Skip to main content

Self-Assembled Metal Nanostructures in Semiconductor Structures

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 5))

Abstract

Understanding the effects of downscaling the devices’ dimensions to the nanometer size is one of the most important topics in the modern material science applied to microelectronics. In fact, the confinement of electrons in dimensions typical of atoms and molecules obliges to consider their quantum behavior. Therefore, a new class of effects is characterization of ultra-scaled devices. In the last years, these ideas led to the birth of the “nanotechnology and nanoelectronic revolution” with the aim to understand the effects of downscaling the matter in the atomic range and to develop innovative nanostructured materials and quantum effects–based devices following a bottom-up procedure with respect to the traditional top-down scaling scheme.

In particular, the nanometric level knowledge of the structural characteristics of such innovative materials and the nanometric control and manipulation of these characteristics acquired a fundamental importance in the design and realization of innovative electrical nanodevices. In fact, it is well known that the local electrical characteristics of such devices are dramatically dependent on the local structural characteristics. Hence, a precise control and manipulation (at atomic level) of the structural characteristics allow the precise control and manipulation of the electrical ones that are always innovative properties with respect to the traditional devices.

A promising topic of nanotechnology research is, surely, the study of the structural and electrical properties of nanometric metal clusters deposited on or embedded in semiconductor/insulating substrates in view of the realization of nanostructured materials with electrical properties dependent on and tunable by the structural ones (clusters size, density, etc.).

In the first part of this chapter, we illustrate some methods to fabricate nanostructured materials using metallic nanoclusters in connection with insulator and semiconductor substrates and matrices. The methodologies to control and manipulate the clusters structural properties based on the self-organization mechanism of the Au nanoclusters on the SiC and SiO2 surfaces induced by thermal and ion beam processes are also discussed. In particular, the thermal-induced self-organization kinetic mechanism of Au nanoclusters on SiC hexagonal and SiO2 surfaces is shown to be a ripening process of three-dimensional structures controlled by surface diffusion, and the application of the ripening theory enabled us to derive the surface diffusion coefficient and all other parameters necessary to describe the entire process. Then a detailed study of the morphological modifications occurring during the irradiation, by an Ar beam, of Au nanoclusters on SiO2 surface is presented showing how it is a suitable methodology to tailor the clusters size and surface density. These characterizations allow us to clarify the evolution of the Au clusters during ion bombardment: at low beam current, the cluster mean size increases with ions fluence, and at high beam current, the clusters mean size decreases with ions fluence. This behavior has been described in terms of a conventional ripening process (in which small clusters shrink promoting the growth of the large clusters) at low beam current and of an inverse ripening process (in which the large clusters shrink) at high beam current. The kinetics of clusters self-organization has been modeled using the theory of cluster ripening and inverse ripening under ion beam irradiation that we integrated, for our experimental case, introducing the effect of the sputtering process of Au atoms from the surface by the ion beam irradiation.

Therefore, we suggest to apply the self-organization of Au nanoparticles as a nanotechnology step to control the metal–semiconductor (MS) and the metal–insulator interface at atomic level to fabricate innovative nanostructured devices: the fabricated 6H-SiC/Au cluster-based nanostructured materials were used to probe, by local conductive atomic force microscopy (C-AFM), the electrical properties of nano-Schottky-contact Au nanocluster/SiC. The main observation was the Schottky barrier height dependence of the nano-Schottky contact on the cluster size. Such a behavior was interpreted considering the physics of few electron quantum dots merged with the concepts of ballistic transport and thermoionic emission finding a satisfying agreement between the theoretical prediction and the experimental data. The local nanoscale electrical properties of the SiO2/Au cluster-based nanostructured material revealed a rectifying behavior characterized by a threshold voltage tunable by the clusters size. This behavior is interpreted by comparing physical considerations on metal-oxide-semiconductor structure and on double barrier tunnel junction (DBTJ) device.

Finally, the longitudinal electronic collective transport properties in a disordered array of TiSi2 nanocrystals (with surface density of 1012 cm–2) embedded in Si polycrystalline matrix as a function of temperature are described. The system is characterized by a high degree of disorder compared to the standard disordered nanocrystals array usually studied in the literature. Despite this fundamental difference, we demonstrate that the theoretical models used to describe the collective electronic transport in standard systems are adequate to describe the electrical behavior of such a “non-standard” system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Moriarty, Rep. Prog. Phys. 64, 297, 2001.

    Article  CAS  Google Scholar 

  2. D. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Opiteck, J. C. Ellenbogen, Proc. IEEE 85, 521, 1997.

    Article  CAS  Google Scholar 

  3. Nanoparticles, edited by G. Schmid, Wiley-VCH, 2004.

    Google Scholar 

  4. W. A. de Herr, Rev. Mod. Phys. 65, 611, 1993.

    Article  Google Scholar 

  5. P. Milani, S. Iannotta, Cluster Beam Synthesis of Nanostructured Materials, Sprinter, Berlin, 1999.

    Book  Google Scholar 

  6. C. Binns, Surf. Sci. Rep. 44, 1, 2001.

    Article  CAS  Google Scholar 

  7. J. A. Venables, G. D. T. Spiller, M. Hanbücken, Rep. Prog. Phys. 47, 399, 1984.

    Article  Google Scholar 

  8. A. W. Adamson, Physical Chemistry of Surfaces, Wyley, New York, 1990.

    Google Scholar 

  9. M. Zinke-Allmang, L. C. Feldman, M. H. Grabov, Surf. Sci. Rep. 16, 377, 1992.

    Article  CAS  Google Scholar 

  10. R. Sangiorgi, M. L. Muolo, D. Chatain, N. Eustathopoulos, J. Am. Ceram. Soc. 71, 742, 1988.

    Article  CAS  Google Scholar 

  11. Z. Wang, P. Wynblatt, Mat. Sci. Eng. A 259, 287, 1999.

    Article  Google Scholar 

  12. P. Buffat, J. P. Borel, Phys. Rev. A 13, 2287, 1976.

    Article  CAS  Google Scholar 

  13. D. Barreca, A. Gasparotto, E. Tondello, G. Bruno, M. Losurdo, J. Appl. Phys. 96, 1655, 2004.

    Article  CAS  Google Scholar 

  14. F. Ruffino, A. Canino, C. Bongiorno, F. Giannazzo, F. Roccaforte, V. Raineri, M. G. Grimaldi, J. Appl. Phys. 101, 064306, 2007.

    Article  Google Scholar 

  15. C. Herring, in Structures and Properties of Solid Surface, edited by R. G. Gomer and C. S. Smith, University of Chicago Press, Chicago, 1953.

    Google Scholar 

  16. R. F. Sekerka, J. Cryst. Grow. 275, 77, 2005.

    Article  CAS  Google Scholar 

  17. A. S. Barnard, P. Zapol, J. Chem. Phys. 121, 4276, 2004.

    Article  CAS  Google Scholar 

  18. M. Brack. Rev. Mod. Phys. 65, 677, 1993.

    Article  CAS  Google Scholar 

  19. T. P. Martin, Phys. Rep. 273, 199, 1996.

    Article  CAS  Google Scholar 

  20. R. N. Barnett, C. L. Cleveland, H. Häkkinen, W. D. Luedtke, C. Yannoules, U. Landman, Eur. Phys. J. D 9, 95, 1999.

    Article  CAS  Google Scholar 

  21. R. L. Johnston, Atomic and Molecular Clusters, ed. Taylor and Francis, 2002.

    Google Scholar 

  22. G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, A. Miotello, J. Appl. Phys. 92, 4249, 2002.

    Article  Google Scholar 

  23. L. R. Wallenberg, J. O. Bovin, G. Schmidt, Surf. Sci. 156, 256, 1985.

    Article  CAS  Google Scholar 

  24. L. D. Marks, Rep. Prog. Phys. 57, 603, 1994.

    Article  CAS  Google Scholar 

  25. Z. Wang, P. Wynblatt, Surf. Sci. 398, 259, 1998.

    Article  CAS  Google Scholar 

  26. A. Baldan, J. Mat. Sci. 37, 2171, 2002.

    Article  CAS  Google Scholar 

  27. K. Shorlin, S. Krylov, M. Zinke-Allmang, Phys. A 261, 248, 1998.

    Article  CAS  Google Scholar 

  28. I. M. Lifshitz, V. V. Slyozov, J. Phys. Chem. Solids 19, 35, 1961.

    Article  Google Scholar 

  29. C. Wagner, Z. Electrochem. 65, 581, 1961.

    CAS  Google Scholar 

  30. B. K. Chakraverty, J. Phys. Chem. Solids 28, 2401, 1967.

    Article  CAS  Google Scholar 

  31. Á. W. Imre, E. G. Gontier-Moya, D. L. Beke, I. A. Szabo, G. Erdélyi, Surf. Sci. 441, 133, 1999.

    Article  CAS  Google Scholar 

  32. Beszeda, E. G. Gontier-Moya, Á. W. Imre, Appl. Phys. A 81, 673, 2005.

    Article  CAS  Google Scholar 

  33. K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science, Macmilian Publishing Company, New York, 1992.

    Google Scholar 

  34. A. Miotello, G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, Phys. Rev. B 63, 075409, 2001.

    Article  Google Scholar 

  35. D. R. Collins, D. K. Schroder, C. T. Sah, Appl. Phys. Lett. 8, 323, 1966.

    Article  CAS  Google Scholar 

  36. M. A. Lamkin, F. L. Riley, R. J. Fordham, J. Eur. Ceram. Soc. 10, 347, 1992.

    Article  CAS  Google Scholar 

  37. G. Battaglin, in Modifications Induced by Ion Beam Irradiation in Glasses, edited by P. Mazzoldi, Elsevier, Amsterdam, 1992.

    Google Scholar 

  38. L. Thomé, G. Rizza, F. Garrido, M. Gusso, L. Tapfer, A. Quaranta, Appl. Phys. A 67, 241, 1998.

    Article  Google Scholar 

  39. F. Gonnella, Nucl. Instr. and Meth. B 166–167, 831, 2000.

    Google Scholar 

  40. F. Ruffino, R. De Bastiani, C. Bongiorno, F. Giannazzo, F. Roccaforte, C. Spinella, V. Raineri, M. G. Grimaldi, Nucl. Instr. and Meth. B 257, 810, 2007.

    Google Scholar 

  41. D. Datta, S. R. Bhattacharyya, Nucl. Instr. and Meth. B 212, 201, 2003.

    Article  CAS  Google Scholar 

  42. K. H. Heinig, T. Müller, B. Schmidt, M. Strobel, W. Möller, Appl. Phys. A 77, 17, 2003.

    Article  CAS  Google Scholar 

  43. G. Rizza, H. Cheverry, T. Gacoin, A. Lamasson, S. Henry, J. Appl. Phys. 101, 014321, 2007.

    Article  Google Scholar 

  44. G. Rizza, M. Strobel, K. H. Heinig, H. Bernas, Nucl. Instr. Meth. B 178, 78, 2001.

    Article  CAS  Google Scholar 

  45. A. Ionescu, Ecole Polytechnique Fédérale de Lausanne, “An Outlook of technology scaling beyond Moore’s law”, 2005, http: si.epfl.ch.

    Google Scholar 

  46. F. Ruffino, F. Giannazzo, F. Roccaforte, V. Raineri, M. G. Grimaldi, Appl. Phys. Lett. 89, 243113, 2006.

    Article  Google Scholar 

  47. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge University Press, New York, 1994.

    Book  Google Scholar 

  48. F. Giannazzo, F. Roccaforte, V. Raineri, S. F. Liotta, Europhys. Lett. 74, 686, 2006.

    Article  CAS  Google Scholar 

  49. A. S. Groove, Physics and Technology of semiconductor Devices, John Wiley and Sons, Inc., New York, 1967.

    Google Scholar 

  50. W. Zhu, G. P. Kochanski, S. Jin, Science 282, 1471, 1998.

    Article  CAS  Google Scholar 

  51. L. A. Kosyachenko, V. M. Sklyarchuk, Ye. F. Sklyarchuk, Solid-State Electronics 42, 145, 1998.

    Article  CAS  Google Scholar 

  52. L. P. Kouwenhoven, D. G. Austing, S. Tarucha, Rep. Prog. Phys. 64, 701, 2001.

    Article  CAS  Google Scholar 

  53. C. Kittel, H. Kroemer, Thermal Physics, Freeman and Company, San Francisco, 1980.

    Google Scholar 

  54. A. Zangwill, `Physics at Surfaces’, Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  55. C. Wasshuber, About single-electron devices and circuits, Ph. D. Dissertation, 1997.

    Google Scholar 

  56. K. K. Likharev, Proc. IEEE, 87, 606, 1999.

    Article  CAS  Google Scholar 

  57. Y. W. Tan, J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, K. W. West, Phys. Rev. Lett. 94, 016405, 2005.

    Article  Google Scholar 

  58. M. B. Cortie, E. van der Lingen, Mat. Forum 26, 1, 2002.

    CAS  Google Scholar 

  59. D. K. Ferry, S. M. Goodnick, Transport in Nanostructures, Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  60. A. E. Hanna, M Tinkham, Phys. Rev. B, 44, 5919, 1991.

    Article  Google Scholar 

  61. L. I. Glazman, J. Low Temp. Phys. 118, 247, 2000.

    Article  CAS  Google Scholar 

  62. D. V. Averin, A. N. Korotkov, J. Low Temp. Phys. 80, 173, 1990.

    Article  CAS  Google Scholar 

  63. D. Sarid, Exploring Scanning Probe Microscopy with Mathematica, John Wiley and Sons, Inc., New York, 1997.

    Google Scholar 

  64. F. Ruffino, F. Giannazzo, F. Roccaforte, V. Raineri, M. G. Grimaldi, Appl. Phys. Lett. 89, 263108, 2006.

    Article  Google Scholar 

  65. R. Parthasarathy, X.-M. Lin, K. Elteto, T. F. Rosenbaum, H. M. Jaeger, Phys. Rev. Lett. 92, 076801, 2004.

    Article  Google Scholar 

  66. R. Parthasarathy, X.-M. Lin, H. M. Jaeger, Phys. Rev. Lett. 87, 186807, 2001.

    Article  Google Scholar 

  67. A. S. Cordan, Y. Leroy, A. Goltzené, A. Pépin, C. Vieu, M. Mejias, H. Launois, J. Appl. Phys. 87, 345, 1999.

    Article  Google Scholar 

  68. M. G. Ancona, W. Kruppa, R. W. Rendell, A. W. Snow, D. Park, J. B. Boos, Phys. Rev. B 64, 033408, 2001.

    Article  Google Scholar 

  69. K. C. Beverly, J. F. Sampaio, J. R. Heat, J. Phys. Chem. B 106, 2131, 2002.

    Article  CAS  Google Scholar 

  70. F. Ruffino, A. M. Piro, G. Piccitto, M. G. Grimaldi, J. Appl. Phys. 101, 024316, 2007.

    Article  Google Scholar 

  71. A. A. Middleton, N. S. Wingreen, Phys. Rev. Lett. 71, 3198, 1993.

    Article  CAS  Google Scholar 

  72. K. Elteto, E. G. Antonyan, T. T. Nguyen, H. M. Jaeger, Phys. Rev. B 71, 064206, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ruffino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ruffino, F., Giannazzo, F., Roccaforte, F., Raineri, V., Grimaldi, M.G. (2009). Self-Assembled Metal Nanostructures in Semiconductor Structures. In: Wang, Z. (eds) Toward Functional Nanomaterials. Lecture Notes in Nanoscale Science and Technology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77717-7_3

Download citation

Publish with us

Policies and ethics