Area-Selective Depositions of Self-assembled Monolayers on Patterned SiO2/Si Surfaces

  • Changshun WangEmail author
  • Tsuneo Urisu
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 5)


Area-selective depositions of SAMs have been demonstrated on SiO2/Si patterns, which are fabricated by synchrotron radiation (SR)-stimulated etching of SiO2 thin films on Si(100) substrates with SF6 + O2 as reaction gases and different types of masks. The SiO2 layer is made by thermal dry oxidation. A Co micro-pattern contact mask is fabricated by combining the photolithography and sputtering techniques, and a W submicron-pillar mask is deposited by using the focused ion beam-induced chemical vapor deposition (CVD). The SR-stimulated etching of SiO2 thin films on Si substrates is proven to have high spatial resolution, large selectivity, anisotropic etching, and low damage. The Co and W are found to be finer materials as SR etching masks. The etched patterns exhibit three-dimensional structures and the pattern surfaces are very flat and fit for depositing well-ordered monolayers on them. A dodecene SAM is deposited on the Si surface of the patterns, and trichlorosilane-derived SAMs (octadecyltrichlorosilane, and/or octenyltrichlorosilane) are deposited on the SiO2 of the patterns. The deposited SAMs are densely packed and well-ordered and are characterized by infrared spectroscopy, ellipsometry, and water contact angle measurements. Moreover, the surface of the octenyltrichlorosilane monolayer is changed from hydrophobic to hydrophilic by oxidizing the vinyl (–CH=CH2) end groups. This patterning of SAMs on SiO2/Si patterns will be a potential structure for fabricating novel silicon-based biosensors and in biomedical studies.


Synchrotron Radiation Water Contact Angle Etching Rate SiO2 Layer SiO2 Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (10675083), the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Collaboration program of the Graduate University for Advanced Studies.


  1. 1.
    Akazawa H, Takahashi J, Utsumi Y, Kawashima I, Urisu T (1991) Photostimulated evaporation of SiO2 and Si3N4 films by synchrotron radiation and its application for low-temperature cleaning of Si surface. J. Vac. Sci. Technol. A 9: 2653–2661CrossRefGoogle Scholar
  2. 2.
    Akazawa H (1995) Synchrotron-radiation-stimulated evaporation and defect formation in a-SiO2. Phys. Rev B 52: 12386–12394CrossRefGoogle Scholar
  3. 3.
    Balgar T, Bautista R, Hartmann N, Hasselbrink E (2003) An AFM study of the growth kinetics of the self-assembled octadecylsiloxane monolayer on oxidized silicon. Surf. Sci. 532: 963–969CrossRefGoogle Scholar
  4. 4.
    Brzoska JB, Shahidzadeh N, Rondelez F (1992) Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings. Nature 360: 719–721CrossRefGoogle Scholar
  5. 5.
    Carroll GT, Wang DN, Turro NJ, Koberstein JT (2006) Photochemical micropattering of carbohydrates on a surface. Langmuir 22: 2899–2905CrossRefGoogle Scholar
  6. 6.
    Chen MS, Dulcey CS, Chrisey LA, Dressick WJ (2006) Deep-UV photochemistry and patterning of (aminoethylaminomethyl) phenethylsiloxane self-assembled monolayers. Adv. Funct. Mater. 16: 774–783CrossRefGoogle Scholar
  7. 7.
    Chi QJ, Zhang JD, Ulstrup J (2006) Surface microscopic structure and electrochemical rectification of a branched alkanethiol self-assembled monolayer. J Phys. Chem. B 110: 1102–1106CrossRefGoogle Scholar
  8. 8.
    Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36: 3770–3778CrossRefGoogle Scholar
  9. 9.
    Flamm DL, Donnelly VM, Mucha JA (1981) The reaction of fluorine atoms with silicon. J. Appl. Phys. 52: 3633–3639CrossRefGoogle Scholar
  10. 10.
    Henke BL, Lee P, Tanaka TJ, Shimabukuro RL, Fujikawa BK (1982) Low-energy x-ray interaction coefficients: Photoabsorption, scattering, and reflection. Atom. Data Nucl. Data. Tables 27: 1–144CrossRefGoogle Scholar
  11. 11.
    Hirano S, Yoshigoe A, Nagasono M, Mase K, Ohara J, Nonogaki Y, Takeda Y, Urisu T (1998) Ultrahigh-vacuum reaction apparatus to study synchrotron-radiation-stimulated processes. J. Synchrotron Rad. 5: 1363–1368CrossRefGoogle Scholar
  12. 12.
    Hiremath R, Varney SW, Swift JA (2004) Selective growth of a less stable polymorph of 2-iodo-4-nitroaniline on a self-assembled monolayer template. Chem. Commun. 23: 2676–2677CrossRefGoogle Scholar
  13. 13.
    Igaki JY, Kanda K, Haruyama Y, Ishida M, Ochiai Y, Fujita JI, Kaito T, Matsui S (2006) Comparison of FIB-CVD and EB-EVD growth characteristics. 83: 1225–1228Google Scholar
  14. 14.
    Iimura K, Nakajima Y, Kato T (2000) A study on structures and formation mechanisms of self-assembled monolayers of n-alkyltrichlorosilanes using infrared spectroscopy and atomic force microscopy. Thin Solid Films 379: 230–239CrossRefGoogle Scholar
  15. 15.
    Inoue A, Ishida T, Choi N, Mizutani W, Tokumoto H (1998) Naometer-scale patterning of self-assembled monolayers films on native silicon oxide. Appl. Phys. Lett. 73: 1976–1978CrossRefGoogle Scholar
  16. 16.
    Ishida M, Fujita J, Ichihashi T, Ochiai Y, Kaito T, Matsui S (2003) Focused ion beam-induced fabrication of tungsten structures. J. Vac. Sci. Technol. B 21: 2728–2731CrossRefGoogle Scholar
  17. 17.
    Ito E, Nakamura F, Kanai K, Ouchi Y, Seki K, Hara M (2006) Characterization of COOH-terminated self-assembled monolayers and adsorption efficiency of DNA molecules studied by x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure spectroscopy. Jpn. J. Appl. Phys. 45: 409–412CrossRefGoogle Scholar
  18. 18.
    Kageshima H, Shiraishi K, Uematsu M (1999) Universal theory of Si oxidation rate and importance of interfacial Si emission. Jpn. J. Appl. Phys. 38: L971–L974Google Scholar
  19. 19.
    Komeda T, Namba K, Nishioka Y (1997) Self-assembled-monolayer film islands as a self-patterned-mask for SiO2 thickness measurement with atomic force microscopy. Appl. Phys. Lett. 70: 3398–3400CrossRefGoogle Scholar
  20. 20.
    Koops HWP, Weiel R, Kern DP, Baum TH (1988) High-resolution electro-beam induced deposition. J. Vac. Sci. Technol. B 6: 477–481CrossRefGoogle Scholar
  21. 21.
    Leoni L, Desai TA (2004) Micromachined biocapsules for cell-based sensing and delivery. Adv. Drug Deliv. Rev. 56: 211–229CrossRefGoogle Scholar
  22. 22.
    Loaiza OA, Campuzano S, Lopez-Berlanga M, Pedretro MA, Pingarron JM (2005) Development of a DNA sensor based on alkanethiol self-assembled monolayer-modified electrodes. Sensors 5: 344–363CrossRefGoogle Scholar
  23. 23.
    Lora-Tamayo A, Dominguez E, Lora-Tamayo E, Llabres J (1978) A New model of the thermal growth of a silicon dioxide layer. Appl. Phys. 17: 79–84CrossRefGoogle Scholar
  24. 24.
    Maboudian R, Ashurst WR, Carraro C (2000) Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sen. Actuators 82: 219–223CrossRefGoogle Scholar
  25. 25.
    Maoz R, Cohen SR, Sagiv J (1999) Nanoelectrochemical patterning of monolayer surfaces: toward spatially defined self-assembly of nanostructures. Adv. Mater. 11: 55–61CrossRefGoogle Scholar
  26. 26.
    Matsui S, Kometani R (2007) Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition and its applications. IEICE Trans. Electron. E90C: 25–35CrossRefGoogle Scholar
  27. 27.
    More SD, Graaf H, Baune M, Wang CS, Urisu T (2002) Influence of substrate roughness on the formation of aliphatic self-assembled monolayers (SAMs) on silicon (100). Jpn. J. Appl. Phys. 41: 4390–4394CrossRefGoogle Scholar
  28. 28.
    Mrksich M, Whitesides GM (1995) Patterning self-assembled monolayers using microcontact printing: A new technology for biosensors? Trends Biotechnol. 13: 228–235CrossRefGoogle Scholar
  29. 29.
    Ninomiya K, Suzuki K, Nishimatsu S, Okada O (1987) Role of sulfur atoms in microwave plasma etching of silicon. J. Appl. Phys. 62: 1459–1468CrossRefGoogle Scholar
  30. 30.
    Ogawa T, Mochiji K, Ochiai I, Yamamoto S (1994) Low-temperature synchrotron-radiation-excited etching of silicon dioxide with sulfur hexafluoride adsorption. J. Appl. Phys. 75: 4680–4685CrossRefGoogle Scholar
  31. 31.
    Park YD, Kim DH, Jang Y, Hwang M, Lim JA, Cho K (2005) Low-voltage polymer thin-film transistors with a self-assembled monolayer as the gate dielectric. Appl. Phys. Lett. 87: 243509CrossRefGoogle Scholar
  32. 32.
    Parikh AN, Allara DL, Azouz IB, Rondelez F (1994) An Intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature. J. Phys. Chem. 98: 7577–7590CrossRefGoogle Scholar
  33. 33.
    Popat KC, Robert RW, Desai TA (2002) Characterization of vapor deposited thin silane films on silicon substrates for biomedical microdevices. Surf. Coat. Technol. 154: 253–261CrossRefGoogle Scholar
  34. 34.
    Raiteri R, Grattarola M, Butt HJ, Skladal P (2001) Micromechanical cantilever-based biosensors. Sens. Actuator B 79: 115–126CrossRefGoogle Scholar
  35. 35.
    Sheller NB, Petrash S, Foster MD, Tsukruk VV (1998) Atomic force microscopy and X-ray reflectivity studies of albumin adsorbed onto self-assembled monolayers of hexadecyltrichlorosilane. Langmuir 14: 4535–4544CrossRefGoogle Scholar
  36. 36.
    Sieval AB, Demirel AL, Nissink JWM, Linford MR, van der Maas JH, de Jeu WH, Zuilhof H, Sudholter EJR (1998) Highly stable Si-C linked functionalized monolayers on the silicon (100) surface. Langmuir 14: 1759–1736CrossRefGoogle Scholar
  37. 37.
    Takahashi JI, Utsumi Y, Urisu T (1991) Material selectivity in synchrotron radiation-stimulated etching of SiO2 and Si. J. Appl. Phys. 70: 2958–2962CrossRefGoogle Scholar
  38. 38.
    Takizawa M, Kim YH, Urisu T (2004) Deposition of DPPC monolayers by the Langmuir-Blodgett method on SiO2 surfaces covered by octadecyltrichlorosilane self-assembled monolayer islands. Chem. Phys. Lett. 385: 220–224CrossRefGoogle Scholar
  39. 39.
    Tero R, Takizawa M, Li YJ, Yamazaki M, Urisu T (2004) Deposition of phospholipid layers on SiO2 surface modified alkyl-SAM islands. Appl. Surf. Sci. 238: 218–222CrossRefGoogle Scholar
  40. 40.
    Tirrell M, Kokkoli E, Biesalski M (2002) The role of surface science in bioengineered material. Surf. Sci. 500: 61–68CrossRefGoogle Scholar
  41. 41.
    Urisu T, Kyuragi H (1987) Synchrotron radiation-excited chemical-vapor deposition and etching. J. Vac. Sci. Technol. B 5: 1436–1440CrossRefGoogle Scholar
  42. 42.
    Urisu T, Kyuragi H, Utsumi Y, Takahashi J, Kitamura M (1989) Synchrotron radiation stimulated semiconductor processes: Chemical vapor deposition and etching. Rev. Sci. Instum. 60: 2157–2159CrossRefGoogle Scholar
  43. 43.
    Utke I, Luisier A, Hoffmann P, Laub D, Buffat PA (2002) Focused-electron-beam-induced deposition of freestanding three-dimensional nanostructures of pure coalesced copper crystals. Appl. Phys. Lett. 81: 3245–3247CrossRefGoogle Scholar
  44. 44.
    Vuillaume D, Boulas C, Collet J, Allan G, Delerue C (1998) Electronic structure of a heterostructure of an alkylsiloxane self-assembled monolayer on silicon. Phys. Rev. B 58: 16491–16498CrossRefGoogle Scholar
  45. 45.
    Wagner A, Levin JP, Mauer JL, Blauner PG, Kirch SJ, Longo P (1990) X-ray mask repair with focused ion beams. J. Vac. Sci. Technol. B 8: 1557–1564CrossRefGoogle Scholar
  46. 46.
    Wang CS, More SD, Wang ZH, Yamamura S, Nonagaki Y, Urisu T (2003) Patterning SiO2 thin films using synchrotron radiation stimulated etching with a Co contact mask. J. Vac. Sci. Technol. B 21: 818–822CrossRefGoogle Scholar
  47. 47.
    Wang CS, Pan X, Sun CY, Urisu T (2006) Area-selective deposition of self-assembled monolayers on SiO2/Si(100) patterns. Appl. Phys. Lett. 89: 233105CrossRefGoogle Scholar
  48. 48.
    Wang CS, Urisu T (2003) Synchrotron radiation stimulated etching of SiO2 thin films with a Co contact mask for the area-selective deposition of self-assembled monolayer. Jpn. J. Appl. Phys. 42: 4016–4019CrossRefGoogle Scholar
  49. 49.
    Wang CS, Urisu T (2005) Synchrotron radiation stimulated etching SiO2 thin films with a contact cobalt mask. Appl. Surf. Sci. 242: 276–280CrossRefGoogle Scholar
  50. 50.
    Wang CS, Zhang XQ, Urisu T (2006) Synchrotron-radiation-stimulated etching of SiO2 thin films with a tungsten nano-pillar mask. J. Synchrotron Rad. 13: 432–434CrossRefGoogle Scholar
  51. 51.
    Wasserman SR, Tao YT, Whitesides GM (1989) Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates. Langmuir 5: 1074–1087CrossRefGoogle Scholar
  52. 52.
    Watanabe T, Tatsumura K, Ohdomari I (2006) New linear-parabolic rate equation for thermal oxidation of silicon. Phys. Rev. Lett. 96: 196102CrossRefGoogle Scholar
  53. 53.
    Wu AP, Talham DR (2000) Photoisomerization of azobenzene chromophores in organic/ inorganic zirconium phosphonate thin films prepared using a combined Langmuir-Blodgett and self-assembled monolayer deposition. Langmuir 16: 7449–7456CrossRefGoogle Scholar
  54. 54.
    Yamazaki T, Imae T, Sugimura H, Saito N, Hayashi K, Takai K (2005) Photolithographic patterning of dendrimer monolayers and pattern-selective adsorption of adsorption of linear macromolecules. J. Nanosci. Nanotechno 5: 1792–1800CrossRefGoogle Scholar
  55. 55.
    Zhang SG (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21: 1171–1178CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Jiao Tong UniversityShanghai 200240China
  2. 2.Department of Vacuum UV PhotoscienceInstitute for Molecular ScienceMyodaijiJapan

Personalised recommendations