Toward Functional Nanomaterials pp 173-192 | Cite as
Nanocrystal-Based Polymer Composites as Novel Functional Materials
- 1 Citations
- 986 Downloads
Abstract
This chapter provides an overall picture of nanocrystal-polymer based composites and describes the key properties of these original functional materials, particularly suited for advanced applications in photonic, optoelectronic as well as in sensing. Here, we aim at pointing out the relevance of the incorporation of inorganic colloidal nanocrystals with size-dependent properties in highly processable polymers. Due to the countless different combination of material types and, accordingly, the large extent of the topic, this contribution will focalize mainly on luminescent semiconductor nanocrystals embedded in plastic structurable matrices.
First, an overview on the complex and various scenarios of the nanocomposite preparation strategies will be provided. Next, the original properties of the prepared nanocomposites will be illustrated, paying particular attention to their fabrication by means of conventional and emerging micro- and nanoscale processing techniques. Finally, recent examples of applications of nanocomposite materials in photonic, optoelectronic and sensing devices will be reviewed.
Keywords
Block Copolymer Inkjet Printing Nanocomposite Material Semiconductor Nanocrystals Amphiphilic Block CopolymerReferences
- 1.Al-Ghamdi GH, Sudol ED, Dimonie VL, El-Aasser MS (2006) Encapsulation of titanium dioxide in styrene/n-butyl acrylate copolymer by miniemulsion polymerization. J. Appl. Polym. Sci 101:3479–3486CrossRefGoogle Scholar
- 2.Bockstaller MR, Mickiewicz RA, Thomas EL (2005) Block copolymer nanocomposites: perspectives for tailored functional materials. Advanced Mater. 17:1331–1349CrossRefGoogle Scholar
- 3.Boontongkong Y, Cohen RE, (2002) Cavitated block copolymer micellar thin films: lateral arrays of open nanoreactors. Macromolecules 35:3647–3652CrossRefGoogle Scholar
- 4.Brushez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
- 5.Bullen C, Mulvaney P, (2006) The effects of chemisorption on the luminescence of cdse quantum dots. Langmuir 22:3007–3013CrossRefGoogle Scholar
- 6.Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105:1025–1102CrossRefGoogle Scholar
- 7.Caseri W (2000) Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromol. Rapid Commun. 21:705–722CrossRefGoogle Scholar
- 8.Chen G, Rapaport R, Fuchs DT, Lucas L, Lovinger A, Vilan S, Aharoni A, Banin U, (2005) Optical gain from InAs nanocrystal quantum dots in a polymer matrix. Appl. Phys. Lett. 87:251108CrossRefGoogle Scholar
- 9.Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357CrossRefGoogle Scholar
- 10.Comparelli R, Curri ML, Cozzoli PD, Striccoli M (2007) Optical biosensing based on metal and semiconductor colloidal nanocrystals. In: Kumar C (ed) Nanomaterials for Biosensors. Wiley-VCH, Weinheim, pp. 123–151Google Scholar
- 11.Comparelli R, Zezza F, Striccoli M, Curri ML, Tommasi R, Agostiano A (2003) Improved optical properties of CdS quantum dots by ligand exchange. Mat. Sci. Eng. C 23:1083–1086CrossRefGoogle Scholar
- 12.Corbierre MK, Cameron NS, Sutton M, Laaziri K, Lennox RB (2005) Gold nanoparticle/polymer nanocomposites: dispersion of nanoparticles as a function of capping agent molecular weight and grafting density. Langmuir 21:6063–6072CrossRefGoogle Scholar
- 13.Cozzoli PD, Fanizza E, Curri ML, Laub D, Agostiano A (2005) Low-dimensional chain like assemblies of TiO2 nanorod-stabilized Au nanoparticles. Chem. Commun. 942–944Google Scholar
- 14.Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase. TiO2 nanorods J. Am. Chem. Soc. 125:14539–14548CrossRefGoogle Scholar
- 15.Csetneki I, Filipcsei G, Zrinyi M (2006) Smart nanocomposite polymer membranes with on/off switching control. Macromolecules 39:1939–1942CrossRefGoogle Scholar
- 16.Curri ML, Agostiano A, Manna L, Della Monica M, Catalano M, Chiavarone L, Spagnolo V, Lugara M (2000) Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion: The role of the cosurfactant. J. Phys. Chem. B 104:8391–8397CrossRefGoogle Scholar
- 17.Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66:1316–1318CrossRefGoogle Scholar
- 18.Dabbousi BO, Rodriguez-Viejo J, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101:9463–9475CrossRefGoogle Scholar
- 19.Ding L, Li Y, Chu H, Li X, Liu J (2005) Creation of cadmium sulfide nanostructures using afm dip-pen nanolithography. J. Phys. Chem. B 109:22337–22340CrossRefGoogle Scholar
- 20.Du H, Xu GQ, and Chin WS, Huang L, and Ji W (2002) Synthesis, characterization, and nonlinear optical properties of hybridized cds-polystyrene nanocomposites. Chem. Mater., 14:4473–4479CrossRefGoogle Scholar
- 21.Esumi K, Houdatsu H, Yoshimura T (2004) Antioxidant action by gold-pamam dendrimer nanocomposites. Langmuir 20:2536–2538CrossRefGoogle Scholar
- 22.Fan X, Xia C, Advincula RC (2005) On the formation of narrowly polydispersed pmma by surface initiated polymerization (sip) from aibn-coated/intercalated clay nanoparticle platelets. Langmuir, 21:2537–2544CrossRefGoogle Scholar
- 23.Fang X, Reneker DH (1997) DNA fibers by electrospinning. J. Macromol. Sci-Phys. B36:169–173CrossRefGoogle Scholar
- 24.Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem. Mater. 12:608–622CrossRefGoogle Scholar
- 25.Gass J, Poddar P, Almand J, Srinath S, Srikanth H, (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv. Funct. Mater. 16:71–75CrossRefGoogle Scholar
- 26.Godovsky DY (2000) Device applications of polymer-nanocomposites. Adv. Polym. Sci. 153:163–205CrossRefGoogle Scholar
- 27.Gomez-Romero P (2001) Hybrid organic-inorganic materials – in search of synergic activity. Adv. Mater.13:163–174CrossRefGoogle Scholar
- 28.Gu H, Zheng R, Zhang X, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 126:5664–5665CrossRefGoogle Scholar
- 29.Guo W, Li J, Wang YA, Peng X (2003) Luminescent CdSe/CdS Core/Shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. J. Am. Chem. Soc. 125:3901–3909CrossRefGoogle Scholar
- 30.Guo LJ (2004) Recent progress in nanoimprint technology and its applications. J. Phys. D: Appl. Phys. 37:R123–R141CrossRefGoogle Scholar
- 31.Hung ND, Meyer YH (1991) Simple generation of 400–700 nm picosecond dye laser pulses with nanosecond laser pumping. Appl. Phys. B-Lasers Opt. 53:226–230CrossRefGoogle Scholar
- 32.Ingrosso C, Fakhfouri V, Striccoli M, Agostiano A, Voigt A, Gruetzner G, Curri ML, Brugger J (2007) Luminescent nanocrystal modified epoxy photoresist for the fabrication of 3-D high aspect-ratio microstructures. Adv. Funct. Mater in pressGoogle Scholar
- 33.Jeong S, Achermann M, Nanda J, Ivanov S, Klimov VI, Hollingsworth JA (2005) Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots. J. Am. Chem. Soc. 127:10126–10127CrossRefGoogle Scholar
- 34.Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog. Polym. Sci. 28:83–114CrossRefGoogle Scholar
- 35.Kim JS, Reneker DH (1999) Polybenzimidazole nanofiber produced by electrospinning. Polymer Eng. Sci. 39:849CrossRefGoogle Scholar
- 36.Kim S, Bawendi MG (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 125:14652–14653CrossRefGoogle Scholar
- 37.Kudera S, Carbone L, Casula MF, Cingolani R, Falqui A, Snoeck E, Parak WJ, Manna L (2005) Selective growth of PbSe on one tips of colloidal semiconductor nanorods. Nano Lett. 5:445–449CrossRefGoogle Scholar
- 38.Lade M, Mays H, Schmidt J, Willumeit R, Schomaker R (2000) On the nanoparticle synthesis in microemulsions: Detailed characterization of an applied reaction mixture. Colloids Surf. A 163:3–15CrossRefGoogle Scholar
- 39.Lee J, Sundar V, Heine JR, Bawendi MG, Jensen KF (2000) Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 12:1102–1105CrossRefGoogle Scholar
- 40.Lee SM, Cho SN, Cheon J (2003) Anisotropic shape control of colloidal inorganic nanocrystals. Adv. Mater. 15:441–444CrossRefGoogle Scholar
- 41.Li J, Jia B, Zhou G, Gu M (2006) Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material. Opt. Express 14:10740–10745CrossRefGoogle Scholar
- 42.Li W, Gao C, Qian H, Ren J, Yan D (2006) Multiamino-functionalized carbon nano-tubes and their applications in loading quantum dots and magnetic nanoparticles. J. Mater. Chem.16:1852–1859CrossRefGoogle Scholar
- 43.Lisiecki I (2005) Size, shape and structural controls of metallic nanocrystals. J. Phys. Chem. B 109:12231–12244CrossRefGoogle Scholar
- 44.Liu H, Edel JB, Bellan LM, Craighead HG (2006) Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots. Small 2:495–499CrossRefGoogle Scholar
- 45.Lu C, Guan C, Liu Y, Cheng Y, Yang B (2005) PbS/Polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17:2448–2454CrossRefGoogle Scholar
- 46.Lu X, Zhao Y, Wang C (2005) Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. Adv. Mater. 17:2485–2488CrossRefGoogle Scholar
- 47.Lu X, Zhao Y, Wang C, Wei Y, (2005) Fabrication of CdS nanorods in pvp fiber matrices by electrospinning Macromol. Rapid Commun. 26:1325–1329CrossRefGoogle Scholar
- 48.Manna L, Scher EC, Alivisatos AP (2002) Shape control of colloidal semiconductor nanocrystals. J. Clusters Sci. 13:521–532CrossRefGoogle Scholar
- 49.Milliron DJ, Hughes SM, Cui Y, Manna L, Li J, Wang LW, Alivisatos, AP (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430:190–195CrossRefGoogle Scholar
- 50.Milton GW (2002) The Theory of Composites. Cambridge University Press, CambridgeCrossRefGoogle Scholar
- 51.Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304:1787–1790CrossRefGoogle Scholar
- 52.Murray CB, Norris DJ, and Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715CrossRefGoogle Scholar
- 53.Nagasaki Y, Ishii T, Sunaga Y, Watanabe Y, Otsuka H, Kataoka K, (2004) Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/Polyamine stabilized CdS quantum dot. Langmuir 20:6396–6400CrossRefGoogle Scholar
- 54.Nazzal AY, Qu L, Peng X, Xiao M (2003) Photoactivated CdSe nanocrystals as nanosensors for gases. Nano Lett. 3:819–822CrossRefGoogle Scholar
- 55.Olsson YK, Chen G, Rapaport R, Fuchs DT, Sundar VC, Steckel JS, Bawendi MG, Aharoni A, Banin U (2004) Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots. Appl. Phys. Lett. 85:4469–4471CrossRefGoogle Scholar
- 56.Pang L, Shen Y, Tetz K, Fainman Y (2005) PMMA quantum dots composites fabricated via use of pre-polymerization. Optic Express, 13:44–49CrossRefGoogle Scholar
- 57.Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, Parak WJ, (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4:703–707CrossRefGoogle Scholar
- 58.Peng XG, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial-Growth of highly luminescent CdSe/CdS Core/Shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119:7019–7029CrossRefGoogle Scholar
- 59.Peng X, Wickham J, and Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120: 5343–5344CrossRefGoogle Scholar
- 60.Peng X (2002) Green chemical approaches toward high-quality semiconductor nanocrystals. Chem. Eur. J. 8:334–339CrossRefGoogle Scholar
- 61.Petruska MA, Bartko AP, Klimov VI, (2004) An amphiphilic approach to nanocrystal quantum dot-titania nanocomposites. J. Am. Chem. Soc. 126:714–715CrossRefGoogle Scholar
- 62.Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater. 2:145–150CrossRefGoogle Scholar
- 63.Potapova I, Mruk R, Prehl S, Zentel R, Basché T, Mews A (2003) Semiconductor nanocrystals with multifunctional polymer ligands. J. Am. Chem. Soc. 125:320–321CrossRefGoogle Scholar
- 64.Potyrailo RA, Leach AM (2006) Selective gas nanosensors with multisize CdSe nanocrystal/polymer composite films and dynamic pattern recognition. Appl. Phys. Lett. 88:134110CrossRefGoogle Scholar
- 65.Reboud V, Kehagias N, Sotomayor Torres CM, Zelsmann M, Striccoli M, Curri ML, Agostiano A, Tamborra M, Fink M, Reuther F, Gruetzner G (2007) Spontaneous emission control of colloidal nanocrystals using nanoimprinted photonic crystals. Appl. Phys. Lett. 90:011115CrossRefGoogle Scholar
- 66.Reboud V, Kehagias N, Zelsmann M, Striccoli M, Tamborra M, Curri ML, Agostiano A, Mecerreyes D, Alduncın JA, Sotomayor Torres CM (2007) Nanoimprinted photonic crystals for the modification of the (CdSe)ZnS nanocrystals light emission. Microelectron. Eng. 84:1574–1577CrossRefGoogle Scholar
- 67.Russo GM, Simon GP, Incarnato L (2006) Correlation between rheological, mechanical, and barrier properties in new copolyamide-based nanocomposite films. Macromolecules 39: 3855–3864CrossRefGoogle Scholar
- 68.Sanchez C, Soler-Illia CG, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 13:3061–3083CrossRefGoogle Scholar
- 69.Sankaran V, Cummins CC, Schrock RR, Cohen RE, Silbey RJ, (1990) Small lead sulfide (PbS) clusters prepared via ROMP block copolymer technology. J. Am. Chem. Soc., 112:6858–6859CrossRefGoogle Scholar
- 70.Service RF (2004) Printable electronics that stick around. Science 304:675CrossRefGoogle Scholar
- 71.Sheng W, Kim S, Lee J, Kim S-W, Jensen K, and Bawendi MG (2006) In-Situ encapsulation of quantum dots into polymer microspheres. Langmuir 22:3782–3790;CrossRefGoogle Scholar
- 72.Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications Advanced Mater. 17:657–669CrossRefGoogle Scholar
- 73.Shieh F, Saunders AE, Korgel BA (2005) General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 109:8538–8542CrossRefGoogle Scholar
- 74.Suh KY, Kim YS, Lee HH, (2001) Capillary force lithography. Adv. Materials 13:1386–1389CrossRefGoogle Scholar
- 75.Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1:207–211CrossRefGoogle Scholar
- 76.Tamborra M, Comparelli R, Curri ML, Striccoli M, Petrella A, Agostiano A (2005) Hybrid nanocomposites based on cds and cdse colloidal nanocrystals in organic polymers. in Nanotechnology II Proc. SPIE vol. 5838 Paolo Lugli (ed), pp. 236–244Google Scholar
- 77.Tamborra M, Striccoli M, Comparelli R, Curri ML, Petrella A, Agostiano A (2004) Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer. Nanotechnology 15:S240–S244CrossRefGoogle Scholar
- 78.Tamborra M, Striccoli M, Curri ML, Alducin JA, Mecerreyes D, Pomposo JA, Kehagias N, Reboud V, Sotomayor Torres CM, Agostiano A (2007) Nanocrystal based highly luminescent composites for nano imprinting lithography. Small 5:822–828CrossRefGoogle Scholar
- 79.Tekin E, Smith PJ, Hoeppener S, van der Berg AMJ, Susha AS, Rogach AL, Feldmann J, Schubert US (2007) Inkjet printing of luminescent cdte nanocrystal-polymer composites. Adv. Funct. Mater 17:23–28CrossRefGoogle Scholar
- 80.Teranishi T, Inoue Y, Nakaya M, Oumi Y, Sano T (2004) Nanoacorns: anisotropically phase-segregated CoPd sulfide nanoparticles. J. Am. Chem. Soc. 126:9914–9915CrossRefGoogle Scholar
- 81.Ventura MJ, Bullen C, Gu M (2007) Direct laser writing of three-dimensional photonic crystal lattices within a PbS quantum-dot-doped polymer material. Opt. Express 15:1817–1820CrossRefGoogle Scholar
- 82.Vollath D, Szabò DV (1999) Coated Nanoparticles. A new way to improved nanocomposites. J. Nanopart. Res. 1:235–242CrossRefGoogle Scholar
- 83.Walker GV, Sundar VC, Rudzinski CM, Wun AV, Bawendi MG, Nocera DG (2003) Quantum-dot optical temperature probes. Appl. Phys. Lett. 83:3555–3557CrossRefGoogle Scholar
- 84.Wang Y, Tang Z, Correa-Duarte MA, Liz-Marzan LM, Kotov NA (2003) Multicolor luminescence patterning by photoactivation of semiconductor nanoparticle films. J. Am. Chem. Soc.125:2830–2831CrossRefGoogle Scholar
- 85.Wang X-S, Dykstra TE, Salvador MR, Manners I, Scholes GD, Winnik MA (2004) Surface passivation of luminescent colloidal quantum dots with Poly(Dimethylaminoethyl methacrylate) through a ligand exchange process. J. Am. Chem. Soc. 126:7784–7785CrossRefGoogle Scholar
- 86.Wang M, Dykstra TE, Lou X, Salvador MR, Scholes GD, Winnik MA (2006) Colloidal CdSe nanocrystals passivated by a dye-labeled multidentate polymer: quantitative analysis by size-exclusion chromatography. J. Am. Chem. Soc. 45:2221–2224Google Scholar
- 87.Wang M, Kwon-Oh J, Dykstra TE, Lou X, Scholes GD, Winnik MA (2006) Surface modification of CdSe and CdSe/ZnS semiconductor nanocrystals with poly(dimethylaminoethyl methacrylate). Macromolecules 39:3664–3672CrossRefGoogle Scholar
- 88.Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21:41–46CrossRefGoogle Scholar
- 89.Xia Y, Kim E, Zhao XM, Rogers JA, Prentiss M, Whitesides GM (1996) Complex optical surfaces formed by replica molding against elastomeric. Masters Sci. 273:347–349Google Scholar
- 90.Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670CrossRefGoogle Scholar
- 91.Yoshioka Y, Calvert PD, Jabbour GE (2005) Simple modification of sheet resistivity of conducting polymeric anodes via combinatorial ink-jet printing techniques. Macromol. Rapid Commun. 26:238–246CrossRefGoogle Scholar
- 92.Zezza F, Comparelli R, Striccoli M, Curri ML, Tommasi R, Agostiano A, Della Monica M (2003) High quality CdS nanocrystals: surface effects. Synthetic Met 139:597–600CrossRefGoogle Scholar
- 93.Zhang H, Cui Z, Wang Y, Zhang K, Ji X, Lu C, Yang B, Gao M (2003) From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv. Mater. 15:777–780CrossRefGoogle Scholar
- 94.Zhang H, Wang C, Li M, Zhang J, Lu G, Yang B (2005) Fluorescent nanocrystal-polymer composites from aqueous nanocrystals: methods without ligand exchange. Chem. Mater. 17:853–857Google Scholar
- 95.Zucolotto V, Gattás-Asfura KM, Tumolo T, Perinotto AC, Antunes PA, Constantino CJL, Baptista MS, Leblanc RM, Oliveira Jr. ON (2005) Nanoscale manipulation of CdSe quantum dots in layer-by-layer films: influence of the host polyelectrolyte on the luminescent properties. Appl. Surf. Sci. 246:397–402CrossRefGoogle Scholar