Toward Functional Nanomaterials pp 423-474 | Cite as
Virtual Synthesis of Electronic Nanomaterials: Fundamentals and Prospects
- 3 Citations
- 934 Downloads
Abstract
Increasingly, integrated logic-storage and quantum information-process-ing paradigms are being viewed as dominant approaches to facilitate further advances in electronics, communication, information processing, and storage technologies. Realization of these concepts is based upon understanding the formation of coherent, polarized, and especially entangled (CPE) electron spin states, ability to control their dynamics and their contributions to quantum spin–charge transport properties of small, few-atomic systems at realistic conditions at interfaces and in quantum confinement.
This chapter is focused on novel, first-principle, synergetic theoretical and computational methods designed to predict the electron spin–charge transport properties of small atomic clusters (quantum dots, or QDs) and molecules that may be used as sources of CPE electron spin states. Theoretical methods are derived from a many-body quantum theory formalism – a projection operator method by Zubarev and Tserkovnikov (ZT) – based on equilibrium, commutatorial two-time temperature Green functions (or TTGFs). The ZT approach has been widely used to predict thermodynamic and charge transport properties of bulk systems, including metals, semi- and superconductors, etc. In this chapter, the linearized version of the ZT method is generalized to include strongly spatially inhomogeneous systems, such as a single molecule or QD.
There are several significant advantages of this approach, as compared to the traditional nonequilibrium two-time thermodynamic and field-theoretical Green function (NGF) methods that are used to study electron transport at nanoscale. In particular, the TTGF method does not require introduction of the distribution functions to link the GFs to the transport coefficients (in contrast to the existing NGF-based methods), thus avoiding effects of this major uncontrolled approximation, while also significantly reducing the use of controlled approximations and calculation efforts related to derivation of a kinetic theory. Further on, the TTGFs are susceptibilities, and thus are directly related to experimentally assessable microscopic charge, spin and microcurrent densities. In their turn, the latter quantities are directly related to the spin states of contributing electrons. Thus, measurements of these quantities provide direct experimental information on the contributing electron spin states. It is also important that the equilibrium TTGFs have to be calculated only once for a considered system, while NGFs must be calculated for the same system every time when process conditions change. The theoretical TTGF-based formulae for the electron transport coefficients directly related to experimental data are crucial to identify propagating (or dynamic) CPE electron spin states.
Practical significance of the fundamental insights into electron spin–charge transport provided by analytical theoretical means is limited without accurate data on the equilibrium electronic structure of small systems, because specific predictions are very sensitive to details of the electron spin–charge density distributions of the small systems and their quantum confinement. These data can be obtained using virtual (i.e., many-body quantum theory-based computational) synthesis and evaluation of the corresponding model molecules and QDs. Such computational results used in theoretical formulae provide reliable predictions, and thus a valuable guideline for experimental synthesis of small systems with predesigned electron CPE spin states and spin–charge transport properties. In this work, GAMESS software package has been used to synthesize computationally several artificial molecules composed of semiconductor compound atoms. The data so obtained contain detailed information on the molecular structure, composition, chemistry, electron energies, spin and charge distributions, and electron wave functions (molecular orbits) necessary to identify electron spin states of interest (such as entangled spin states where electrons share the spatial portion of their wave function while localized on or propagating to different QDs: spin-based qubits), and can be further used in the ZT-based theoretical formulae to calculate the TTGFs, and thus electron spin–charge transport properties of the studied systems.
Keywords
Quantum Confinement Covalent Radius Occupied Orbit Inhomogeneous System Spin Density DistributionNotes
Acknowledgments
Support of the National Science Foundation through the grants DMR No. 0340613 and No. 0647356 is appreciated.
References
- 1.P. Zoller P, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J.I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassi, S. Haroche, A. Imamoglu, A. Karison, J. Kempe, L. Kouwenhoven, S. Kroll, G. Leuchs, M. Lewenstein, D. Loss, N. Lutkenhouse, S. Massar, J.E. Mooij, M.B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zellinger, Euro. Phys. J. D 36, 203 (2005).Google Scholar
- 2.G. Chen, Z.J. Diao, J.U. Kim, A. Neogi, K. Urtekin, and Z.G. Zhang, Int. J. Quant. Inform. 4, 233 (2006).Google Scholar
- 3.S. Bandyopadhyay, Superlattices and Microstructures, 37, 77 (2005).Google Scholar
- 4.T. Radtke and S. Fritzsche, Comp. Phys. Commun. 173, 91 (2005).Google Scholar
- 5.R.G. Mani, W.B. Johnson, V. Narayanamutri, V. Privman, and Y.-H. Zhang, Physica E 12, 152 (2002).Google Scholar
- 6.G. Burkard and D. Loss, Phys. Rev. B 59, 2070 (1998); D.P. DiVincenzo, Phys. Rev. A 51, 1015 (1994).Google Scholar
- 7.D. Loss and D.P. DiVincenzo, Phys. Rev. A V. 57(1), 120–126 (1998).Google Scholar
- 8.G. Prinz, Phys. Today 48, 58 (1995); G. Prinz, Science 282, 1660 (1998).Google Scholar
- 9.T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J.R. Rabeau, N. Stavrias, A.D. Greentree, S. Praver, J. Meijer, J. Twamley, P.R. Hemmer, and J. Wrachtrup, Nature (Physics) 2, 408 (2006).Google Scholar
- 10.D.D. Awschalom and J.M. Kikkawa, Phys. Today 52, 33 (1999); J.M. Kikkawa and D.D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998); J.M. Kikkawa and D.D. Awschalom, Nature (London) 397, 139 (1999).Google Scholar
- 11.R. Fiederling, M. Kelm, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L.M. Molenkamp, Nature (London) 402, 787 (1999).Google Scholar
- 12.Y. Ohno, D.K. Young, B. Beschoten, F. Motsukura, H. Ohno, and D.D. Awschalom, Nature (London) 402, 790 (1999).Google Scholar
- 13.F.G. Monson and M.L. Roukes, J. Magn. Magn. Mater. 198, 632 (1999).Google Scholar
- 14.D.P. DiVincenzo, Science 270, 255 (1995).Google Scholar
- 15.D.P. DiVincenzo and D. Loss, J. Magnet. Magnet. Mater. 200, 202 (1999).Google Scholar
- 16.F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, and L.M.K. Vandersypen, Nature 442, 766 (2006); D. Kitchens, A. Richardella, J.-M. Tang, M.E. Flatte, and A. Yazdani, Nature 442, 436 (2006).Google Scholar
- 17.L.J. Sham and J. Magnet. Magnet. Mater. 200, 219 (1999).Google Scholar
- 18.G.M. Jones, B.H. Hu, and C.H. Young, Appl. Phys. Lett. 88, 192102(3) (2006); G.M. Jones, B.H. Hu, and C.H. Young, Appl. Phys. Lett. 89, 073106 (3) (2006).Google Scholar
- 19.R. Skomsky, J. Zhou, A.Y. Istomin, A.F. Starace, and D.J. Sellmyer, J. Appl. Phys. 97, 10R511(3) (2005).Google Scholar
- 20.R. Skomsky, A.Y. Istomin, A.F. Starace, and D.J. Sellmyer, Phys. Rev. A 70, 062307(4) (2004).Google Scholar
- 21.X. Hu and S. Das Sarma, Phys. Rev. A 61, 062301 (19) (2000).Google Scholar
- 22.A. Mizel and D.A. Lidar, Phys. Rev. B 70, 115310 (13) (2004).Google Scholar
- 23.V.W. Scarola and S. Das Sarma, Phys. Rev. A 71, 032340 (12) (2005).Google Scholar
- 24.B. Zhou, R. Tao, S.-Q. Shen, and J.-Q. Liang, Phys. Rev. A 66, 010301 (R) (2002).Google Scholar
- 25.M. Wagner, U. Merkt, and A.V. Chaplik, Phys. Rev. B 45, 1951 (1992).Google Scholar
- 26.T. Fujizawa, D.G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Nature 419, 278 (2002).Google Scholar
- 27.R. Hanson, B. Witkamp, L.M.K. Vandersypen, L.H. Willems van Beveren, J.M. Elzerman, and L.P. Kouwenhoven, Phys. Rev. Lett. 91, 196802 (4) (2003).Google Scholar
- 28.J.M. Eizerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, and L.P. Kouwenhoven, Nature 430, 431 (2004).Google Scholar
- 29.J.M. Eizerman, R. Hanson, J.S. Greidanus, L.H. Willems van Beveren, S. De Franceschi, L.M.K. Vandersypen, S. Tarucha, and L.P. Kouwenhoven, Phys. Rev. B 67, 161308 (R) (2003).Google Scholar
- 30.M. Bauer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.K. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).Google Scholar
- 31.M. Atatűre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu, Science 312, 551 (2006).Google Scholar
- 32.R. Schleser, E. Ruh, T. Ihn, K. Ensslin, D.C. Driscoll, and A.C. Gossard, Appl. Phys. Lett. 85, 2005 (2004).Google Scholar
- 33.R. Hanson, L.H. Willems van Beveren, I.T. Vink, J.M. Elzerman, W.J.M. Naber, F.H.L. Koppens, L.P. Kouwenhoven, and L.M.K. Vandersypen, Phys. Rev. Lett. 94, 196802 (4) (2005).Google Scholar
- 34.W. Lu, Z.Q. Li, L. Pfeiffer, K.W. West, and A.J. Rimberg, Nature 423, 422 (2003).Google Scholar
- 35.L.M.K. Vandersypen, J.M. Elzerman, R.H. Schouten, L.H. Willems van Beveren, R. Hanson, and L.P. Kouwenhoven, Appl. Phys. Lett. 85, 4394 (2004).Google Scholar
- 36.P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000).Google Scholar
- 37.C.P. Poole, Electron Spin Resonance, 2nd edn., Wiley, New York (1983).Google Scholar
- 38.M. Xiao, I. Martin, E. Yablonovich, and H.W. Jiang, Nature (London) 430, 435 (2004).Google Scholar
- 39.F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. 92, 076401(4) (2004).Google Scholar
- 40.D. Rugar, R. Badakian, H.J. Mamin, and B.W. Chui, Nature (Londin) 430, 329 (2004).Google Scholar
- 41.A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).Google Scholar
- 42.Y. Kato, R.C. Myers, A.C. Gossard, and D.D. Awschalom, Nature 427, 50 (2004).Google Scholar
- 43.V.N Golovach, M. Borhani, and D. Loss, www.arXiv.org/con-mat/0601674 (2006).
- 44.Y. Tokura, W.G. Van der Wiel, T. Obata, and S. Tarucha, Phys. Rev. Lett. 96, 047202 (4) (2006).Google Scholar
- 45.R. Hanson, L.H. Willems van Beveren, I.T. Vink, J.M. Elzerman, W.J.M. Naber, F.H.L. Koppens, L.P. Kouwenhoven, and L.M.K. Vandersypen, Physica E 34, 1 (2006).Google Scholar
- 46.J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Sarinach, J.S. Munoz, M.D. Baro, Phys. Reports 422, 65 (2005).Google Scholar
- 47.J. Stangl, V. Holý, and G. Bauer, Rev. Mod. Phys. 76, 725 (2004).Google Scholar
- 48.I.N. Stranski and L. Krastanow, Sitzungsbericht d. Akad. d. Wissenschaften in Wien, Abt. IIb, Band 146, 797 (1937).Google Scholar
- 49.Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
- 50.G. Bester, A. Zunger, Z. Wu, and D. Vanderbilt, Phys. Rev. B 74, 081305R (2006).Google Scholar
- 51.C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000).Google Scholar
- 52.J. E. Bowen Katari, V. L. Colvin, and A. P. Alivisatos, J. Phys. Chem. 98, 4109 (1994).Google Scholar
- 53.O. I. Mićić and A. J. Nozik, J. Lumin. 70, 95 (1996).Google Scholar
- 54.M. A. Reed, R. T. Bate, K. Bradshaw, W. M. Duncan, W. R. Frensley, J. W. Lee, and H. D. Shih, J. Vac. Sci. Technol. B 4, 358 (1986).Google Scholar
- 55.A. B. Fowler, A. Hartstein, and R. A. Webb, Phys. Rev. Lett. 48, 196 (1982); T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys. Rev. Lett. 56, 1198 (1986).Google Scholar
- 56.H. Ishikuro and T. Hiramoto, Appl. Phys. Lett. 71, 3691 (1997); A. Aassime, G. Johansson, G. Wendin, R. J. Schoelkopf, and P. Delsing, Phys. Rev. Lett. 86, 3376 (2001).Google Scholar
- 57.B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, H. B. Sun, and H. Wiseman, Phys. Rev. B 61, 2961 (2000).Google Scholar
- 58.M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).Google Scholar
- 59.K. K. Likharev, Proc. IEEE 87, 606 (1999).Google Scholar
- 60.L. Guo, E. Leobandung, S. Y. Chou, Science 275, 649 (1997).Google Scholar
- 61.B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, H. B. Sun, and H. Wiseman, Phys. Rev. B 61, 2961 (2000).Google Scholar
- 62.S. K. Su, S. J. Chang, L. W. Ji, C. S. Chang, L. W. Wu, W. C. Lai, T. H. Fang, and K. T. Lam, Semicond. Sci. Technol. 19, 389 (2003); D. Damilano, N. Grandjean, J. Massies, S. Dalmasso, J. L. Reverchon, M. Calligaro, J. Y. Duboz, L. Siozade, and J. Leymarie, Phys. Stat. Sol. A 180, 363 (2000).Google Scholar
- 63.M. Shamsa, W. Liu, A. A. Balandin, and J. Liu, Appl. Phys. Lett. 87, 202105 (2005).Google Scholar
- 64.T. C. Harmon, R. E. Reeder, M. P. Walsh, B. E. LaForge, C. D. Hoyt, and G. W. Turner, Appl. Phys. Lett. 88, 243504 (2006).Google Scholar
- 65.J. M. Zide, D. O. Klenov, S. Stemmer, A. C. Gossard, G. Zeng, J. E. Bowers, D. Vashaee, and A. Shakouri, Appl. Phys. Lett. 87, 1121102 (2005).Google Scholar
- 66.J.R. Chelikowsky, J. Phys. D 33, R33 (2000).Google Scholar
- 67.Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).Google Scholar
- 68.D.L. Smith and C. Mailhiot, Rev. Mod. Phys. 62, 173 (1990).Google Scholar
- 69.E. Landsberg (ed). Quantum Theory of Real Materials, Kluwer, Boston, MA (1996).Google Scholar
- 70.A.J. Freeman, Ann. Rev. Mat. Sci. 25, 1 (1995).Google Scholar
- 71.N.M. Ashkroft and N.D. Mermin, Solid State Physics, Holt, Rinehart&Winston, New York (1976).Google Scholar
- 72.E.L. Ivchenko and G.E. Pikus, Superlattices and Other Heterostructures, 2nd edn., Springer-Verlag, Berlin, New York (1997).Google Scholar
- 73.J.M. Tang and M.E. Flatte, Phys.Rev. Lett. 92, 047201 (2004).Google Scholar
- 74.
- 75.
- 76.
- 77.F. Meier, J. Levy, and D. Loss, Phys. Rev. B 68, 134417 (15) (2003).Google Scholar
- 78.V.W. Scrola and S. Das Sarma, Phys. Rev. A 71, 032340 (12) (2005).Google Scholar
- 79.A. Mizel and D.A. Lidar, Phys. Rev. B 70, 115310 (13) (2004).Google Scholar
- 80.F. Meier, V. Carletti, O. Gywat, D. Loss, and D.D. Awschalom, Phys. Rev. B 69, 195315 (12) (2004).Google Scholar
- 81.J. Lehmann and D. Loss, Phys. Rev. B 73, 045328 (10) (2006).Google Scholar
- 82.G.D. Mahan, Many Particles Physics, 2nd edn, Plenum, New York (1993).Google Scholar
- 83.C.W. Miller, Z.-P. Li, I.K. Schuller, R.W. Dave, J.M. Slaughter, and J. Akerman, Phys. Rev. B 74, 212404 (4) (2006).Google Scholar
- 84.B.D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Reading, MA (1972).Google Scholar
- 85.M.I. Dykman, L.F. Santos, and M. Shapiro, J. Optics B 7, Special Issue SI, S363 (2005).Google Scholar
- 86.J. Rammer, Rev. Mod. Phys. 63, 781 (1991), and references therein.Google Scholar
- 87.S. Fujita, Introduction to Non-Equilibrium Quantum Statistical Mechanics, W.B. Saunders, Philadelphia (1986), etc.Google Scholar
- 88.S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University, Cambridge, England (1995).Google Scholar
- 89.D.K. Ferry and S.M. Goodnick, Transport in Nanostructures, Cambridge University, Cambridge, England (1997).Google Scholar
- 90.Y. Imry and R. Landauer, Rev. Mod. Phys. 71, S306 (1999).Google Scholar
- 91.C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991).Google Scholar
- 92.Y. Imry, Directions in Condensed Matter Physics, Vol. 1, World Scientific, Singapore (1986).Google Scholar
- 93.Mesoscopic Phenomena in Solids, B.L. Altshuler, P.A. Lee and R.A. Webb (eds). North-Holland, Amsterdam (1991).Google Scholar
- 94.Y. Meir and N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).Google Scholar
- 95.D.V. Averin and K.K. Likharev, Phys. Rev. B 44, 6199 (1991).Google Scholar
- 96.Nanotechnology, G. Timp (ed.), AIP, New York (1998).Google Scholar
- 97.C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991).Google Scholar
- 98.S.N. Datta, J. Phys. Chem. A 109, 11417 (2005).Google Scholar
- 99.D.V. Averin and Yu. N. Nazarov, Phys. Rev. Lett. 65, 2446 (1990); L.I. Glazman and K.A. Matveev, JETP Lett. 51, 484 (1990).Google Scholar
- 100.A. Wacker, Phys. Reports 357, 1 (2002)Google Scholar
- 101.G.B. Arnold, J. Low Temp. Phys. 68, 1 (1987).Google Scholar
- 102.R.A. Jalabert, A.D. Stone, and Y. Alhassid, Phys. Rev. Lett. 68, 3468 (1992); J.C. Cuevas, A. Martin-Rodero, and A.L. Yeyati, Phys. Rev. B 54, 7366 (1996).Google Scholar
- 103.Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).Google Scholar
- 104.Y.V. Fyodorov and H.J. Sommers, J. Math. Phys. 38, 1918 (1997).Google Scholar
- 105.O. Bohigas and M.-J. Giannoni, Mathematical and Computational methods in Nuclear Physics. Lecture Notes in Physics, Vol. 209, J.S. Dehesa, J.M.G. Gomez, and A. Polls (eds). Springer, Berlin (1984).Google Scholar
- 106.B.L. Altshuler, D.E. Khmelnitskii, A.I. Larkin, and P.A. Lee, Phys. Rev. B 22, 5142 (1980).Google Scholar
- 107.P.A. Lee and A.D. Stone, Phys. Rev. Lett. 55, 1622 (1985); E.A. Yuzbashyan, W. Happer, B.L. Altshuler, and S.B. Shastry, J. Phys. A 36, 2577 (2003).Google Scholar
- 108.K.B. Efetov, Adv. Phys. 32, 53 (1983).Google Scholar
- 109.T.N. Todorov, J. Phys: Condens. Matter. 12, 8995 (2000); M. Buttiker, Pramana J. Phys. 58, 241 (2002); M. Brandbyge, J. Taylor, K. Stokbro, J.-L Moroz, and P. Ordejon, Phys. Rev. B 65, 165401 (2002).Google Scholar
- 110.M. Buttiker, Phys. Rev. B 33, 3020 (1986); J.L. D’Amato and H. Pastawski, Phys. Rev. B 41, 7411 (1990).Google Scholar
- 111.H. van Hauten, C.W.J. Beenakker, and A.A.M. Starring, in: Single Electron Tunneling, H. Grabert, M.H. Devoret (Eds.), Plenum Press, New York, 167 (1991).Google Scholar
- 112.E.V. Sukhorukov and D. Loss, Phys. Rev. B 59, 13054 (1999); B. Qiao, H.E. Ruda, and M.S. Zhan, Phys. Rev. A 65, 042325(11) (2002); X.-Q. Li, W.-K. Zhang, P. Cui, J. Shao, Z. Ma, and Y. Yan, Phys. Rev. B 69, 085315(9) (2004); H. Moya-Cessa, Phys. Reports 432, 1 (2006).Google Scholar
- 113.B. Qiao, X.S. Xing, and H.E. Ruda, Physica A 355, 319 (2005); B. Qiao and H.E. Ruda, Physica A 334, 459 (2004); B. Qiao and H.E. Ruda, Physica A 333, 197 (2004); B. Qiao and H.E. Ruda, Physica A 327, 425 (2003).Google Scholar
- 114.E.N. Economou, Green’s Functions in Quantum Physics, Springer, Berlin (1983), and references therein; possible simplifications of some of these methods and their use are discussed in S. Mukamel, Phys. Rev. E 68, 021111(14) (2003).Google Scholar
- 115.I. G. Lang, L. I. Korovin, J. A. de la Cruz and S. T. Pavlov, Sov. Phys.–JETP 96, 268 (2003).Google Scholar
- 116.H.U. Baranger and A.D. Stone, Phys. Rev. B 40, 8169 (1989).Google Scholar
- 117.L.A. Pozhar, cond-mat/0502476, http://www.arXiv.org (2005); L.A. Pozhar, Mat. Res. Soc. Proc. 789, 49 (2004); L.A. Pozhar, Mater. Res. Soc. Proc. 900E, O03-02.1 (2006); L.A. Pozhar, Mat. Res. Soc. Proc. 789, 49 (2004).
- 118.Note that these interactions have also been neglected in [115]. This makes the approach developed in [115] not applicable to systems in strong magnetic fields and to systems with significant magnetization, despite an inclusion of the corresponding vector potential term into the particle momentum operator in [115].Google Scholar
- 119.A. I. Akhieser and S. V. Peletminskii, Methods of Statistical Physics, Nauka, Moscow (1977).Google Scholar
- 120.D. N. Zubarev, Soviet Phys. Uspekhi 3, 320 (1960/61); D.N. Zubarev, Nonlinear Statistical Thermodynamics, Plenum Press, New York (1974).Google Scholar
- 121.P. P. Ewald, Ann. de Phys. 54, 519 (1917); P. P. Ewald, Ann. de Phys. 66, 253 (1921); V. M. Agranovich and V. L. Ginzburg, Optical Properties of Crystalline Solids, Space Dispersion and the Theory of Excitons, Glavnaya Redaktsiya Fiz-Mat. Literatury, Moscow, (1965) (in Russian); Yu. L. Klimontovich, Statistical Theory of Non-Equilibrium Processes in Plasma, Glavnaya Redaktsiya Fiz-Mat. Literatury, Moscow, (1964) (in Russian).Google Scholar
- 122.D. N. Zubarev and Yu. A. Tserkovnikov, Trudy Matematicheskogo Instituta im. Steklova 175, 139 (1986); Proceedings of the Steklov Institute of Mathematics 2, 139 (1988), and references therein.Google Scholar
- 123.S. V. Tyablikov, Methods in the Quantum Theory of Magnetism, Plenum Press, New York (1967); N. N. Bogolyubov, Introduction to Quantum Statistical Mechanics, World Scientific, NJ, (1982); N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, General Principles of Quantum Field Theory, Nauka, Moscow (1987); N.N. Bogolubov, Selected Works, N. N. Bogolubov, Jr. and A. M. Kurbatov (Eds.), Gordon and Breach, New York (1991).Google Scholar
- 124.Yu. A. Tserkovnikov, Dokl. Acad. Nauk SSSR 143, 832 (1962); Soviet Phys. Dokl. 7, (1962/1963); G. F. Mazenko, Phys. Rev. A 7, 209 (1973); 7, 222 (1973); 9, 360 (1974).Google Scholar
- 125.Yu. A. Tserkovnikov, Teoreticheskaya I Matematicheskaya Fizika, 7, 250 (1971); English translation in Theor. Math. Phys. 7 (1971); 23, 221 (1975); English translation in Theor. Math. Phys. 23 (1975); 26, 77 (1976); English translation in Theor. Math. Phys. 26 (1976); 50, 261 (1982); English translation in Theor. Math. Phys. 50 (1982); 52, 147 (1982); English translation in Theor. Math. Phys. 52 (1982); N.N. Bogolyubov, V.V. Tolmachev, and D.V. Shirkov, New Methods in the Theory of Superconductivity, Chapman and Hall, London (1959); N.M. Plakida, in Statistical Physics and Quantum Field Theory, N.N. Bogolyubov (Ed.), Nauka, Moscow, p. 205 (1973), etc.Google Scholar
- 126.L.A. Pozhar, V.F. de Almeida, and M.Z.-C. Hu, Ceramics Transactions 137, 101 (2003); L.A. Pozhar, E.V. Kontar, and M. Z.-C. Hu, J. Nanosci. Nanotech. 2, 209 (2002); L.A. Pozhar, Phys. Rev. E 61, 1432 (2000); L.A. Pozhar and K.E. Gubbins, Int. J. Thermophys. 20, 805 (1999); L.A. Pozhar and K.E. Gubbins, Phys. Rev . E 56, 5367 (1997); E. Akhmatskaya, B.D. Todd, P.J. Daivis, D.L. Evans, K.E. Gubbins, L.A. Pozhar, J. Chem. Phys. 106, 4684 (1997); J.K. Percus, L.A. Pozhar, and K.E. Gubbins, Phys. Rev . E 51, 261 (1995); L.A. Pozhar and K.E. Gubbins, J. Chem. Phys. 99, 8970 (1993), etc. [Wider list of relevant publications is available on http://bama.ua.edu/lpozhar].Google Scholar
- 127.A.K. Singh et al., Phys. Rev. Lett. 91, 146802 (2003); V. Kumar and Y. Kawazoe, Phys. Rev. Lett. 90, 055502 (2003), etc.Google Scholar
- 128.P.S. Fodor, G.M. Tsoi, and L.E. Wenger, J. Appl. Phys. 91, 8186 (2002).Google Scholar
- 129.These and other aspects of such virtual synthesis of small artificial molecules with predesigned electronic properties are a subject of intensive research, and have been discussed in numerous publications, including L.A. Pozhar, A.T. Yeates, F. Szmulowicz and W.C. Mitchel, Phys. Rev. B 74, 085306 (2006); J. Virtual Nanoscale Sci. Technol. 14, No. 8 (2006): http://www.vjnano.org; L.A. Pozhar, A.T. Yeates, F. Szmulowicz and W.C. Mitchel, EuroPhys. Lett. 71, 380 (2005); Mat. Res. Soc. Proc. 829, 49 (2005), etc.
- 130.M.W. Schmidt et al., J. Comput. Chem. 14, 1347 (1993).Google Scholar
- 131.G.W. Bryant and W. Jaskolski, Mat. Res. Soc. Proc. 789, N13.2 (2004).Google Scholar
- 132.L.A. Pozhar and G. Brown, Mater. Res. Soc. Proc. 957, 0957-K10-04 (2007); L.A. Pozhar, G. Brown and W.C. Mitchel, Mater. Res. Soc. Proc. 959E, 0959-M05-02 (2007); L.A. Pozhar, A.T. Yeates, F. Szmulowicz and W.C. Mitchel, Mater. Res. Soc. Proc . 891, EE02-04.1 (2006); Ibid., 906E, HH01-05.1 (2006).Google Scholar
- 133.E.F. Archibong, A. St-Amant, S.K. Goh, and D.S. Marynick, Chem.Phys. Lett. 361, 411 (2002); S. Katircioğlu and H. Kökten, J. Mol. Struct.: Theochem 712, 67 (2004); E.-L. Li, X.-M. Luo, W. Shi, and X.-W. Wang, J. Mol. Struct.: Theochem 723, 79 (2005).Google Scholar
- 134.A.I. Boldyrev and L.-S. Wang, J. Phys. Chem. A 105, 10759 (2001).Google Scholar