Design of Solution-Grown ZnO Nanostructures

Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 5)


The renewed interest of the scientific community in zinc oxide (ZnO) during the last decade has been mostly powered by the development of new low-temperature methods for the synthesis of ZnO nanostructures with a controlled morphology. The wide variety of morphology includes nanoparticles, nanowires, nanorods, nanotubes, nanosheets, as well as nanoporous films. The present chapter is a review of the most recent progresses made in the design of these structures by the use of different solution-based low-temperature preparation methods. The methods include chemical, sol-gel and hydrothermal synthesis, electrospinning, electroless deposition and electrodeposition. Special attention is paid to the preparation of organic/inorganic hybrid films, to patterning and to the doping of nanostructured ZnO layers. The interest in these nanostructures is illustrated by a large variety of applications, such as in solar cells, light emitting diodes (LED), photocatalysis and surfaces with controllable wettability.


Seed Layer Hybrid Film Mesoporous Film Zinc Nitrate Solution Anodic Alumina Membrane Template 


  1. 1.
    Xiang B, Wang P, Zhang X, Dayeh S A, Aplin D P R, Soci C, Yu D, Wang D (2007) Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 7:323–328.Google Scholar
  2. 2.
    Kang H S, Kim G H, Kim D L, Chang H W, Ahn B D, Lee S Y (2006) Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film. Appl. Phys. Lett. 89:181103CrossRefGoogle Scholar
  3. 3.
    Sun J W, Lu Y M, Liu Y C, Shen D Z, Zhang Z Z, Li B H, Zhang J Y, Yao B, Zhao D X, Fan X W (2006) Hole transport in p-type ZnO films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 89:232101.CrossRefGoogle Scholar
  4. 4.
    Hwang D K, Oh M S, Lim J H, Kang C H, Park S J (2007) Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO. Appl. Phys. Lett. 90:021106.CrossRefGoogle Scholar
  5. 5.
    Mosnier J P, Chakrabarti S, Doggett B, McGlynn E, Henry M O, Meaney A (2007). P-type nitrogen- and phosphorus-doped ZnO thin films grown by pulsed laser deposition on sapphire substrates. Proc. SPIE 6474, 64740I.CrossRefGoogle Scholar
  6. 6.
    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan M A, Avrutin V, Cho S J, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98:041301_1–041301_105.Google Scholar
  7. 7.
    Wang Z L (2004) Nanostructures of zinc oxide. Mater. Today 7(6):26– 33.CrossRefGoogle Scholar
  8. 8.
    Pan Z W, Dai Z R, Wang Z L (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949.CrossRefGoogle Scholar
  9. 9.
    Wang Z L (2004) Zinc oxide nanostructures: growth, properties and applications. J. Phys.:Condens. Matter 16:R829–R858.CrossRefGoogle Scholar
  10. 10.
    Heo Y W, Norton D P, Tien L C, Kwon Y, Kang B S, Ren F, Pearton S J, LaRoche J R (2004) ZnO nanowire growth and devices. Mater. Sci. Eng. R 47:1–47.CrossRefGoogle Scholar
  11. 11.
    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire lasers. Science 292:1897–1899.CrossRefGoogle Scholar
  12. 12.
    Klingshirn C, Hauschild R, Priller H, Decker M, Zeller J, Kalt H (2005) ZnO rediscovered-once again!? Superlattices Microstructures 38:209–222.CrossRefGoogle Scholar
  13. 13.
    Wang Q, Wang G, Xu B, Jie J, Han X, Li G, Li Q, Hou J G (2005) Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane. Mater. Lett. 59: 1378–1382.CrossRefGoogle Scholar
  14. 14.
    Pan A P, Yu R, Xie S, Zhang Z, Jin C, Zou B (2005) ZnO flowers made up of thin nanosheets and their optical properties. J. Crystal Growth 282:165–172.CrossRefGoogle Scholar
  15. 15.
    Ng H. T, Li J, Smith M, Nguyen P, Cassell A, Han J, Meyyappan M (2003) Growth of epitaxial nanowires at the junctions of nanowalls. Science 300:1249–1250CrossRefGoogle Scholar
  16. 16.
    JCPDS-ICDD Card n° 36-1451.Google Scholar
  17. 17.
    Vayssieres L, Keis K, Hagfeldt A, Lindquist S E (2001) Three-dimensional array of highly oriented crystalline ZnO Microtubes. Chem. Mater. 12:4395–4397.CrossRefGoogle Scholar
  18. 18.
    Park W I, Jun Y H, Jung S W, Yi G C (2003) Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett. 82: 964–966.CrossRefGoogle Scholar
  19. 19.
    Tam K H, Cheung C K, Leung Y H, Djuristic A B, Ling C C, Beling C D, Fung S, Kwok W M, Chan W K, Phillips D L, Ding L, Ge W K (2006) Defects in ZnO nanorods prepared by hydrothermal method. J. Phys. Chem. B 110:20865–20871.CrossRefGoogle Scholar
  20. 20.
    Lin B, Fu Z, Jia (2001) Green Luminescence in undoped zinc oxide films deposited on silicon. Appl. Phys. Lett. 79:943–945.CrossRefGoogle Scholar
  21. 21.
    Lima S A M, Sigoli F A, Jafelicci M, Davolos M R (2001) Luminescent properties and lattice defects correlation on zinc oxide. Int. J. Inorg. Mater. 3:749–754.CrossRefGoogle Scholar
  22. 22.
    Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B (2003) The electronic structure and spectral properties of ZnO and its defects. Nucl. Instr. Meth. Phys. Res. B 199:286–290.CrossRefGoogle Scholar
  23. 23.
    Nikitenko V (2005) Optics and spectroscopy of point defects in ZnO. In Zinc Oxide- A material for micro- and optoelectronic applications Norberg N H, Terukov E, Eds. Springer, Dordrecht, The Netherland, pp. 69–81.Google Scholar
  24. 24.
    Vanheusden K, Seager C H, Warren L, Tallant D R, Voigt J A (1996) Correlation between photoluminescence and oxygen vacancies in ZnO phosphor. Appl. Phys. Lett. 68:403–405.CrossRefGoogle Scholar
  25. 25.
    Vanheusden K, Seager C H, Warren L, Tallant D R, Voigt J A (1996) Mechanisms behind green luminescence in ZnO phosphor powders. J Appl. Phys. 79:7983–7990.CrossRefGoogle Scholar
  26. 26.
    Leiter F, Alves H R, Hofstaetter A, Hofmann D M, Meyer B K (2001) The oxygen vacancy as the origin of a green emission in undoped ZnO. Phys. Stat. Sol. (b) 226:R4–R5.Google Scholar
  27. 27.
    Leiter F, Alves H R, Pfisterer D, Romanov N G, Hofmann D M, Meyer B K (2003) Oxygen vacancies in ZnO. Physica B 340–342:201–204.CrossRefGoogle Scholar
  28. 28.
    Goux A, Pauporté T, Chivot J, Lincot D (2005) Temperature Effects on ZnO Electrodeposition. Electrochim. Acta, 50:2239–2248.CrossRefGoogle Scholar
  29. 29.
    Spanhel L, Anderson M A (1991) Semiconductor clusters in sol-gel process: quantized aggregation, gelation and crystal growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113:2826–2833.CrossRefGoogle Scholar
  30. 30.
    Meulenkamp E A (1998) Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B 102:5566–5572.CrossRefGoogle Scholar
  31. 31.
    Xiao Z Y, Liu Y C, Dong L, Shao C L, Zhang J Y, Lu Y M, Zhen D Z, Fan X W (2005) The effect of surface properties on visible luminescence of nanosized colloidal ZnO membranes. J. Colloid. Interface Science 282:403–407.CrossRefGoogle Scholar
  32. 32.
    Peng W Q, Qu S C, Cong G W, Zhang Z G (2006) Structure and visible luminescence of ZnO nanoparticles. Mater. Sci. Semicond. Process. 9:156–159.CrossRefGoogle Scholar
  33. 33.
    Pesika N S, Stebe K J, Searson P C (2003) Determination of the particle size distribution of quantum nanocrystals from absorbance spectra. Adv. Mater. 15:1289–1291.CrossRefGoogle Scholar
  34. 34.
    Guan X H, Wang G S, Li C P, Lv Y Z, Guo L, Xu H B, Xu H B (2007) Synthesis and optical properties of ZnO multipod nanorods. J. Lumin. 122–123:770–772.CrossRefGoogle Scholar
  35. 35.
    Lv Y Z, Zhang Y H, Li C P, Ren L R, Guo L, Xu H B, Ding L, Yang C L, Ge W K, Yang S H (2007) Temperature-dependent photoluminescence of ZnO nanorods prepared by a simple solution route. J. Lumin. 122–123:816–818.CrossRefGoogle Scholar
  36. 36.
    Cheng B, Shi W, Russell-Tanner J M, Zhang L, Salmulski E T (2006) Synthesis of variable-aspect-ratio, single-crystalline ZnO. Inorg. Chem. 45:1208–1214.CrossRefGoogle Scholar
  37. 37.
    Sekiguchi T, Miyashita S, Obara K, Shishido K, Sakagami N (2000) Hydrothermal growth of ZnO single crystals and their optical characterization. J. Crystal Growth 214–215:72–76.CrossRefGoogle Scholar
  38. 38.
    Mass J, Avella M, Jimenez J, Callahan M, Grant E, Rakes K, Bliss D, Wang B (2005) Cathodoluminescence characterization of hydrothermal ZnO crystals. Superlattices Microstructures. 38:223–230.CrossRefGoogle Scholar
  39. 39.
    Yoneta M, Yoshino K, Ohishi M, Saito H (2006) Photoluminescence studies of high-quality ZnO single crystals by hydrothermal method. Physica B 376–377:745–748.CrossRefGoogle Scholar
  40. 40.
    Wang J, Gao L (2004) Synthesis of uniform rod-like, multipod-like ZnO whiskers and their photoluminescence properties. J. Crystal Growth 262:290–294.CrossRefGoogle Scholar
  41. 41.
    Li W J, Shi E W, Zhong W Z, Yin Z W (1999) Growth mechanism and habit of oxide crystals. J. Crystal Growth 203:186–196.CrossRefGoogle Scholar
  42. 42.
    Masuda Y, Kinoshita N, Sato F, Koumoto K (2006) Site selective deposition and morphology control of UV- and visible-light-Emitting ZnO crystals. Crystal Growth Design 6:75–78.CrossRefGoogle Scholar
  43. 43.
    Wang J, Gao L (2003) Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J. Mater. Chem. 13:2551–2554.CrossRefGoogle Scholar
  44. 44.
    Zou G., Yu D, Wang D, Zhang W, Xy L, Yu W, Qian Y (2004) Controlled synthesis of ZnO nanocrystals with column-, rosette- and fiber-like morphologies and their photoluminescence properties. Mater. Chem. Phys. 88:150–154.CrossRefGoogle Scholar
  45. 45.
    Fan L, Song H, Li T, Yu L, Liu Z, Pan G, Lei Y, Bai X, Wang T, Zheng Z, Kong X (2007) Hydrothermal synthesis and photoluminescent properties of ZnO nanorods. J. Lumin. 122–123:819–821.CrossRefGoogle Scholar
  46. 46.
    Kuo C L, Kuo T K, Huang M H (2005) Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J. Phys. Chem. B 109:20115–20121.CrossRefGoogle Scholar
  47. 47.
    Xie R, Li D, Zhang H, Yang D, Jiang M, Sekiguchi T, Liu B, Bando Y (2006) Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns. J. Phys. Chem. B 110:19147–19153.CrossRefGoogle Scholar
  48. 48.
    Pal U, Santiago P (2005) Controlling the morphology of ZnO nanostructures in low-temperature hydrothermal process. J. Phys. Chem. B 109:15317–15321.CrossRefGoogle Scholar
  49. 49.
    Govender K, Boyle D S, Kenway P B, O’Brien P (2004) Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14:2575–2591.CrossRefGoogle Scholar
  50. 50.
    Yamabi S, Imai H (2002) Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 12:3773–3778.CrossRefGoogle Scholar
  51. 51.
    Duan J, Huang X, Wang E (2006) PEG-assisted synthesis of ZnO nanotubes. Mater. Lett. 60:1918–1921.CrossRefGoogle Scholar
  52. 52.
    Quang L H, Chua S J, Loh K P, Fitzgerald E (2006) The effect of post annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis. J. Crystal Growth 287:157–161.CrossRefGoogle Scholar
  53. 53.
    O’Brien P, Saeed T, Knowles J (1996) Speciation and the nature of ZnO thin films from chemical bath deposition. J. Mater. Chem. 6:1135–1139.CrossRefGoogle Scholar
  54. 54.
    Izaki M, Omi T (1997) Transparent zinc oxide films chemically prepared from aqueous solution. J. Electrochem. Soc. 144:L3–L5.CrossRefGoogle Scholar
  55. 55.
    Izaki M, Omi T (2000) Characterization of boron-incorporated zinc oxide film chemically prepared from aqueous solution. J. Electrochem. Soc. 147:210–213.CrossRefGoogle Scholar
  56. 56.
    Saito N, Haneda H, Sekiguchi T, Ohashi N, Sakaguchi I, Koumoto K (2002) Low-temperature fabrication of light emitting zinc oxide micropatterns using self assembled monolayers. Adv. Mater. 14:418–421.CrossRefGoogle Scholar
  57. 57.
    Saito N, Haneda H, Koumoto K (2004) Pattern-deposition of light-emitting ZnO particulate film through biomimetic process using self assembled monolayer template. Microelectronics J 35:349–352.CrossRefGoogle Scholar
  58. 58.
    Vayssieres L, Keis K, Lindquist S E, Hagfeldt A (2001) Purpose-built anisotropic metal oxide materials: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 105: 3350–3352.CrossRefGoogle Scholar
  59. 59.
    Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15:464–466.CrossRefGoogle Scholar
  60. 60.
    Boyle D S, Govender K, O’Brien P (2002) Novel low temperature solution deposition of perpendicularly oriented rods of ZnO: substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chem. Commun. 80–81.Google Scholar
  61. 61.
    Tian Z R, Voigt J A, Liu J, Mckenzie B, Mcdermott M J, Rodriguez M A, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nature Mater. 2:821–826.CrossRefGoogle Scholar
  62. 62.
    Djuristic A B, Kwok W M, Leung Y H, Phillips D L, Chan W K (2005) Stimulated emission in ZnO nanostructures: a time resolved study. J. Phys. Chem. B 109:19228–19233.CrossRefGoogle Scholar
  63. 63.
    Hsu J W P, Tian Z R, Simmons N C, Matzke C M, Voigt J A, Liu J (2005) Directed spatial organization of zinc oxide nanorods. Nano Lett. 5:83–86.CrossRefGoogle Scholar
  64. 64.
    Govender K, Boyle D S, O’Brien P, Binks D, West D, Coleman D (2002) Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Adv. Mater. 14:1221–1224.CrossRefGoogle Scholar
  65. 65.
    Choy J H, Jang E S, Won J H, Chung J H, Jang D J, Kim Y W (2003) Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Adv. Mater. 15:1911–1914.CrossRefGoogle Scholar
  66. 66.
    Ito K, Nakamura K (2006) Preparation of ZnO thin films using the flowing liquid film method. Thin Solid Film 286:35–36.CrossRefGoogle Scholar
  67. 67.
    Qiu Z, Wong K S, Wu M W, Lin W, Xu H (2004) Microcavity lasing behaviour of oriented hexagonal nanowhiskers grown by hydrothermal oxidation. Appl. Phys. Lett. 84: 2739–2741.CrossRefGoogle Scholar
  68. 68.
    Pan A L, Liu R B, Wang S Q, Wu Z Y, Cao L, Xie S S, Zou B S (2005) Controllable growth and optical properties of large scale ZnO arrays. J. Crystal Growth 282:125–130.CrossRefGoogle Scholar
  69. 69.
    Dem’yanets L N, Li L E, Uvarova T G (2006) Hydrothermal synthesis and cathodoluminescence of ZnO crystalline powders and coatings. J. Crystal Growth 287:23–27.CrossRefGoogle Scholar
  70. 70.
    Chen Y, Bagnall D M, Koh H J, Park K T, Hiraga K, Zhu Z, Yao T (1998) Plasma assisted molecular beam epitaxy of ZnO on c-plane of sapphire: growth and characterization. J. Appl. Phys. 84:3912–3918.CrossRefGoogle Scholar
  71. 71.
    Peulon S, Lincot D (1996) Cathodic electrodeposition from aqueous solution of dense or open structured zinc oxide films. Adv. Mater. 8:166–170.CrossRefGoogle Scholar
  72. 72.
    Peulon S, Lincot D (1998) Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J. Electrochem. Soc. 145:864–874.CrossRefGoogle Scholar
  73. 73.
    Pauporté T, Lincot D (1999) Heteroepitaxial electrodeposition of zinc oxide on gallium nitride. Appl. Phys. Lett. 75:3817–3819.CrossRefGoogle Scholar
  74. 74.
    Pauporté T, Lincot D (2000) Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide. Electrochim. Acta 45:3345–3353.CrossRefGoogle Scholar
  75. 75.
    Pauporté T, Lincot D (2001) Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition. II- Mechanistic aspects. J. Electroanal. Chem. 517:54–62.CrossRefGoogle Scholar
  76. 76.
    Goux A, Pauporté T, Lincot D (2006) Oxygen Reduction on Zinc Oxide Electrodes in KCl Aqueous solution at 70°C. Electrochim. Acta. 51:3168–3172.CrossRefGoogle Scholar
  77. 77.
    Gal D, Hodes G, Lincot D, Schock H W (2000) Electrochemical deposition of zinc oxide films from non-aqueous solution: a new buffer/window process for thin film solar cells. Thin Solid Films 361–362:79–83.CrossRefGoogle Scholar
  78. 78.
    Pauporté T., Lincot D, Viana B, Pellé F (2006) Toward laser emission of epitaxial nanorod array of ZnO grown by electrodeposition. Appl. Phys. Lett. 89:233112.CrossRefGoogle Scholar
  79. 79.
    Pauporté T, Cortès R, Froment M, Beaumont B, Lincot D (2002) Electrocrystallization of epitaxial zinc oxide onto galium nitride. Chem. Mater. 14:4702–4708.CrossRefGoogle Scholar
  80. 80.
    Pauporté T, Yoshida T, Cortès R, Froment M, Lincot D (2003) Electrochemical growth of epitaxial Eosin/ZnO hybrid films. J. Phys. Chem. B 107:10077–10082.CrossRefGoogle Scholar
  81. 81.
    Liu R, Vertegel A A, Bohannan E W, Sorenson T A, Switzer J A (2001) Epitaxial electrodeposition of Zinc oxide nanopillars on single-crystal gold. Chem. Mater. 13:508–512.CrossRefGoogle Scholar
  82. 82.
    Vispute R D, Talyansky V, Choopun S. Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Salamanca-Riba L G, Iliadis A A, Jones K A (1998). Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 73:348–350.CrossRefGoogle Scholar
  83. 83.
    Pauporté T, Lincot D (2001) Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition. I-Deposition in perchlorate medium. J. Electrochem. Soc. 148:C310–C314.CrossRefGoogle Scholar
  84. 84.
    Leprince-Wang Y, Yacoubi-Ouslim A, Wang G Y (2005) Structure study of electrodeposited ZnO nanowires. Microelectronics J. 36:625–628.CrossRefGoogle Scholar
  85. 85.
    Lai M, Riley J (2006) Templated electrosynthesis of Zinc oxide nanorods. Chem. Mater. 18:2233–2237.CrossRefGoogle Scholar
  86. 86.
    Pauporté T, Yoshida T, Goux A, Lincot D (2002). One-step electrodeposition of ZnO/Eosin hybrid films from hydrogen peroxide oxygen precursor. J. Electroanal. Chem, 534:55–64.CrossRefGoogle Scholar
  87. 87.
    Izaki M, Omi T (1996) Electrolyte optimization for cathodic growth of zinc oxide films. J. Electrochem. Soc. 143:L53–L55.CrossRefGoogle Scholar
  88. 88.
    Izaki M, Omi T (1996) Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 68:2439–2440.CrossRefGoogle Scholar
  89. 89.
    Izaki M, Omi T (1997) Characterization of transparent zinc oxide films prepared by electrochemical reaction. J. Electrochem. Soc. 144:1949–1952.CrossRefGoogle Scholar
  90. 90.
    Yoshida T, Komatsu D, Shimokawa N, Minoura H (2004) Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films 451–452:166–169.CrossRefGoogle Scholar
  91. 91.
    Ishizaki H, Izaki M, Ito T (2001) Influence of (CH3)2NHBH3 concentration on electrical properties of electrochemically grown ZnO film. J. Electrochem. Soc. 148:C540–C543.Google Scholar
  92. 92.
    Ishizaki H, Imaizumi M, Matsuda S, Izaki M, Ito T (2002) Incorporation of boron in ZnO film from an aqueous solution containing zinc nitrate and dimethylamine-borane by electrochemical reaction. Thin Solid Films 411:65–68.CrossRefGoogle Scholar
  93. 93.
    Zheng M J, Zhang L D, Li G H, Shen W Z (2002) Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett. 363:123–128.CrossRefGoogle Scholar
  94. 94.
    Izaki M, Watase S, Takahashi H (2003) Low-temperature electrodeposition of room temperature ultraviolet-light-emitting zinc oxide. Adv. Mater. 15:2000–2002.CrossRefGoogle Scholar
  95. 95.
    Izaki M, Watase S, Takahashi H (2003) Room-temperature ultraviolet light-emitting zinc oxide micropatterns prepared by low-temperature electrodeposition and photoresist. Appl. Phys. Lett. 83:4930–4932.CrossRefGoogle Scholar
  96. 96.
    Wang Q, Wang G, Jie J, Han X, Xu B, Hou J G (2005) Annealing effect on optical properties of ZnO films fabricated by cathodic electrodeposition. Thin Solid Films 492:61–65.CrossRefGoogle Scholar
  97. 97.
    Zhang L, Chen Z, Tang Y, Jia Z (2005) Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin films. Thin Solid Films 492:24–29.CrossRefGoogle Scholar
  98. 98.
    Cao B, Teng X, Heo S H, Li Y, Cho S O, Li G, Cai W (2007) Different ZnO nanostructures fabricated by seed layer assisted electrochemical route and their photoluminescence and field emission properties. J. Phys. Chem C 111:2470–2476.CrossRefGoogle Scholar
  99. 99.
    Chen Z, Tang Y, Zhang L, Luo L (2006) Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye sensitized solar cells. Electrochim. Acta 51:5870–5875.CrossRefGoogle Scholar
  100. 100.
    Chen Q P, Xue M Z, Sheng Q R, Liu Y G, Ma Z F (2006) Electrochemical growth of nanopillar zinc oxide film by applying a low concentration of zinc nitrate precursor. Electrochem. Solid-State Lett. 9:C58–C61.CrossRefGoogle Scholar
  101. 101.
    Könenkamp R, Boedecker K, Lux-Streiner M C, Poschenrieder M, Zenia F, Lévy-Clément C, Wagner S (2000) Thin film semiconductor deposition on free-standing ZnO columns. Appl. Phys. Lett. 77:2575–2577.CrossRefGoogle Scholar
  102. 102.
    Lévy-Clément C, Katty A, Bastide S, Zenia F, Mora I, Munoz-Sanjose V (2002). A new CdTe/ZnO columnar composite film for Eta-solar cells. Physica E 14:229–232.CrossRefGoogle Scholar
  103. 103.
    Tena-Zaera R, Katty A, Bastide S, Lévy-Clément C, O’Regan B, Munoz-Sanjosé (2005) ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell. Thin Solid Films 483:372–377.CrossRefGoogle Scholar
  104. 104.
    Lévy-Clément C, Tena-Zaera R, Ryan M A, Hodes G (2005) CdSe-sensitized p-CuSCN/Nanowire n-ZnO heterojunction. Adv. Mater. 17:1512–1515.CrossRefGoogle Scholar
  105. 105.
    O’Regan B, Lenzmann F, Muis R, Wienke J (2002) A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: analysis of pore filling and I-V characteristics. Chem. Mater. 14:5023–5029.CrossRefGoogle Scholar
  106. 106.
    Tena-Zaera R, Ryan MA, Katty A, Hodes G, Bastide S, Lévy-Clément C (2006) Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell. C. R. Chimie 9: 717–729.CrossRefGoogle Scholar
  107. 107.
    Könenkamp R, Word R C, Schlegel C (2004) Vertical nanowire light-emitting diode. Appl. Phys. Lett. 85:6004–6006.CrossRefGoogle Scholar
  108. 108.
    Könenkamp R, Word R C, Godinez M (2005) Ultraviolet electroluminescence from ZnO/polymer heterojunction light emitting diodes. Nano Lett. 5:2005–2008.CrossRefGoogle Scholar
  109. 109.
    Lévy-Clément C, Elias J, Tena-Zaera R (2007) Electrodeposition of arrays of ZnO nanostructures and application to photoelectrochemical devices. SPIE Proceedings 6340:63400R1–63400R12.Google Scholar
  110. 110.
    Badre C, Pauporté T, Turmine M, Lincot D (2007) ZnO nanowire array film with super water-repellent properties. Nanotechnology 18:365705.Google Scholar
  111. 111.
    O’Regan B, Sklover V, Grätzel M (2001) Electrochemical deposition of smooth and homogeneously mesoporous ZnO films from propylene carbonate electrolytes. J. Electrochem. Soc. 148:C498–C505.CrossRefGoogle Scholar
  112. 112.
    O’Regan B, Schwartz D T, Zakeeruddin S M, Grätzel M (2000) Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics. Adv. Mater. 12:1263–1267.Google Scholar
  113. 113.
    Yoshida T, Pauporté T, Lincot D, Oekermann T, Minoura H (2003) Cathodic electrodeposition of ZnO/eosin Y hybrid thin films from oxygen-saturated aqueous solution of ZnCl2 and eosin Y. J. Electrochem. Soc. 150:C608–C615.CrossRefGoogle Scholar
  114. 114.
    Yoshida T, Iwaya M, Ando H, Oekermann T, Nonomura K, Schlettwein D, Wöhrle D, Minoura H (2004) Improved photoelectrochemical performance of electrodeposited ZnO/Eosin Y hybrid thin films by dye re-adsorption. Chem. Commun 400–401.Google Scholar
  115. 115.
    O’Regan B, Grätzel M (1991) A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740.CrossRefGoogle Scholar
  116. 116.
    Rathousky J, Pauporté T (2007) Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. J. Phys. Chem. C 111:7639--7644.Google Scholar
  117. 117.
    Pauporté T, Yoshida T, Komatsu D, Minoura H (2006) Highly porous electrodeposited zinc oxide films for red/green luminescence. Electrochem. Solid-State Lett. 9:H16–H18.CrossRefGoogle Scholar
  118. 118.
    Pauporté T, Yoshida T (2006) Conducting hybrid layers of ZnO/lanthanide complexes with high visible luminescence. J. Mater. Chem. 16:4529–4534CrossRefGoogle Scholar
  119. 119.
    Goux A, Pauporté T, Yoshida T, Lincot D (2006) Mechanistic study of the electrodeposition of nanoporous self-assembled ZnO/Eosin Y hybrid thin films. Effect of eosin concentration. Langmuir 22:10545–10553.Google Scholar
  120. 120.
    Yoshida T, Minoura H, Zhang J, Komatsu D, Sawatani S, Pauporté T, Lincot D, Oekermann T, Schlettwein D (2009) Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 19:17--43.Google Scholar
  121. 121.
    Goux A, Pauporté T, Lincot D, Dunsch L (2007) In situ ESR and UV-visible spectroelectrochemical study of eosin Y upon reduction with and without Zn (II) ions. Chem. Phys. Chem. 8:926--931, DOI: 10.1002/cphc.200700009.Google Scholar
  122. 122.
    Aarão Reis F D A, Badiali J P, Pauporté T, Lincot D (2006). Statistical modelling of the electrodeposition of nanostructured hybrid films with ZnO- eosin Y as a case example. J. Electroanal. Chem. 598:27–35.CrossRefGoogle Scholar
  123. 123.
    Pauporté T, Bedioui F, Lincot D (2005) Nanostructured zinc oxide- chromophore hybrid films with multicolored electrochromic properties. J. Mater. Chem. 15:1552–1559.CrossRefGoogle Scholar
  124. 124.
    Pauporté T (2007) Highly transparent ZnO/Polyvinyl alcohol hybrid films with controlled crystallographic orientation growth. Crystal Growth Design 7:2310--2315.Google Scholar
  125. 125.
    Yang X, Shao C, Guan H, Li X, Gong J (2004) Preparation and characterisation of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber precursor. Inorg. Chem. Commun. 7:176–178.CrossRefGoogle Scholar
  126. 126.
    Hong Y, Li D, Zheng J, Zou G (2006) In situ growth of ZnO nanocrystals from solid electrospun nanofiber matrixes. Langmuir 22:7331–7334.CrossRefGoogle Scholar
  127. 127.
    Sui X M, Shao C L, Liu Y C (2005) White-light emission of polyvinyl alcohol/ ZnO hybrid nanofibers prepared by electrospinning. Appl. Phys. Lett. 87:113115.CrossRefGoogle Scholar
  128. 128.
    He Y, Sang W, Wang J, Wu R, Min J (2005) Vertically well-aligned ZnO nanowires generated with self-assembling polymers. Mater. Chem. Phys. 94:29-33.CrossRefGoogle Scholar
  129. 129.
    Lima S A M, Sigoli F A, Davolos M R, Jafelicci M (2002) Europium(III)-containing zinc oxide from pichini method. J. Alloys Comp. 344:280–284.CrossRefGoogle Scholar
  130. 130.
    Lima S A M, Sigoli F A S, Davolos M R (2003) Pechini’s solution precursor for Eu(III) –containing ZnO films. J. Solid State Chem. 171:287–290.CrossRefGoogle Scholar
  131. 131.
    Gao S, Zhang H, Deng R, Wang X, Sun D, Zheng G (2006) Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method. Appl. Phys. Lett. 89:123125.CrossRefGoogle Scholar
  132. 132.
    Pauporté T, Goux A, Kahn-Harari A, de Tacconi N, Rajeshwar K, Lincot D (2003) Cathodic electrodeposition of mixed oxide thin films. J. Phys. Chem. Solids 64:1737–1742.CrossRefGoogle Scholar
  133. 133.
    Goux A, Pauporté T, Lincot D (2006) Deposition of mixed zinc oxide/ lanthanide films by electrochemical precipitation. The ZnO/Er system. J. Electroanal. Chem. 587:193–202.CrossRefGoogle Scholar
  134. 134.
    Goux A, Pauporté T, Lincot D (2007) Preparation of ZnO/Eu mixed films by electrochemical precipitation. Electrochim. 53:233--244.Google Scholar
  135. 135.
    Pauporté T, Pellé F, Viana B, Aschehoug P (2007) Luminescence of nanostructured ZnO/Eu mixed films prepared by electrodeposition. J. Phys. Chem. C 111:15427--15432.Google Scholar
  136. 136.
    Horrocks W D, Sudnick D R (1979) Lanthanide ion probes of structure in Biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101:334–340.CrossRefGoogle Scholar
  137. 137.
    Lis S (2002) Luminescence spectroscopy of lanthanide(III) ions in solution. J. Alloys Compd. 341:45–50.CrossRefGoogle Scholar
  138. 138.
    Xiang J H, ZhuP X, Masuda Y, Okuya M, Kaneko S, Koumoto K (2006) Flexible solar-cell from zinc oxide nanocrystalline sheets self-assembled by an in-situ electrodeposition process. J. Nanosci. Nanotechnol. 6:1797–1801.CrossRefGoogle Scholar
  139. 139.
    Cao B Q, Cai W P, Zeng H B, Duan G T (2006) Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates. J. Appl. Phys. 99:073516_145–073516_150.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratoire d’Électrochimie et Chimie Analytique, UMR7575ENSCP-CNRS-Univ.Paris6, École Nationale Supérieure de Chimie de ParisFrance

Personalised recommendations