Advertisement

Materials, Structures and Packaging

  • S. Mark Spearing
Chapter
Part of the MEMS Reference Shelf book series (MEMSRS)

Abstract

Realization of the Microengine and related devices is dependent on achieving four key requirements: 1. High peak cycle temperatures (1600–2500 K) 2. High peripheral speeds (400–600 m/s) 3. Effective bearings (air bearings for the microengine) 4. Reasonable individual component efficiencies.

Keywords

Residual Stress Failure Probability Glass Frit Weibull Modulus Wafer Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author would like to acknowledge all those who contributed to the Materials, Structures and Packaging tasks on the Microengine and related projects, including: Lallit Anand, Arturo Ayon, Shaun Berry, Kuo-Shen Chen, Dongwon Choi, Todd Harrison, Eugene Huang, Adam London, Hangqing Li, Kevin Lohner, Norihisa Miki, Bruno Miller, Hyung-Soo Moon, Anna Mracek, Erin Noonan, Yoav Peles, Christopher Protz, Dong-Jin Shim, Robert Shinavski, Christopher Spaddaccini, Hongwei Sun, Kevin Turner, Srikar Vengallatore, Douglas Walters, Wenjing Ye and Xin Zhang. SMS also is very grateful for the highly effective and rewarding collaborations across the whole Microengine project and for the various funding sources that made it all possible. He is especially thankful for the leadership and vision provided by Prof. Alan Epstein.

References

  1. 1.
    S. M. Spearing, “Materials Issues in MEMS” Acta Mater. 48, 179–196, 2000CrossRefGoogle Scholar
  2. 2.
    K.-S. Chen, “Micro-Engine Structural Design and Analysis”, Ph.D Thesis, MIT, 1998Google Scholar
  3. 3.
    K.-S. Chen, A. Ayon, and S. M. Spearing, “Controlling and Testing the Fracture Strength of Silicon at the Mesoscale” J. Am. Ceram. Soc. 83(6) 1476–1484, 2000CrossRefGoogle Scholar
  4. 4.
    V. T. Srikar and S. M. Spearing. “Mechanical Test Methods for MEMS Devices” Exp. Mech. 43 (3) 228–237, 2003CrossRefGoogle Scholar
  5. 5.
    K.-S. Chen, S. M. Spearing, and N. N. Nemeth, “Structural Design of a Silicon Micro-Turbo Generator” AIAA J. 39(4) 720–728, 2001CrossRefGoogle Scholar
  6. 6.
    H.-S. Moon, “Design of Si/SiC Hybrid Structures for a Micro-Engine” Ph.D Thesis, MIT 2002Google Scholar
  7. 7.
    H. S. Moon, D. Choi, and S. M. Spearing, “Development of Si/SiC Hybrid Structures for Elevated Temperature Micro-Turbomachinery” J. MEMS 13(4) 676–687, 2004CrossRefGoogle Scholar
  8. 8.
    V. T. Srikar, K. Turner, T.-Z. A. Ie, and S. M. Spearing, “Structural Design Considerations for Micromachined Solid Oxide Fuel Cells”, J. Power Sources 125(1), 62–69, 2004CrossRefGoogle Scholar
  9. 9.
    C. D. Baertsch, K. F. Jensen, J. L. Hertz, H. L. Tuller, V. T. Srikar T. Vengallatore, S. M.Spearing, and M. A. Schmidt, “Fabrication and Structural Characterization of Self-Supporting Electrolyte Membranes for a Micro Solid-Oxide Fuel Cell” J. Mater. Res. 19(9), 2604–2615 2004CrossRefGoogle Scholar
  10. 10.
    K.-S. Chen, A. A. Ayon, X. Zhang, and S. M. Spearing, “Effect of Process Parameters on the Surface Morphology and Mechanical Performance of Silicon Structures after Deep Reactive Ion Etching (DRIE)” J. Microelectromech. Syst., 11 (3) 264–275, 2002CrossRefGoogle Scholar
  11. 11.
    A. A. Ayon, M. A. Schmidt, K. A. Lohner, K-S. Chen, S. M. Spearing, and H. Sawin “Deep Reactive Ion Etching of Silicon” Mat. Res. Soc. Symp. Proc 546, 51–61, 1999CrossRefGoogle Scholar
  12. 12.
    K.-S. Chen, A. A. Ayon, X. Zhang, S. M. Spearing, “Effect of Process Parameters on the Surface Morphology and Mechanical Performance of Silicon Structures after Deep Reactive Ion Etching (DRIE)” J. Microelectromech. Syst. 11(3), 264–275, 2002CrossRefGoogle Scholar
  13. 13.
    K. Turner and S. M. Spearing, “Modeling of Direct Wafer Bonding: Effect of Wafer Bow and Etch Patterns”. J. Appl. Phys. 92(12), 7658–7666, 2002CrossRefGoogle Scholar
  14. 14.
    N. Miki, X. Zhang, R. Khanna, A. A. Ayón, D. Ward and S. M. Spearing “Multi-Stack Silicon-Direct Wafer Bonding for 3D MEMS Manufacturing” Sens. Actuators, A, Physical 103 (1–2), 194–201, 2003Google Scholar
  15. 15.
    X. Zhang, K.-S. Chen. and S. M. Spearing, “Thermal Mechanical Behavior of Thick PECVD Oxide Films for Power MEMS Applications,” Sens. Actuators, A, Physical, 103 (1–2), 263–270, 2003Google Scholar
  16. 16.
    D. Choi, R. J. Shinavski, W. S. Steffier, and S. M. Spearing, “Residual Stress Control in Thick LPCVD Polycrystalline 3C SiC Coatings on Si Substrates” J. Appl. Physics. 97(7), 074904, 2005Google Scholar
  17. 17.
    Y. Peles, V. T. Srikar, T. A. Harrison, C. Protz, A. Mracek, and S. M. Spearing, “Fluidic Packaging of Microengine and Microrocket Devices for High Pressure and High Temperature Operation” J. Micro Electromech. Syst. 13(1), 31–40, 2004CrossRefGoogle Scholar
  18. 18.
    D.-J Shim, H.-W Sun, V. T. Srikar, and S. M. Spearing, “Damage and Failure in Silicon-Glass-Metal Microfluidic Joints for High Pressure and Temperature MEMS Devices” J. Microelectromech. Syst. 15 (1), 246–258, 2006CrossRefGoogle Scholar
  19. 19.
    V. T. Srikar and S. M. Spearing. “Materials selection in Micromechanical Design: An Application of the Ashby Approach” J. MicroElectromech. Syst., 12(1), 3–10 2003CrossRefGoogle Scholar
  20. 20.
    S. M. Spearing and K. S. Chen, “Micro Gas Turbine Engine Materials and Structures,” Ceramic Eng. Sci. Proc. 18(4), 11–18, 1997CrossRefGoogle Scholar
  21. 21.
    A. Ayón, X. Zhang, K. Turner, D. Choi, B. Miller, S. F. Nagle, and S. M. Spearing, “Characterization of Low Temperature Silicon Wafer Bonding for Power MEMS Applications,” Sens. Actuators, A, Physical 103(1–2), 1–8, 2003Google Scholar
  22. 22.
    D. S. Walters and S. M. Spearing, “On the Flexural Creep of Single Crystal Silicon”, Scripta Materialia. 42, 769–774, 2000CrossRefGoogle Scholar
  23. 23.
    K. Sumino, “Deformation Behavior of Silicon” Metallur. Mater. Trans. A 30A, 1465–1479, 1999CrossRefGoogle Scholar
  24. 24.
    L. Anand, “Constitutive Equations for the Rate-dependent Deformation of Metals at Elevated Temperatures” J. Engine. Mater. Tech. 104, 12–17, 1982CrossRefGoogle Scholar
  25. 25.
    S. Balasubramanian and L. Anand, “Elasto-viscoplastic Constitutive Equations for Polycrystalline fcc Materials at Low Homologous Temperatures” J. Mech. Phys. Solid 50(1), 101–126, 2001CrossRefGoogle Scholar
  26. 26.
    D. Choi, “Refractory Materials for Micro-Engine Applications” MIT, Ph.D Thesis 2004Google Scholar
  27. 27.
    T. Harrison, “Packaging technologies for Power MEMS devices” MIT. SM, 2000.Google Scholar
  28. 28.
    Y. Peles, V. T. Srikar, T. A. Harrison, C. Protz, A. Mracek, and S. M. Spearing, “Fluidic Packaging of Microengine and Microrocket Devices for High Pressure and High Temperature Operation” J. Micro Electromech. Syst., 13(1), 31–40, 2004CrossRefGoogle Scholar
  29. 29.
    D.-J Shim, H.-W Sun, V. T. Srikar, and S. M. Spearing, “Damage and Failure in Silicon-Glass-Metal Microfluidic Joints for High Pressure and Temperature MEMS Devices” J. Microelectromech. Syst. 15(1), 246–258, 2006CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations