Industrial Electronics, 46, 4, 788–795, August 1999.CrossRefGoogle Scholar
  75. 75.
    D. P. Arnold, P. Galle, F. Herrault, S. Das, J. H. Lang, and M. G. Allen, "A self-contained, flow-powered microgenerator system"; Technical Digest 5th International Workshop Micro Nanotechnology For Power Generation and Energy Conversion Apps. (PowerMEMS 2005), Tokyo, Japan, 113–115, November 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeffrey H. Lang
    • 1
  • Sauparna Das
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations