Advertisement

A Semantic Matching Approach for Mediating Heterogeneous Sources

  • Michel Schneider
  • Lotfi Bejaoui
  • Guillaume Bertin

Approaches to make multiple sources interoperable were essentially investigated when one are able to resolve a priori the heterogeneity problems. This requires that a global schema must be elaborated or that mappings between local schemas must be established before any query can be posed. The object of this paper is to study to what extend a mediation approach can be envisaged when none of these features are a priori available. Our solution consists in matching a query with each of the local schema. We designed a first prototype which showed that the approach could be efficient. We propose in this paper a new more sophisticated prototype. A friendlier query language is available. The detection of matching is more successful. This kind of system can be installed on super-nodes in P2P networks in order to facilitate accesses to data by their semantics. It can thus contribute to the pervasive computing paradigm.

Keywords

Query Language Global Schema Local Schema Domain Ontology Link Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, P. A., Melnik, S., Petropoulos, M., and Quix C.: Industrial-strength schema matching. SIGMOD Record, Vol. 33, No 4, pp 38–43 (2004).CrossRefGoogle Scholar
  2. 2.
    Cui, Z., Jones, D., O'Brien, P.: Issues in Ontology-based Information Integration. IJCAI, Seattle (2001).Google Scholar
  3. 3.
    Do, H. H., Rahm, E.: COMA — A System for Flexible Combination of Schema Matching Approaches. VLDB 2002, pp. 610–621 (2002).Google Scholar
  4. 4.
    Domenig, R., Dittrich, K.R.: A Query based Approach for Integrating Heterogeneous Data Sources. CIKM 2000, pp. 453–460 (200).Google Scholar
  5. 5.
    Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J., Vassalos, V. and Widom, J.: The Tsimmis approach to mediation: Data models and languages. Journal of Intelligent Information Systems, Vol. 8, No. 2, pp. 117–132 (1997).CrossRefGoogle Scholar
  6. 6.
    Hai, Do H., Melnik, S., Rahm, E.: Comparison of Schema Matching Evaluations. Web, Web-Services, and Database Systems. pp 221–237 (2002).Google Scholar
  7. 7.
    Hull, R.: Managing semantic heterogeneity in databases: A theoretical perspective. Proc. of the Symposium on Principles of Database Systems (PODS), Tucson, Arizona, pp.51–61 (1997).Google Scholar
  8. 8.
    JWNL. Java WordNet Library. http ://sourceforge.net/projects/jwordnet.
  9. 9.
    Kedad, Z., Métais, E.: Dealing with Semantic Heterogeneity During Data Integration. Proc of the International Entity Relationship Conference, pp. 325–339 (1999).Google Scholar
  10. 10.
    Lenzerini, M.: Logical Foundations for Data Integration. SOFSEM 2005. pp 38–40 (2005).Google Scholar
  11. 11.
    Levy, A.L., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information Sources Using Source Descriptions. VLDB 1996, pp. 251–262 (1996).Google Scholar
  12. 12.
    Li, W.S., Clifton, C.: SemInt-a tool for identifying attribute correspondences in heterogeneous databases using neural network. Data Knowl. Eng. 33(1), pp. 49–84.Google Scholar
  13. 13.
    Madhavan, J., Bernstein, P.A., Rahm, R.: Generic Schema Matching with Cupid. VLDB 2001, pp. 49–58 (2001).Google Scholar
  14. 14.
    Miller, G.:Wordnet: A Lexical Database for English. Communications of the ACM, Vol. 38, pp 39–41 (1995).CrossRefGoogle Scholar
  15. 15.
    Missikoff, M., Taglino, F.: An Ontology-based Platform for Semantic Interoperability. Handbook on Ontologies. pp 617–634 (2004).Google Scholar
  16. 16.
    Mohsenzadeh, M., Shams, F., Teshnehlab, M.: Comparison of Schema Matching Systems. WEC (2), pp 141–147 (2005).Google Scholar
  17. 17.
    Nodine, M.H., Fowler, J., Perry, B.: Active Information Gathering in InfoSleuth. CODAS 1999, pp. 15–26 (1999).Google Scholar
  18. 18.
    Palopoli, L., Terracina, G., Ursino, D.: DIKE: a system supporting the semi-automatic construction of cooperative information systems from heterogeneous databases. Softw., Pract. Exper. 33(9), pp. 847–884 (2003).CrossRefGoogle Scholar
  19. 19.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), pp 334–350 (2001).MATHCrossRefGoogle Scholar
  20. 20.
    Saxon. SAXON: The XSLT and XQuery Processor. http://saxon.sourceforge.net/.
  21. 21.
    Schneider, M., Thevenet, D.: Mediation without a global schema: Matching queries and local schemas through an ontology. Second international Conference on Web Information Systems and Technologies (WEBIST 2006), Setubal, Portugal, CD-ROM Proceedings, 10 pages (2006).Google Scholar
  22. 22.
    Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hubner, S.: Ontology-based integration of information — a survey of existing approaches. In Stuckenschmidt, H., ed., IJCAI-01 Workshop: Ontologies and Information Sharing, pp 108–117 (2001).Google Scholar
  23. 23.
    Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Computer, Vol. 25, No 3, pp.38–49 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.CemagrefAubière CedexFrance
  2. 2.LIMOS, Complexe des CézeauxAubière CedexFrance

Personalised recommendations