Adaptive Web Site Customization

  • Nikos Zotos
  • Sofia Stamou
  • Paraskevi Tzekou
  • Lefteris Kozanidis

In this paper, we propose a novel site customization model that relies on a topical ontology in order to learn the user interests as these are exemplified in their site navigations. Based on this knowledge, our model personalizes the site's content and structure so as to meet particular user needs. Experimental results demonstrate that our model has a significant potential in accurately identifying the user interests and show that site customizations that rely on the detected interests assist web users experience personalized navigations in the sites' contents.


User Profile User Interest Semantic Correlation Customization Process Site Customization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Open Directory Project (ODP): http://dmoz/org
  2. 2.
  3. 3.
    Baraglia, R., Silvestri, F. An Online Recommender System for Large Web Sites. In Proceedings of the ACM/IEEE Web Intelligence Conference, 2004.Google Scholar
  4. 4.
    Berednt, B., Spiliopoulou, M. Analysis of Navigation Behavior in Web Sites Integrating Multiple Information Systems. In the VLDB Journal, 9: 56–75, 2000.CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, S., Dom, B., Gibson, D., Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A. Mining the Link Structure of the World Wide Web. In IEEE Computer, 32(6), 1999.Google Scholar
  6. 6.
    Coenen, F., Swinnen, G., Vanhoof, K., Wets, G. A Framework for Self Adaptive Websites: Tactical versus Strategic Changes. In Proceedings of the WEBKDD Workshop, 2000.Google Scholar
  7. 7.
    Dai, H., Mobasher, B. Using Ontologies to Discover Domain-Level Web Usage Profiles. In Proceedings of the 2nd Workshop on Semantic Web Mining at PKDD, Finland, 2002.Google Scholar
  8. 8.
    Eirinaki, M., Vazirgiannis, M., Varlamis, I. SeWeP: Using Site Semantics and a Taxonomy to Enhance the Web Personalization Process. In Proc. of the SIGKDD Conference, 2003.Google Scholar
  9. 9.
    Eirinaki, M., Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M. Introducing Semantics in Web Personalization: The Role of Ontologies. In LNAI 4289, pp. 147–162, 2006.Google Scholar
  10. 10.
    Haveliwala, T. Topic-Sensitive PageRank. In Proceedings of the WWW Conference, 2002.Google Scholar
  11. 11.
    Jin, X., Zhou, Y., Mobasher, B. A Maximum Entropy Web Recommendation System: Combining Collaborative and Content Features. In Proceedings of the 11th ACM KDD Conference, 2005.Google Scholar
  12. 12.
    Kearney, P., Anand, S.S. Employing a Domain Ontology to Gain Insights into the User Behavior. In Proceedings of the 3rd Workshop on Intelligent Techniques for Web Personalization, 2005.Google Scholar
  13. 13.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C. Ontological User Profiling in Recommender Systems. In ACM Transactions on Information Systems, 22(1): 54–88, 2004.CrossRefGoogle Scholar
  14. 14.
    Mobasher, B., Dai, H., Luo, T., Sung, Y., Zhu, J. Discovery of Aggregate Usage Profiles for Web Personalization. In the Web Mining for E-Commerce Workshop, 2000.Google Scholar
  15. 15.
    Perkowitz, M., Etzioni, O. Adaptive Web Sites. In Com. of ACM, 43(8):152–158, 2000.CrossRefGoogle Scholar
  16. 16.
    Leacock, C., Chodorow, M. Combining Local Context and Wordnet Similarity for Word Sense Identification. In WordNet: An Electronic Lexical Database, MIT Press, 1998.Google Scholar
  17. 17.
    Spiliopoulou, M. Web Usage Mining for Web Site Evaluation. In Communications of the ACM, 43(8): 127–134, 2000.CrossRefGoogle Scholar
  18. 18.
    Srivastara, J., Cooley, R., Deshpande, M., Tan, P.N. Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. In SIGKDD Explorations,1(2):12–23, 2000.CrossRefGoogle Scholar
  19. 19.
    Stamou, S., Ntoulas, A., Krikos, V., Kokosis, P., Christodoulakis, D. Classifying Web Data in Directory Structures. In Proceedings of the 8th APWeb Conference, pp. 238–249, 2006.Google Scholar
  20. 20.
    Sugiyama, K., Hatano, K., Yoshikawa, M. Adaptive Web Search Based on User Profile without any Effort from Users. In Proceedings of the WWW Conference, 2004.Google Scholar
  21. 21.
    Wu, Z., Palmer, M. Web Semantics and Lexical Selection. In the 32nd ACL Meeting, 1994Google Scholar
  22. 22.
    Eirinaki, M., Vazirgiannis, M. Web Mining for Web Personalization. In ACM Transactions on Internet Technology, Vol.3, No.1, pp. 1–27, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Computer Engineering and Informatics DepartmentPatras UniversityPatrasGreece

Personalised recommendations