Microengine Fabrication

  • Hanqing Li
  • Martin Schmidt
Part of the MEMS Reference Shelf book series (MEMSRS)


In this chapter, we will talk about the fabrication of the microengine devices using micro-electro-mechanical system (MEMS) technology. MEMS is an enabling technology based on the mature semiconductor fabrication technologies and has been widely used in making microscale devices such as sensors, actuators, RF communication devices, microfluidic devices, biology, and medical devices. The progress in MEMS technology, especially deep reactive ion etch (DRIE) and wafer bonding, in batch fabricating 3D structures at micrometer precision using Si wafers, an excellent structural material, gives birth to the concept of microengine devices for propulsion and power generation. The development of microengine devices also contributed in return to the understanding of the fundamentals of DRIE process [1–8] and improvement in multilayer bonding of heavily fabricated Si wafers [9–12].


Journal Bearing Nitride Film Blade Height Buffer Oxide Etcher Fusion Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ayon, A.A.; Braff, R.A.; Bayt, R.; Sawin, H.H.; Schmidt, M.A., Influence of coil power on the etching characteristics in a high density plasma etcher, Journal of the Electrochemical Society, v 146, n 7, July, 1999, pp 2730–2736CrossRefGoogle Scholar
  2. 2.
    Ayon, A.A.; Braff, R.; Lin, C.C.; Sawin, H.H.; Schmidt, M.A., Characterization of a time multiplexed inductively coupled plasma etcher, Journal of the Electrochemical Society, v 146, n 1, January, 1999, pp 339–349CrossRefGoogle Scholar
  3. 3.
    Ayon, A.A.; Nagle, S.; Frechette, L.; Epstein, A.; Schmidt, M.A., Tailoring etch directionality in a deep reactive ion etching tool, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, v 18, n 3, May, 2000, pp 1412–1416CrossRefGoogle Scholar
  4. 4.
    Ayon, A.A.; Bayt, R.L.; Breuer, K.S., Deep reactive ion etching: A promising technology for micro-and nanosatellites, Smart Materials and Structures, v 10, n 6, December, 2001, pp 1135–1144CrossRefGoogle Scholar
  5. 5.
    Ayon, A.A.; Zhang, X.; Khanna, R. Anisotropic silicon trenches 300–500 μm deep employing time multiplexed deep etching (TMDE), Sensors and Actuators, A: Physical, v 90, n 3, July 15, 2001, pp 381–385CrossRefGoogle Scholar
  6. 6.
    Spearing, S.M.; Chen, K.S., Micro-gas turbine engine materials and structures, Ceramic Engineering and Science Proceedings, v 18, n 4 B, 1997, pp 11–18CrossRefGoogle Scholar
  7. 7.
    Chen, K.-S.; Ayón, A.A.; Zhang, X.; Spearing, S.M., Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE), Journal of Microelectromechanical Systems, v 11, n 3, June, 2002, pp 264–275CrossRefGoogle Scholar
  8. 8.
    Ayon, A.A.; Ishihara, K.; Braff, R.A.; Sawin, H.H.; Schmidt, M.A., Application of the footing effect in the micromachining of self-aligned, free-standing, complimentary metal–oxide–semiconductor compatible structures, Journal of Vacuum Science and Technology A v 174, 1999, pp 2274–2279CrossRefGoogle Scholar
  9. 9.
    Zhang, X.; Turner, K.; Choi, D.; Miller, B.; Nagle, S.; Spearing, S.M., Low temperature silicon wafer bonding for MEMS applications, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 2002, pp 411–414Google Scholar
  10. 10.
    Miki, N.; Zhang, X.; Khanna, R.; Ayon, A.A.; Ward, D.; Spearing, S.M., Multi-stack silicon-direct wafer bonding for 3D MEMS manufacturing, Sensors and Actuators, A: Physical, v 103, n 1–2, January 15, 2003, pp 194–201; Mirza, A.R.; Ayon, A.A., Silicon wafer bonding for MEMS manufacturing, Solid State Technology, v 42, n 1–8, August, 1999, pp 73–78Google Scholar
  11. 11.
    Turner, K.T.; Spearing, S.M., Role of wafer bow and etch patterns in direct wafer bonding, Proceedings – Electrochemical Society, v 19, Semiconductor Wafer Bonding VII: Science, Technology, and Applications – Proceedings of the International Symposium, 2003, pp 166–174Google Scholar
  12. 12.
    Turner, K.T.; Thouless, M.D.; Spearing, S.M., Mechanics of wafer bonding: Effect of clamping Journal of Applied Physics, v 95, n 1, January 1, 2004, pp 349–355CrossRefGoogle Scholar
  13. 13.
    Turner, K.T.; Spearing, S.M., Mechanics of direct wafer bonding, American Society of Mechanical Engineers, Micro-Electromechanical Systems Division Publication (MEMS), v 5, Micro-Electro-Mechanical Systems (MEMS) – 2003, 2003, pp 163–168Google Scholar
  14. 14.
    Epstein, A.H.; Senturia, S.D., Macro power from micro machinery, Science, v 276, n 5316, May 23, 1997, p 1211CrossRefGoogle Scholar
  15. 15.
    Epstein, A.H.; Senturia, S.D.; Anathasuresh, G.; Ayon, A.; Breuer, K.; Chen, K.-S.; Ehrich, F.; Gauba, G.; Ghodssi, R.; Groshenry, C.; Jacobson, S.; Lang, J.; Mehra, C.-C.; Mur Miranda, J.; Nagle, S.; Orr, D.; Piekos, E.; Schmidt, M.; Shirley, G.; Spearing, S.; Tan, C.; Tzeng, Y.-S.; Waitz, I. , Power MEMS and microengines, Tranducers 97. 1997 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers (Cat. No.97TH8267), v 2, 1997, pp 753–756Google Scholar
  16. 16.
    Epstein, A.H.,Millimeter-scale, micro-electro-mechanical systems gas turbine engines, Transactions of the ASME. Journal of Engineering for Gas Turbines and Power, v 126, n 2, April 2004, pp 205–226CrossRefGoogle Scholar
  17. 17.
    Lin, C.-C.; Ghodssi, R.; Ayon, A.A.; Chen, D.-Z. ; Jacobson, S.; Breuer, K.; Epstein, A.H.; Schmidt, M.A., Fabrication and characterization of a micro turbine/bearing rig, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291), 1999, pp 529–533Google Scholar
  18. 18.
    Teo, C.J.; Liu, L.X.; Li, H.Q.; Ho, L.C.; Jacobson, S.A.; Ehrich, F.F.; Epstein, A.H.; Spakovszky, Z.S., High-speed operation of a gas-bearing supported mems air turbine, Proceedings of STLE/ASME International Joint Tribology Conference, IJTC 2006, v 2006, Proceedings of STLE/ASME International Joint Tribology Conference, IJTC 2006, 2006, p 12Google Scholar
  19. 19.
    Frechette, L.G.; ;Jacobson, S.A.; Breuer, K.S.; Ehrich, F.F.; Ghodssi, R.; Khanna, R.; Wong, C.W.; Zhang, X.; Schmidt, M.A.; Epstein, A.H., High-speed microfabricated silicon turbomachinery and fluid film bearings, Journal of Microelectromechanical Systems, v 14, n 1, Feb. 2005, pp 141–152; Frechette, L.G.; Jacobson, S.A.; Breuer, K.S.; Ehrich, F.F.; Ghodssi, R.; Khanna, R.; Wong, C.W.; Zhang, X.; Schmidt, M.A.; Epstein, A.H., Demonstration of a microfabricated high-speed turbine supported on gas bearings, Technical Digest. Solid-State Sensor and Actuator Workshop (TRF Cat. No.00TRF-0001), 2000, pp 43–47Google Scholar
  20. 20.
    Wong, C.W.; Zhang, X.; Jacobson, S.A.; Epstein, A.H., A self-acting thrust bearing for high speed micro-rotors, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266), 2002, pp 276–279Google Scholar
  21. 21.
    Mehra, A. (Dept. of Aeronaut. & Astronaut., MIT, Cambridge, MA, USA); Zhang, X.; Ayon, A.A.; Waitz, I.A.; Schmidt, M.A.; Spadaccini, C.M., A six-wafer combustion system for a silicon micro gas turbine engine, Journal of Microelectromechanical Systems, v 9, n 4, Dec. 2000, pp 517–527CrossRefGoogle Scholar
  22. 22.
    Spadaccini, C.M.; Zhang, X.; Cadou, C.P.; Miki, N.; Waitz, I.A., Development of a catalytic silicon micro-combustor for hydrocarbonfueled power MEMS, Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems MEMS 2002, Las Vegas, NE, January 20–24, 2003Google Scholar
  23. 23.
    Spadaccini, C.M.; Peck, J.; Waitz, I.A., Catalytic combustion systems for microscale gas turbine engines, Journal of Engineering for Gas Turbines and Power, v 129, n 1, January, 2007, pp 49–60CrossRefGoogle Scholar
  24. 24.
    Spadaccini, C.M.; Mehra, A.; Lee, J.; Zhang, X.; Lukachko, S.; Waitz, I.A. ,High power density silicon combustion systems for micro gas turbine engines, Journal of Engineering for Gas Turbines and Power, v 125, n 3, July, 2003, pp 709–719CrossRefGoogle Scholar
  25. 25.
    Li, H.; Savoulides, N.; Ho, L.; Jacobson, S.; Khanna, R.; Teo, C.-J.; Wang, L.; Ward, D.; Epstein, A.; Schmidt, M., Technical Digest, Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, SC, June 6–10, 2004, pp 258–261Google Scholar
  26. 26.
    Fabrication and testing of a high-speed microscale turbocharger Savoulides, N. (Loomis Sayles & Co., Boston, MA, USA); Jacobson, S.A.; Li, H.; Ho, L.; Khanna, R.; Teo, C.-J.; Protz, J.M.; Wang, L.; Ward, D.; Schmidt, M.A.; Epstein, A.H., Source: Journal of Microelectromechanical Systems, v 17, n 5, October. 2008, pp 1270–1282Google Scholar
  27. 27.
    Savoulides, N., “Development of a MEMS turbocharger and gas turbine eGoogle Scholar
  28. 28.
    ngine,” Ph.D. dissertation, MIT, Cambridge, MA, Feb. 2004Google Scholar
  29. 29.
    Steyn, J.L.; Kendig, S.H.; Khanna, R.; Lyszczarz, T.M.; Umans, S.D.; Yoon, J.U.; Livermore, C.; Lang, J.H., “Generating electric power with a MEMS electroquasistatic induction turbine-generator,” in Proceedings of the 18th IEEE Int. Conf. MEMS. Miami Beach, FL, January 2005, pp 614–617Google Scholar
  30. 30.
    Yen, B.C., “A fully integrated multi-Watt permanent magnet turbine generator”, Ph.D. dissertation, MIT, Cambridge, MA, September, 2008Google Scholar
  31. 31.
    Li, H.Q.; Ono, R.H.; Rudman, D.A.; Vale, L.R.; Liou, S.H., Multilayer processing of High-TC films and stacked bicrystal Josephson junctions, Applied Superconductivity, v 6 n 10–12, 1998, pp 711–717Google Scholar
  32. 32.
    Lohner, K.A.; Chen, K.-S.; Ayon, A.A.; Spearing, S.M., Microfabricated silicon carbide microengine structures, Materials Research Society Symposium – Proceedings, v 546, 1999, pp 85–90Google Scholar
  33. 33.
    Choi, D.; Shinavski, R.J.; Steffier, W.S.; Hoyt, S.; Spearing, S.M., Process development of silicon-silicon carbide hybrid micro-engine structures, Materials Research Society Symposium – Proceedings, v 687, 2002, pp 197–202Google Scholar
  34. 34.
    Moon, H.-S.; Choi, D.; Spearing, S.M., Development of Si-SiC hybrid structures for elevated temperature micro-turbomachinery, Journal of Microelectromechanical Systems, v 13, n 4, August, 2004, pp 676–687CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hanqing Li
    • 1
  • Martin Schmidt
    • 2
  1. 1.Microsystems Technology LaboratoriesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations