Spin-Transfer and Current-Induced Spin Dynamics in Spin Valves: Diffusive Transport Regime

  • Martin GmitraEmail author
  • Józef Barnaś
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 5)


Current-induced dynamics observed in point contacts or in spin valve structures is one of the most challenging concepts that can bring these nanomagnetic systems toward direct applications. The most promising applications are the nonvolatile memories and nano-oscillators which can be used in telecommunications. Despite the clear application proposals, the full understanding of the microscopic mechanism of current-induced spin dynamics is still an open question. The transfer of angular momentum from conduction electrons to local magnetization is the key microscopic effect. In this chapter, we describe the spin transfer in layered metallic systems (spin valves) and current-induced dynamics via the spin transfer. We present the relation between the normal and inverse current-induced switching, and normal and inverse current-perpendicular-to-plane giant magnetoresistance CPP-GMR. It turns out that these effects are related to the ferromagnet–normal-metal interface asymmetries that in some cases may lead to a nonstandard angular dependence of the spin transfer torque. We also present analysis of the current-induced dynamics within the macrospin model for standard spin valves as well as for asymmetric valves that have nonstandard angular dependence of spin-transfer torque. The asymmetric spin valves are promising candidates for current-induced microwave nano-oscillators in zero magnetic field.


Spin Current Spin Asymmetry Ferromagnetic Layer Spin Valve Spin Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work, as part of the European Science Foundation EUROCORES Programme SPINTRA, was supported by funds from the Ministry of Science and Higher Education as a research project in years 2006–2009 and the EC Sixth Framework Programme, under Contract N. ERAS-CT-2003-980409. The work was also supported by Slovak Ministry of Education within the project MVTS POL/SR/UPJS/07 and Slovak Grant Agency VEGA under Grant No. 1/2009/05.


  1. 1.
    M.N. Baibich, J.M. Broto, A. Fert et al., Phys. Rev. Lett. 61 (1988) 2472CrossRefGoogle Scholar
  2. 2.
    G. Binasch, P. Grünberg, F. Saurenbach et al., Phys. Rev B 39, 4828 (1989)CrossRefGoogle Scholar
  3. 3.
    J. Barnaś, A. Fuss, R.E. Camley et al., Phys. Rev. B 42, 8110 (1990)CrossRefGoogle Scholar
  4. 4.
    J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996); 195, L261 (1999)CrossRefGoogle Scholar
  5. 5.
    L. Berger, Phys. Rev. B 54, 9353 (1996)CrossRefGoogle Scholar
  6. 6.
    J.A. Katine, F.J. Albert, R.A. Buhrman et al., Phys. Rev. Lett. 84, 3149 (2000)CrossRefGoogle Scholar
  7. 7.
    N.F. Mott, Adv. Phys. 13, 325 (1964)CrossRefGoogle Scholar
  8. 8.
    I.A. Campbell, A. Fert: Transport Properties of Ferromagnets. In: Ferromagnetic Materials,Vol. 3, ed by E.P. Wohlfarth, North-Holland, Amsterdam (1982), pp 747–804Google Scholar
  9. 9.
    P.M. Levy, S. Zhang, A. Fert., Phys. Rev. Lett. 65, 1643 (1990)CrossRefGoogle Scholar
  10. 10.
    S. Zhang, P.M. Levy, A. Fert., Phys. Rev. B 45, 8689 (1992)CrossRefGoogle Scholar
  11. 11..
    J. Grollier, V. Cros, A. Hamzic et al., Appl. Phys. Lett. 78, 3663 (2001)CrossRefGoogle Scholar
  12. 12.
    M. AlHajDarwish, H. Kurt, S. Urazhdin et al., Phys. Rev. Lett. 93, 157203 (2004)CrossRefGoogle Scholar
  13. 13.
    M. Tsoi, J.Z. Sun, M.J. Rooks et al., Phys. Rev. B 69, 100406(R) (2004)Google Scholar
  14. 14.
    M. Tsoi, V. Tsoi, J. Bass et al., Phys. Rev. Lett 89, 246803 (2002)CrossRefGoogle Scholar
  15. 15.
    M. Tsoi, J.Z. Sun, S.S.P. Parkin., Phys. Rev. Lett. 93, 036602 (2004)CrossRefGoogle Scholar
  16. 16.
    S.I. Kiselev, J.C. Sankey, I.N. Krivorotov et al., Nature (London) 425, 380 (2003)CrossRefGoogle Scholar
  17. 17.
    A.N. Slavin, V.S. Tiberkevich., Phys. Rev. B 72, 094428 (2005)CrossRefGoogle Scholar
  18. 18.
    J.Z. Sun., Phys. Rev. B 62, 570 (2000)CrossRefGoogle Scholar
  19. 19.
    Z. Li, S. Zhang., Phys. Rev. B 68, 024404 (2003)CrossRefGoogle Scholar
  20. 20.
    H. Xi, Z. Lin., Phys. Rev. B 70, 092403 (2004)CrossRefGoogle Scholar
  21. 21.
    J. Xiao, A. Zangwill, M.D. Stiles., Phys. Rev B 72, 014446 (2005)CrossRefGoogle Scholar
  22. 22.
    W.H. Rippard, M.R. Pufall, S. Kaka et al., Phys. Rev. Lett. 92, 027201 (2004); Phys. Rev. B 70, 100406(R) (2004)CrossRefGoogle Scholar
  23. 23.
    J. Barnaś, A. Fert, M. Gmitra et al., Phys. Rev. B 72, 024426 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Gmitra, J. Barnaś., Phys. Rev. Lett. 96 207205 (2006); Appl. Phys. Lett. 89, 223121 (2006); Phys. Rev. Lett. 99 097205 (2007)CrossRefGoogle Scholar
  25. 25.
    X. Waintal E.B. Myers, P.W. Brouwer., Phys. Rev. B 62, 12317 (2000)CrossRefGoogle Scholar
  26. 26.
    J. Slonczewski., J. Magn. Magn. Mat. 247, 324 (2002)CrossRefGoogle Scholar
  27. 27.
    M.D. Stiles, A. Zangwill., Phys. Rev. B 66, 014407 (2002); J. Appl. Phys. 91, 6812 (2002)CrossRefGoogle Scholar
  28. 28.
    A. Brataas, Yu.V. Nazarov, G.E.W. Bauer., Phys. Rev. Lett. 84, 2481 (2000)CrossRefGoogle Scholar
  29. 29.
    D.H. Hernando, Yu.V. Nazarov, A. Brataas et al: Phys. Rev. B 62, 5700 (2000)CrossRefGoogle Scholar
  30. 30.
    A.A. Kovalev, A. Brataas, G.E.W. Bauer., Phys. Rev. B 66, 224424 (2002)CrossRefGoogle Scholar
  31. 31.
    S. Urazhdin, N.O. Birge, W.P. Pratt et al., Appl. Phys. Lett. 84, 1516 (2004)CrossRefGoogle Scholar
  32. 32.
    T. Valet, A. Fert., Phys. Rev. B 48, 7099 (1993)CrossRefGoogle Scholar
  33. 33.
    J. Bass, W.P. Pratt Jr., J. Magn. Magn. Mater. 200, 274 (1999)CrossRefGoogle Scholar
  34. 34.
    A. Brataas, Yu.V. Nazarov, G.E.W. Bauer., Eur. Phys. J. B 22, 99 (2001)CrossRefGoogle Scholar
  35. 35.
    K. Xia, P.J. Kelly, G.E.W. Bauer et al., Phys. Rev. B, 65, 220401 (2002)CrossRefGoogle Scholar
  36. 36.
    M. Zwierzycki, Y. Tserkovnyak, P.J. Kelly et al., Phys. Rev. B 71, 064420 (2005)CrossRefGoogle Scholar
  37. 37.
    W.P. Pratt, private communicationGoogle Scholar
  38. 38.
    P. Dauguet, P. Gandit, J. Chaussy et al., Phys. Rev. B 54, 1083 (1996)CrossRefGoogle Scholar
  39. 39.
    C. Vouille, A. Barthélémy, F. Elokan Mpondo et al., Phys. Rev. B 60, 6710 (1999)CrossRefGoogle Scholar
  40. 40.
    A.C. Reilly, W. Park, R. Slater et al., J. Magn. Magn. Mater. 195, L269 (1999)CrossRefGoogle Scholar
  41. 41.
    S.D. Steenwyk, S.Y. Hsu, R. Loloee et al., J. Magn. Magn. Mater. 170, L1 (1997)CrossRefGoogle Scholar
  42. 42.
    W. Park, R. Loloee, J.A. Caballero et al., J. Appl. Phys. 85, 4542 (1999)CrossRefGoogle Scholar
  43. 43.
    K. Eid, R. Fonck, M. AlHaj Darwish et al., J. Appl. Phys. 91, 8102 (2002)CrossRefGoogle Scholar
  44. 44.
    X. Waintal, E.B. Myers, P.W. Brouwer et al., Phys. Rev. B 62, 12317 (2000)CrossRefGoogle Scholar
  45. 45.
    J. Xiao, A. Zangwill, M.D. Stiles., Phys. Rev. B 70, 172405 (2004)CrossRefGoogle Scholar
  46. 46.
    O. Boulle, V. Cros, J. Grollier et al., Nature Phys. 3, 492–497 (2007)CrossRefGoogle Scholar
  47. 47.
    A. Vedyayev97, N. Ryzhanova, B. Dieny et al., Phys. Rev. B 55, 3728–3733 (1997)Google Scholar
  48. 48.
    A. Shpiro. P.M. Levy, S. Zhang, Phys. Rev. B 67, 104430 (2003)CrossRefGoogle Scholar
  49. 49.
    S. Urazhdin, R. Loloee, W.P. Pratt, Jr., Phys. Rev. B 71, 100401 (2005)CrossRefGoogle Scholar
  50. 50.
    S. Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, (1990) pp 35–36Google Scholar
  51. 51.
    G. Bertotti, C. Serpico, I.D. Mayergoyz et al., Phys. Rev. Lett. 94, 127206 (200)Google Scholar
  52. 52.
    S.I. Kiselev, J.C. Sankey, I.N. Krivorotov et al., Phys. Rev. B 72, 064430 (2005)CrossRefGoogle Scholar
  53. 53.
    J. Manschot, A. Brataas, G.E.W. Bauer., Appl. Phys. Lett. 85, 3250 (2004)CrossRefGoogle Scholar
  54. 54.
    L. Berger., J. Appl. Phys. 93, 7693 (2003)CrossRefGoogle Scholar
  55. 55.
    Y. Jiang, G.H. Yu, Y.B. Wang et al., Appl. Phys. Lett. 86, 192515 (2005)CrossRefGoogle Scholar
  56. 56.
    K. Inomata, N. Koike, T. Nozaki et al., Appl. Phys. Lett. 82, 2667 (2003)CrossRefGoogle Scholar
  57. 57.
    S.S.P. Parkin, D. Mauri., Phys. Rev. B 44, 7131 (1991)CrossRefGoogle Scholar
  58. 58.
    J.A. Osborn., Phys. Rev. 67, 351 (1945)CrossRefGoogle Scholar
  59. 59.
    X. Zhu, J.G. Zhu, R.M. White., J. Appl. Phys. 95, 6630 (2004)CrossRefGoogle Scholar
  60. 60.
    K.J. Lee, A. Deac, O. Redon et al., Nat. Mater. 3, 877 (2004)CrossRefGoogle Scholar
  61. 61.
    D. Berkov, N.L. Gorn., Phys. Rev. B 71, 052403 (2005); Phys. Rev. B 72, 094401 (2005)CrossRefGoogle Scholar
  62. 62.
    Y. Acremann, J.P. Strachan, V. Chembrolu et al., Phys. Rev. Lett. 96, 217202 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Physics, P.J. Šafárik University in KošiceKošiceSlovak Republic
  2. 2.Department of PhysicsAdam Mickiewicz University61-614 PoznanPoland
  3. 3.Institute of Molecular Physics, Polish Academy of Sciences60-179 PoznaPoland

Personalised recommendations