Self-Assembled Metal Nanostructures in Semiconductor Structures

  • Francesco Ruffino
  • Filippo Giannazzo
  • Fabrizio Roccaforte
  • Vito Raineri
  • Maria Grazia Grimaldi
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 5)


Understanding the effects of downscaling the devices’ dimensions to the nanometer size is one of the most important topics in the modern material science applied to microelectronics. In fact, the confinement of electrons in dimensions typical of atoms and molecules obliges to consider their quantum behavior. Therefore, a new class of effects is characterization of ultra-scaled devices. In the last years, these ideas led to the birth of the “nanotechnology and nanoelectronic revolution” with the aim to understand the effects of downscaling the matter in the atomic range and to develop innovative nanostructured materials and quantum effects–based devices following a bottom-up procedure with respect to the traditional top-down scaling scheme.

In particular, the nanometric level knowledge of the structural characteristics of such innovative materials and the nanometric control and manipulation of these characteristics acquired a fundamental importance in the design and realization of innovative electrical nanodevices. In fact, it is well known that the local electrical characteristics of such devices are dramatically dependent on the local structural characteristics. Hence, a precise control and manipulation (at atomic level) of the structural characteristics allow the precise control and manipulation of the electrical ones that are always innovative properties with respect to the traditional devices.

A promising topic of nanotechnology research is, surely, the study of the structural and electrical properties of nanometric metal clusters deposited on or embedded in semiconductor/insulating substrates in view of the realization of nanostructured materials with electrical properties dependent on and tunable by the structural ones (clusters size, density, etc.).

In the first part of this chapter, we illustrate some methods to fabricate nanostructured materials using metallic nanoclusters in connection with insulator and semiconductor substrates and matrices. The methodologies to control and manipulate the clusters structural properties based on the self-organization mechanism of the Au nanoclusters on the SiC and SiO2 surfaces induced by thermal and ion beam processes are also discussed. In particular, the thermal-induced self-organization kinetic mechanism of Au nanoclusters on SiC hexagonal and SiO2 surfaces is shown to be a ripening process of three-dimensional structures controlled by surface diffusion, and the application of the ripening theory enabled us to derive the surface diffusion coefficient and all other parameters necessary to describe the entire process. Then a detailed study of the morphological modifications occurring during the irradiation, by an Ar beam, of Au nanoclusters on SiO2 surface is presented showing how it is a suitable methodology to tailor the clusters size and surface density. These characterizations allow us to clarify the evolution of the Au clusters during ion bombardment: at low beam current, the cluster mean size increases with ions fluence, and at high beam current, the clusters mean size decreases with ions fluence. This behavior has been described in terms of a conventional ripening process (in which small clusters shrink promoting the growth of the large clusters) at low beam current and of an inverse ripening process (in which the large clusters shrink) at high beam current. The kinetics of clusters self-organization has been modeled using the theory of cluster ripening and inverse ripening under ion beam irradiation that we integrated, for our experimental case, introducing the effect of the sputtering process of Au atoms from the surface by the ion beam irradiation.

Therefore, we suggest to apply the self-organization of Au nanoparticles as a nanotechnology step to control the metal–semiconductor (MS) and the metal–insulator interface at atomic level to fabricate innovative nanostructured devices: the fabricated 6H-SiC/Au cluster-based nanostructured materials were used to probe, by local conductive atomic force microscopy (C-AFM), the electrical properties of nano-Schottky-contact Au nanocluster/SiC. The main observation was the Schottky barrier height dependence of the nano-Schottky contact on the cluster size. Such a behavior was interpreted considering the physics of few electron quantum dots merged with the concepts of ballistic transport and thermoionic emission finding a satisfying agreement between the theoretical prediction and the experimental data. The local nanoscale electrical properties of the SiO2/Au cluster-based nanostructured material revealed a rectifying behavior characterized by a threshold voltage tunable by the clusters size. This behavior is interpreted by comparing physical considerations on metal-oxide-semiconductor structure and on double barrier tunnel junction (DBTJ) device.

Finally, the longitudinal electronic collective transport properties in a disordered array of TiSi2 nanocrystals (with surface density of 1012 cm–2) embedded in Si polycrystalline matrix as a function of temperature are described. The system is characterized by a high degree of disorder compared to the standard disordered nanocrystals array usually studied in the literature. Despite this fundamental difference, we demonstrate that the theoretical models used to describe the collective electronic transport in standard systems are adequate to describe the electrical behavior of such a “non-standard” system.


Threshold Voltage Schottky Barrier Height Schottky Contact Cluster Radius Cluster Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Moriarty, Rep. Prog. Phys. 64, 297, 2001.CrossRefGoogle Scholar
  2. 2.
    D. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Opiteck, J. C. Ellenbogen, Proc. IEEE 85, 521, 1997.CrossRefGoogle Scholar
  3. 3.
    Nanoparticles, edited by G. Schmid, Wiley-VCH, 2004.Google Scholar
  4. 4.
    W. A. de Herr, Rev. Mod. Phys. 65, 611, 1993.CrossRefGoogle Scholar
  5. 5.
    P. Milani, S. Iannotta, Cluster Beam Synthesis of Nanostructured Materials, Sprinter, Berlin, 1999.CrossRefGoogle Scholar
  6. 6.
    C. Binns, Surf. Sci. Rep. 44, 1, 2001.CrossRefGoogle Scholar
  7. 7.
    J. A. Venables, G. D. T. Spiller, M. Hanbücken, Rep. Prog. Phys. 47, 399, 1984.CrossRefGoogle Scholar
  8. 8.
    A. W. Adamson, Physical Chemistry of Surfaces, Wyley, New York, 1990.Google Scholar
  9. 9.
    M. Zinke-Allmang, L. C. Feldman, M. H. Grabov, Surf. Sci. Rep. 16, 377, 1992.CrossRefGoogle Scholar
  10. 10.
    R. Sangiorgi, M. L. Muolo, D. Chatain, N. Eustathopoulos, J. Am. Ceram. Soc. 71, 742, 1988.CrossRefGoogle Scholar
  11. 11.
    Z. Wang, P. Wynblatt, Mat. Sci. Eng. A 259, 287, 1999.CrossRefGoogle Scholar
  12. 12.
    P. Buffat, J. P. Borel, Phys. Rev. A 13, 2287, 1976.CrossRefGoogle Scholar
  13. 13.
    D. Barreca, A. Gasparotto, E. Tondello, G. Bruno, M. Losurdo, J. Appl. Phys. 96, 1655, 2004.CrossRefGoogle Scholar
  14. 14.
    F. Ruffino, A. Canino, C. Bongiorno, F. Giannazzo, F. Roccaforte, V. Raineri, M. G. Grimaldi, J. Appl. Phys. 101, 064306, 2007.CrossRefGoogle Scholar
  15. 15.
    C. Herring, in Structures and Properties of Solid Surface, edited by R. G. Gomer and C. S. Smith, University of Chicago Press, Chicago, 1953.Google Scholar
  16. 16.
    R. F. Sekerka, J. Cryst. Grow. 275, 77, 2005.CrossRefGoogle Scholar
  17. 17.
    A. S. Barnard, P. Zapol, J. Chem. Phys. 121, 4276, 2004.CrossRefGoogle Scholar
  18. 18.
    M. Brack. Rev. Mod. Phys. 65, 677, 1993.CrossRefGoogle Scholar
  19. 19.
    T. P. Martin, Phys. Rep. 273, 199, 1996.CrossRefGoogle Scholar
  20. 20.
    R. N. Barnett, C. L. Cleveland, H. Häkkinen, W. D. Luedtke, C. Yannoules, U. Landman, Eur. Phys. J. D 9, 95, 1999.CrossRefGoogle Scholar
  21. 21.
    R. L. Johnston, Atomic and Molecular Clusters, ed. Taylor and Francis, 2002.Google Scholar
  22. 22.
    G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, A. Miotello, J. Appl. Phys. 92, 4249, 2002.CrossRefGoogle Scholar
  23. 23.
    L. R. Wallenberg, J. O. Bovin, G. Schmidt, Surf. Sci. 156, 256, 1985.CrossRefGoogle Scholar
  24. 24.
    L. D. Marks, Rep. Prog. Phys. 57, 603, 1994.CrossRefGoogle Scholar
  25. 25.
    Z. Wang, P. Wynblatt, Surf. Sci. 398, 259, 1998.CrossRefGoogle Scholar
  26. 26.
    A. Baldan, J. Mat. Sci. 37, 2171, 2002.CrossRefGoogle Scholar
  27. 27.
    K. Shorlin, S. Krylov, M. Zinke-Allmang, Phys. A 261, 248, 1998.CrossRefGoogle Scholar
  28. 28.
    I. M. Lifshitz, V. V. Slyozov, J. Phys. Chem. Solids 19, 35, 1961.CrossRefGoogle Scholar
  29. 29.
    C. Wagner, Z. Electrochem. 65, 581, 1961.Google Scholar
  30. 30.
    B. K. Chakraverty, J. Phys. Chem. Solids 28, 2401, 1967.CrossRefGoogle Scholar
  31. 31.
    Á. W. Imre, E. G. Gontier-Moya, D. L. Beke, I. A. Szabo, G. Erdélyi, Surf. Sci. 441, 133, 1999.CrossRefGoogle Scholar
  32. 32.
    Beszeda, E. G. Gontier-Moya, Á. W. Imre, Appl. Phys. A 81, 673, 2005.CrossRefGoogle Scholar
  33. 33.
    K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science, Macmilian Publishing Company, New York, 1992.Google Scholar
  34. 34.
    A. Miotello, G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, Phys. Rev. B 63, 075409, 2001.CrossRefGoogle Scholar
  35. 35.
    D. R. Collins, D. K. Schroder, C. T. Sah, Appl. Phys. Lett. 8, 323, 1966.CrossRefGoogle Scholar
  36. 36.
    M. A. Lamkin, F. L. Riley, R. J. Fordham, J. Eur. Ceram. Soc. 10, 347, 1992.CrossRefGoogle Scholar
  37. 37.
    G. Battaglin, in Modifications Induced by Ion Beam Irradiation in Glasses, edited by P. Mazzoldi, Elsevier, Amsterdam, 1992.Google Scholar
  38. 38.
    L. Thomé, G. Rizza, F. Garrido, M. Gusso, L. Tapfer, A. Quaranta, Appl. Phys. A 67, 241, 1998.CrossRefGoogle Scholar
  39. 39.
    F. Gonnella, Nucl. Instr. and Meth. B 166–167, 831, 2000.Google Scholar
  40. 40.
    F. Ruffino, R. De Bastiani, C. Bongiorno, F. Giannazzo, F. Roccaforte, C. Spinella, V. Raineri, M. G. Grimaldi, Nucl. Instr. and Meth. B 257, 810, 2007.Google Scholar
  41. 41.
    D. Datta, S. R. Bhattacharyya, Nucl. Instr. and Meth. B 212, 201, 2003.CrossRefGoogle Scholar
  42. 42.
    K. H. Heinig, T. Müller, B. Schmidt, M. Strobel, W. Möller, Appl. Phys. A 77, 17, 2003.CrossRefGoogle Scholar
  43. 43.
    G. Rizza, H. Cheverry, T. Gacoin, A. Lamasson, S. Henry, J. Appl. Phys. 101, 014321, 2007.CrossRefGoogle Scholar
  44. 44.
    G. Rizza, M. Strobel, K. H. Heinig, H. Bernas, Nucl. Instr. Meth. B 178, 78, 2001.CrossRefGoogle Scholar
  45. 45.
    A. Ionescu, Ecole Polytechnique Fédérale de Lausanne, “An Outlook of technology scaling beyond Moore’s law”, 2005, http: Scholar
  46. 46.
    F. Ruffino, F. Giannazzo, F. Roccaforte, V. Raineri, M. G. Grimaldi, Appl. Phys. Lett. 89, 243113, 2006.CrossRefGoogle Scholar
  47. 47.
    R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge University Press, New York, 1994.CrossRefGoogle Scholar
  48. 48.
    F. Giannazzo, F. Roccaforte, V. Raineri, S. F. Liotta, Europhys. Lett. 74, 686, 2006.CrossRefGoogle Scholar
  49. 49.
    A. S. Groove, Physics and Technology of semiconductor Devices, John Wiley and Sons, Inc., New York, 1967.Google Scholar
  50. 50.
    W. Zhu, G. P. Kochanski, S. Jin, Science 282, 1471, 1998.CrossRefGoogle Scholar
  51. 51.
    L. A. Kosyachenko, V. M. Sklyarchuk, Ye. F. Sklyarchuk, Solid-State Electronics 42, 145, 1998.CrossRefGoogle Scholar
  52. 52.
    L. P. Kouwenhoven, D. G. Austing, S. Tarucha, Rep. Prog. Phys. 64, 701, 2001.CrossRefGoogle Scholar
  53. 53.
    C. Kittel, H. Kroemer, Thermal Physics, Freeman and Company, San Francisco, 1980.Google Scholar
  54. 54.
    A. Zangwill, `Physics at Surfaces’, Cambridge University Press, Cambridge, 1988.Google Scholar
  55. 55.
    C. Wasshuber, About single-electron devices and circuits, Ph. D. Dissertation, 1997.Google Scholar
  56. 56.
    K. K. Likharev, Proc. IEEE, 87, 606, 1999.CrossRefGoogle Scholar
  57. 57.
    Y. W. Tan, J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, K. W. West, Phys. Rev. Lett. 94, 016405, 2005.CrossRefGoogle Scholar
  58. 58.
    M. B. Cortie, E. van der Lingen, Mat. Forum 26, 1, 2002.Google Scholar
  59. 59.
    D. K. Ferry, S. M. Goodnick, Transport in Nanostructures, Cambridge University Press, Cambridge, 1997.CrossRefGoogle Scholar
  60. 60.
    A. E. Hanna, M Tinkham, Phys. Rev. B, 44, 5919, 1991.CrossRefGoogle Scholar
  61. 61.
    L. I. Glazman, J. Low Temp. Phys. 118, 247, 2000.CrossRefGoogle Scholar
  62. 62.
    D. V. Averin, A. N. Korotkov, J. Low Temp. Phys. 80, 173, 1990.CrossRefGoogle Scholar
  63. 63.
    D. Sarid, Exploring Scanning Probe Microscopy with Mathematica, John Wiley and Sons, Inc., New York, 1997.Google Scholar
  64. 64.
    F. Ruffino, F. Giannazzo, F. Roccaforte, V. Raineri, M. G. Grimaldi, Appl. Phys. Lett. 89, 263108, 2006.CrossRefGoogle Scholar
  65. 65.
    R. Parthasarathy, X.-M. Lin, K. Elteto, T. F. Rosenbaum, H. M. Jaeger, Phys. Rev. Lett. 92, 076801, 2004.CrossRefGoogle Scholar
  66. 66.
    R. Parthasarathy, X.-M. Lin, H. M. Jaeger, Phys. Rev. Lett. 87, 186807, 2001.CrossRefGoogle Scholar
  67. 67.
    A. S. Cordan, Y. Leroy, A. Goltzené, A. Pépin, C. Vieu, M. Mejias, H. Launois, J. Appl. Phys. 87, 345, 1999.CrossRefGoogle Scholar
  68. 68.
    M. G. Ancona, W. Kruppa, R. W. Rendell, A. W. Snow, D. Park, J. B. Boos, Phys. Rev. B 64, 033408, 2001.CrossRefGoogle Scholar
  69. 69.
    K. C. Beverly, J. F. Sampaio, J. R. Heat, J. Phys. Chem. B 106, 2131, 2002.CrossRefGoogle Scholar
  70. 70.
    F. Ruffino, A. M. Piro, G. Piccitto, M. G. Grimaldi, J. Appl. Phys. 101, 024316, 2007.CrossRefGoogle Scholar
  71. 71.
    A. A. Middleton, N. S. Wingreen, Phys. Rev. Lett. 71, 3198, 1993.CrossRefGoogle Scholar
  72. 72.
    K. Elteto, E. G. Antonyan, T. T. Nguyen, H. M. Jaeger, Phys. Rev. B 71, 064206, 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Francesco Ruffino
    • 1
    • 2
  • Filippo Giannazzo
  • Fabrizio Roccaforte
  • Vito Raineri
  • Maria Grazia Grimaldi
  1. 1.Dipartimento di Fisica ed Astronomia and MATIS CNR-INFMUniversità di CataniaItaly
  2. 2.Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM)Italy

Personalised recommendations