Advertisement

Fabrication of Oxide Nanoparticles by Ion Implantation and Thermal Oxidation

  • H. Amekura
  • N. Kishimoto
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 5)

Abstract

Fabrication of oxide nanoparticles (NPs) in transparent insulators by metal ion implantation and subsequent thermal oxidation (II&TO) is reviewed. After a short historical review of the II&TO method, fundamental issues concerning two important processes in the II&TO method, i.e., (i) formation of metal NPs by ion implantation and (ii) thermal oxidation of the metal NPs, are described. Then the highlights of this chapter, i.e., the formation of oxide NPs by the II&TO method, are reviewed. Oxide NP systems of NiO, CuO, and ZnO have been formed by the conventional II&TO method, i.e., the II&TO method using atmospheric pressure of oxygen gas. Each of the NP system shows different characteristics. While NiO, CuO (and Cu2O) NP systems show the oxide formation with little redistribution of the depth profiles, i.e., the oxide NPs are retained inside the SiO2 substrate, ZnO NPs are formed on the surface of the SiO2 substrate after prominent depth redistribution. Furthermore, recent developments in the II&TO method, i.e., the second generation of the II&TO method, are shown. ZnO NPs embedded in SiO2 substrate are formed by low temperature and long-term oxidation. Cu2O NPs, which are not most stable under atmospheric pressure of oxygen, are formed by two-step annealing. Consequently, selective formation of CuO and Cu2O NPs is possible using the conventional II&TO and the two-step II&TO method, respectively. Finally, some remaining aspects of the oxide NP formation by the II&TO method are discussed.

Keywords

Surface Plasmon Resonance Rutherford Backscattering Spectrometry Surface Plasmon Resonance Peak Gibbs Energy Change Surface Plasmon Resonance Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Drs. N. Umeda, Y. Takeda, K. Kono, M. Yoshitake, Y. Sakuma, M. Ohnuma, S. Hishita, M. Tanaka, H.-S. H. Boldyryeva (NIMS), Dr. Y. Katsya (Spring-8 service Co. Ltd.), Wang, O.A. Plaksin (SSC RF, A.I. Leypunsky Institute of Physics. & Power Engineering, Russia), Profs. Ch. Buchal and S. Mantl (Forschungszenturum Juelich, Germany) for collaborations. They appreciate the staffs of BL15XU, NIMS and of Spring-8 for their help at the beam line. The high temperature XRD measurements were performed under the approval of NIMS Beamline station (Proposal No. 2007A4501 and 2007B4502). Also the authors thank Profs. X.T. Zu (University of Electronic Science & Technology, China), Y.C. Liu (Northeast Normal University China), D. Ila (Alabama A&M University, USA), Dr. C. Marques (Instituto Tecnolo’gico e Nuclear, Portugal), Dr. P.K. Kuiri (Institute of Physics, India), Prof. G. Mattei (University of Padova, Italy), Dr. M.A. Tagliente (Centro Ricerche Brindisi, Italy), and Prof. Y. Saito (University of Yamanashi, Japan) for exchange of information.

Some parts of this study were financially supported by JSPS-Kakenhi (No. 18510102), the Budget for Nuclear Research of the MEXT based on the screening and counseling by the Atomic Energy Commission, Futaba Electronics Memorials Foundation, and Nippon Sheet Glass Foundation for Materials Science and Engineering.

References

  1. 1.
    Adhikari AR, Huang MB, Wu D, Dovidenko K, Wei BQ, Vajtai R, Ajayan PM (2005) Appl. Phys. Lett. 86, 053104.Google Scholar
  2. 2.
    Amekura H, Takeda Y, Kono K, Kitazawa H, Kishimoto N (2003) Rev. Adv. Mater. Sci. 5, 178.Google Scholar
  3. 3.
    Amekura H, Kishimoto N (2003) J. Appl. Phys. 94, 2585.Google Scholar
  4. 4.
    Amekura H, Kitazawa H, Kishimoto N (2004) Nucl. Instrum. Methods B219–220, 825.Google Scholar
  5. 5.
    Amekura H, Takeda Y, Kishimoto N (2004) Nucl. Instrum Methods B222, 96.Google Scholar
  6. 6.
    Amekura H, Kitazawa H, Umeda N, Takeda Y, Kishimoto N (2004) Nucl. Instrum. Methods B 222, 114.Google Scholar
  7. 7.
    Amekura H, Umeda N, Takeda Y, Lu J, Kishimoto N (2004) Appl. Phys. Lett. 85, 1015.Google Scholar
  8. 8.
    Amekura H, Fudamoto Y, Takeda Y, Kishimoto N (2005) Phys. Rev. B 71, 172404.Google Scholar
  9. 9.
    Amekura H, Umeda N, Takeda Y, Lu J, Kono K, Kishimoto N (2005) Nucl. Instrum. Methods B230, 193.Google Scholar
  10. 10.
    Amekura H, Umeda N, Sakuma Y, Kishimoto N, Buchal Ch (2005) Appl. Phys. Lett. 87, 013109.Google Scholar
  11. 11.
    Amekura H, Kono K, Takeda Y, Kishimoto N (2005) Appl. Phys. Lett. 87, 153105.Google Scholar
  12. 12.
    Amekura H, Umeda N, Sakuma Y, Plaksin OA, Takeda Y, Kishimoto, Buchal Ch (2006) Appl. Phys. Lett. 88, 153119.Google Scholar
  13. 13.
    Amekura H, Plaksin OA, Yoshitake M, Takeda Y, Kishimoto N, Buchal Ch (2006) Appl. Phys. Lett. 89, 023115.Google Scholar
  14. 14.
    Amekura H, Umeda N, Takeda Y, Kishimoto N (2006) Appl. Phys. Lett. 89, 223120.Google Scholar
  15. 15.
    Amekura H, Umeda N, Yoshitake M, Kono K, Kishimoto N, Buchal Ch (2006) J. Cryst. Growth 287, 2.Google Scholar
  16. 16.
    Amekura H, Kono K, Kishimoto N, Buchal Ch (2006) Nucl. Instrum. Methods B 242, 96.Google Scholar
  17. 17.
    Amekura H, Plaksin OA, Kono K, Takeda Y, Kishimoto N (2006) J. Phys. D: Appl. Phys. 39, 3659.Google Scholar
  18. 18.
    Amekura H, Ohnuma M, Kishimoto N, Buchal Ch, Mantl S (2008) J. Appl. Phys. 104, 114309.Google Scholar
  19. 19.
    Amekura H, Umeda N, Boldyryeva H, Kishimoto N, Buchal Ch, Mantl S (2007) Appl. Phys. Lett. 90, 083102.Google Scholar
  20. 20.
    Amekura H, Sakuma Y, Yoshitake M, Takeda Y, Kishimoto N, Buchal Ch (2007) Nucl. Instrum Methods B 257, 64.Google Scholar
  21. 21.
    Amekura H, Plaksin OA, Kishimoto N, Buchal Ch (2007) Surf. Coating Tech. 210, 8214.Google Scholar
  22. 22.
    Amekura H, Yoshitake M, Plaksin OA, Kishimoto N, Buchal Ch, Mantl S (2007) Appl. Phys. Lett. 91, 063113.Google Scholar
  23. 23.
    Amekura H, Umeda N, Kono K, Takeda Y, Kishimoto N, Buchal Ch, Mantl S (2007) Nanotechnology 18, 395707.Google Scholar
  24. 24.
    Amekura H, Wang HS, Hishita S, Pan J, Kishimoto N, Buchal Ch, Mantl S (2009) Nanotechnology 20, 065303.Google Scholar
  25. 25.
    Arnold GW (1975) J. Appl. Phys. 46, 4466.Google Scholar
  26. 26.
    Arnold GW and Borders JA (1977) J. Appl. Phys. 48, 1488.Google Scholar
  27. 27.
    Balamurugan B, Aruan I, Mehta BR (2004) Phys. Rev. B 69, 165419.Google Scholar
  28. 28.
    Beyer V, von Borany J (2008) Phys. Rev. B 77, 014107.Google Scholar
  29. 29.
    Brongersma ML, Snoeks E, van Dillen T, Polman A (2002) J. Appl. Phys. 88, 59.Google Scholar
  30. 30.
    Cao H, Zhao YG, Ho ST, Seelig EW, Wang QH, Chang RPH (1999) Phys. Rev. Lett. 82, 2278.Google Scholar
  31. 31.
    Cattaruzza E (2000) Nucl. Instrum Methods B 169, 141.Google Scholar
  32. 32.
    Chang H, Park HD, Sohn KS (1999) J. Korean Phys. Soc. 34, 545.Google Scholar
  33. 33.
    Chen J, Mu R, Ueda A, Wu MH, Tung YS, Gu Z, Henderson DO, White CW, Budai JD, Zuhr RA (1998) J. Vac. Sci. Technol. A 16, 1409.Google Scholar
  34. 34.
    Ching WY, Xu Y-N, Wong KW (1989) Phys. Rev. B 40, 7684.Google Scholar
  35. 35.
    de Julian Fernandez C, Mattei G, Sada C, Battaglin C, Mazzoldi P (2006) Mater. Sci. Eng. C 26, 987.Google Scholar
  36. 36.
    De Marchi G, Mattei G, Mazzoldi P, Sada C, Miotello A (2002) J. Appl. Phys. 92, 4249.Google Scholar
  37. 37.
    Devine RAB (1994) Nucl. Instrum Methods B 91, 378.Google Scholar
  38. 38.
    Ding X-Z, Chiah MF, Cheung WY, Wong SP, Xu JB, Wilson IH, Wang H-M, Chen L-Z, Liu X-H (1999) J. Appl. Phys. 86, 2550.Google Scholar
  39. 39.
    Diwald O, Thompson TL, Goralski EG, Walck SD, Yates JT (2004) J. Phys. Chem. B 180, 52.Google Scholar
  40. 40.
    D’Orleans C, Stoquert, JP, Estournes C, Cerruti C, Grob JJ, Guille JL, Haas F, Muller D, Richard-Plouet M (2003) Phys. Rev. B 67, 220101.Google Scholar
  41. 41.
    Elliott RJ (1961) Phys. Rev. 124, 340.Google Scholar
  42. 42.
    Espiau de Lamaestre R, Bernas H (2006) Phys. Rev. B 73, 125317.Google Scholar
  43. 43.
    Estourenes C, Lutz T, Guille JL (1996) J. Non-cryst. Solids 197, 192.Google Scholar
  44. 44.
    FACT (Facility for the Analysis of Chemical Thermodynamics) http://www.crct.polymtl.ca/fact/ http://www.crct.polymtl.ca/reacweb.htm
  45. 45.
    Farlow GC, Sklad PS, White CW, McHargue CJ (1990) J. Mater Res. 5, 1502.Google Scholar
  46. 46.
    Fromknecht R, Linker G, Sun K, Zhu S, Wang LM, van Veen A, van Huis MA, Weimann T, Wng J, Niemeyer J, Eichhorn F, Wang T (2004) Mat. Res. Soc. Symp. Proc. 792, 151.Google Scholar
  47. 47.
    Gonella F, Mazzoldi P (2002) In: Nalwa HS (de) Handbook of nanostructured materials and nanotechnology. Academic Press, San Diego, Vol. 4, Chap. 2.Google Scholar
  48. 48.
    Griscom DL (1991) J. Ceramic. Soc. Jpn. 99, 923.Google Scholar
  49. 49.
    Hache F, Ricard D, Flytzanis C (1986) J. Opt. Soc. Am. B 3, 1647.Google Scholar
  50. 50.
    Hamann DR (1996) Phys. Rev. Lett. 76, 660.Google Scholar
  51. 51.
    Han C-J, Hems CR (1988) J. Electrochem. Soc. 135, 1824.Google Scholar
  52. 52.
    Haglund, RF, Yang L, Magruder RH, White CW, Zuhr RA, Yang L, Dorsinville, Alfano RR (1994) Nucl. Instrum Methods B 91, 493.Google Scholar
  53. 53.
    He H, Wang Y, Zou Y (2003) J. Phys. D: Appl. Phys. 36, 2972.Google Scholar
  54. 54.
    Heilmann A, Kreibig U (2000) Eur. Phys. J: Appl. Phys. 10, 193.Google Scholar
  55. 55.
    Heinig K-H, Schmidt B, Markwitz A, Groetzschel R, Strobel M, Ostwald S (1999) Nucl. Instrum. Methods B 148, 969.Google Scholar
  56. 56.
    Heinig K-H, Mueller T, Schmidt B, Strobel M, Moeller W (2003) Appl. Phys. A 77, 17.Google Scholar
  57. 57.
    Ho AY, Mitsui N, Mochiduki K, Fujita T, Ijima K, Saito Y (2008) Jpn. J. Appl. Phys. 47, 4612.Google Scholar
  58. 58.
    Hosono H (1993) Jpn. J. Appl. Phys. 32, 3892.Google Scholar
  59. 59.
    Hosono H, Imagawa H (1994) Nucl. Instrum Methods B 91, 510.Google Scholar
  60. 60.
    Hosono H (1995) Phys. Rev. Lett. 74, 110.Google Scholar
  61. 61.
    Ikeyama M, Nakao S, Tazawa S, Kadono K, Kamada K (2001) Nucl. Instrum. Methods B 175-177, 652.Google Scholar
  62. 62.
    Ito T, Masumi T (1997) J. Phys. Soc. Jpn. 66, 2185.Google Scholar
  63. 63.
    Ito T, Kawashima T, Yamaguchi H, Masumi T (1998) J. Phys. Soc. Jpn. 67, 2125.Google Scholar
  64. 64.
    Ito T, Yamaguchi H, Masumi T, Adachi S (1998) J. Phys. Soc. Jpn. 67, 3304.Google Scholar
  65. 65.
    JCPDS library, No. 40836 for Cu, No. 481548 for CuO, and No. 50667 for Cu2O, International Centre for Diffraction Data.Google Scholar
  66. 66.
    Jin Y-G, Chang KJ (2001) Phys. Rev. Lett. 86, 1793.Google Scholar
  67. 67.
    Johannessen B, Kluth P, Glover CJ, Azevedo GM, Llewllyn DL, Foran GJ, Ridgeway MC (2005) J. Appl. Phys. 98, 024307.Google Scholar
  68. 68.
    Kaiser U, Muller DA, Grazul JL, Chuvilin A, Kawasaki M (2002) Nature Materials 1, 102.Google Scholar
  69. 69.
    Kawasaki M, Ohtomo A, Ohkubo I, Koinuma H, Tang ZK, Yu P, Wong GKL (1998) Mater. Sci. Eng. B56, 239.Google Scholar
  70. 70.
    Kim JY, Rodriguez JA, Hanson JC, Frenkel AI, Lee PL (2003) J. Am. Chem. Soc.125, 10684.Google Scholar
  71. 71.
    Kishimoto N, Gritsyna VT, Kono K, Amekura H, Saito T (1997) Nucl. Instrum. Methods B 127/128, 579.Google Scholar
  72. 72.
    Kishimoto N, Gritsyna VT, Kono K, Amekura H, Saito T (1997) Mater. Res. Soc. Symp. Proc. 438, 435.Google Scholar
  73. 73.
    Kleinman L, Mednick K (1980) Phys. Rev. 21, 1549.Google Scholar
  74. 74.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters, Spring, Berlin.Google Scholar
  75. 75.
    Kuiri PK, Lenka HP, Ghatak J, Sahu G, Joseph B, Mahapatra DP (2007) 102, 024315.Google Scholar
  76. 76.
    Kubaschewski O, Evans ELl, Alcock CB (1967) Metallurgical Thermochemistry, 4th ed. Pergamon, London.Google Scholar
  77. 77.
    Lee JK, Tewell CR, Schulze RK, Nastasi M, Hamby DW, Lucca DA, Jung HS, Hong KS (2005) Appl. Phys. Lett. 86, 183111.Google Scholar
  78. 78.
    Liu YC, Xu HY, Mu R, Henderson DO, Lu YM, Zhang JY, Shen DZ, Fan XW, White CW (2003) Appl. Phys. Lett. 83, 1210.Google Scholar
  79. 79.
    Liu YX, Liu YC, Shen DZ, Zhong GZ, Fan XW, Kong XG, Mu R, Henderson DO (2002) J. Cryst. Growth 240, 152.Google Scholar
  80. 80.
    Liu YX, Liu YC, Shen DZ, Zhong GZ, Fan XW, Kong XG, Mu R, Henderson DO (2002) Solid State Commun. 121, 531.Google Scholar
  81. 81.
    Liu YX, Liu YC, Shao CL, Mu R (2004) J. Phys. D: Appl. Phys. 37, 30215.Google Scholar
  82. 82.
    Lopez R, Haynes TE, Boatner LA, Feldman, Haglund RF (2002) Opt. Lett. 27, 1327.Google Scholar
  83. 83.
    Marques C, France N, Alves LC, da Silva RC, Alves E, Safran G, McHargue CJ (2007) Nucl. Insturm. Methods 257, 515.Google Scholar
  84. 84.
    Maxwell-Garnett JC (1906) Philos. R. Soc. London 205, 237.Google Scholar
  85. 85.
    Masumi T, Yamaguchi H, Ito T, Shimoyama H (1998) J. Phys. Soc. Jpn. 67, 67.Google Scholar
  86. 86.
    Mazzoldi P, Mttei G (2005) Rivista del Nuovo Cimento 28, 1.Google Scholar
  87. 87.
    McHargue CJ, Farlow GC, Sklad PS, White CW, Perez A, Kornilios N, Marest G (1987), Nucl. Insturm. Methods B 19/20, 813.Google Scholar
  88. 88.
    Meldrum A, Haglund RF, Boatner LA, White CW (2001) Adv. Mater 13, 1431.Google Scholar
  89. 89.
    Mie G (1908) Ann. Phys. 25, 377 [in German].Google Scholar
  90. 90.
    Mitsuishi K, Song M, Furuya K, Allen CW, Birtcher RC, Dahmen U (2003) Nucl. Instrum. Methods B 206, 109.Google Scholar
  91. 91.
    Moeller W, Eckstein W (1984) Nucl. Instrum. Methods B 2, 814.Google Scholar
  92. 92.
    Moeller W, Eckstein W, Biersack JP (1988) Computer Phys. Commun. 51, 355.Google Scholar
  93. 93.
    Mueller T, Heinig K-H, Schmidt B (2002) Mater. Sci. Eng. C19, 209.Google Scholar
  94. 94.
    Muroi M, Street R, McCormick PG (2000) J. Appl. Phys. 87, 3242.Google Scholar
  95. 95.
    Muntele I, Muntel C, Thevenard P, Ila D (2007) Surf. Coating Tech., 201, 8557.Google Scholar
  96. 96.
    Nagoshi M (1998) -ray Photoelectron Spectroscopy, in The Surface Science Society of Japan (ed.), Maruzen, Tokyo p. 137 [in Japanese].Google Scholar
  97. 97.
    Nakajima A, Futatsugi T, Nakao H, Usuki T, Horiguchi N, Yokoyama N (1998) J. Appl. Phys. 84, 1316.Google Scholar
  98. 98.
    Ogasawara T, Ashida M, Motoyama N, Eisaki H, Uchida S, Tokura Y, Ghosh H, Shukla A, Mazumdar S, Kuwata-Gonokami M (2000) 85, 2204.Google Scholar
  99. 99.
    Ohkubo M, Hioki T, Kawamoto J (1986) J. Appl. Phys. 60, 1325.Google Scholar
  100. 100.
    Okubo N, Umeda N, Takeda Y, Kishimoto N (2003) Nucl. Instrum. Methods B 206, 610.Google Scholar
  101. 101.
    Oliver A, Cheang-Wong JC, Roiz J, Rodriguez-Fernandez L, Hernandez JM, Crespo-Sosa A, Munoz E (2002) Nucl. Instrum Methods B 191, 333.Google Scholar
  102. 102.
    Orellana W, da Slva AJR, Fazzio A (2001), Phys. Rev. Lett. 87, 155901.Google Scholar
  103. 103.
    Ostwald S, Schmidt B, Heinig K-H (2000) Surf. Interface Anal. 29, 249.Google Scholar
  104. 104.
    Oyoshi K (2002) Jpn. J. Appl. Phys. 41, 6145.Google Scholar
  105. 105.
    Oyoshi K, Tagami T, Tanaka S (1991) Jpn. J. Appl. Phys. 30, 1854.Google Scholar
  106. 106.
    Ozgur U, Alivov Y, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho S-J, Morkoc H (2005) J. Appl. Phys. 98, 0431301.Google Scholar
  107. 107.
    Palik ED (1998) Handbook of Optical Constants of Solids, Academic Press, San Diego.Google Scholar
  108. 108.
    Paul GK, Nawa Y, Sato H, Sakurai T, Akimoto K (2006) Appl. Phys. Lett. 88, 141901.Google Scholar
  109. 109.
    Pena O, Rodriguez-Fernandez L, Cheang-Wong JC, Santiago P, Crespo-Sosa A, Munoz E, Oliver A (2006) J. Non-Cryst. Solids 352, 349.Google Scholar
  110. 110.
    Perenboom JAAJ, Wyder P, Meier F (1981) Phys. Reports 78, 173.Google Scholar
  111. 111.
    Perez A, Treilleux M, Capra T, Griscom DL (1987) J. Mater Res. 2, 910.Google Scholar
  112. 112.
    Peyghambarian N, Koch SW, Mysyrowicz A (1993) Introduction to Semiconductor Optics, Prentice-Hall, Englewood Cliffs, NJ, Chap. 7, p. 174.Google Scholar
  113. 113.
    Plaksin OA, Takeda Y, Amekura H, Kishimoto N (2006) J. Appl. Phys. 99, 044307.Google Scholar
  114. 114.
    Ramaswamy V, Haynes TE, White CW, Moberly-Chan WJ, Roorda S, Aziz MJ (2005) Nano Lett. 5, 373.Google Scholar
  115. 115.
    Ren F, Guo LP, Shi Y, Chen DL, Wu ZY, Jiang CZ (2006) J. Phys. D: Appl. Phys. 39, 488.Google Scholar
  116. 116.
    Rizza GC, Stobel M, Heinig K-H, Bernas H (2001) Nucl. Instrum Methods B 178, 78.Google Scholar
  117. 117.
    Rizza GC, Cheverry H, Gacoin T, Lamasson A, Henrry S (2007) J. Appl. Phys. 101, 014321.Google Scholar
  118. 118.
    Roiz J, Oliver A, Munoz E, Rodriguez-Fernandez L, Hernandez JM, Cheang-Wong JC (2004) J. Appl. Phys. 95, 1783.Google Scholar
  119. 119.
    Ruppin R (1986) J. Appl. Phys. 59, 1355.Google Scholar
  120. 120.
    Schmid-Whitley RD, Martinez-Clemente M, Revocolecschi A (1974) J. Cryst. Growth 23, 113.Google Scholar
  121. 121.
    Shimizu T, Matsumoto T, Goto A, Chandrasekar Rao TV, Yoshimura K, Kosuge K (2003) Phys. Rev. B 68, 224433.Google Scholar
  122. 122.
    Skuja L, Guttler B (1996) Phys. Rev. Lett. 77, 2093.Google Scholar
  123. 123.
    Snoeks E, Weber T, Cacciato A, Plolman A (1995) J. Appl. Phys. 78, 4723.Google Scholar
  124. 124.
    Strobel M (1999) Modeling and Computer Simulation of Ion Beam Synthesis of Nanostructures. Forschungszentrum Rossendorf, Wissenschaftlich-Technische Berichte FZR-277.Google Scholar
  125. 125.
    Strobel M, Heinig K-H, Moeller W, Meldrum A, Zhou DS, White CW, Zuhur RA (1999) Nucl. Instrum. Methods B 147, 343.Google Scholar
  126. 126.
    Strobel M, Heinig K-H, Moeller W (1999) Nucl. Instrum. Methods B 148, 104.Google Scholar
  127. 127.
    Strobel M, Heinig K-H, Moeller W (2001) Phys. Rev. B 64, 245422.Google Scholar
  128. 128.
    Swalin RA (1962) Thermodynamics of Solids, John Wiley and Sons, New York.Google Scholar
  129. 129.
    Tagliente MA, Massaro M (2008) Nucl. Instrum. Methods B 266, 1055.Google Scholar
  130. 130.
    Tagliente MA, Massaro M, Mattei G, Mazzoldi P, Bello V, Pellegrini G (2008) J. Appl. Phys. 104, 093505.Google Scholar
  131. 131.
    Townsend PD, Chandler PJ, Zhang L (1994) Optical Effects of Ion Implantation. Cambridge University Press, Cambridge.Google Scholar
  132. 132.
    Tsuda N, Nasu K, Fujimori A, Shiratori K (1993) Electron conduction in oxides. Springer, Berlin.Google Scholar
  133. 133.
    Tsukazaki A, et al. (2005) Nature-Mater. 4, 42.Google Scholar
  134. 134.
    Umeda N, Kishimoto N, Takeda Y, Lee CG, Gritsyna VT (2000) Nucl. Instrum. Methods B 166–167, 864.Google Scholar
  135. 135.
    Umeda N, Amekura H, Kishimoto N (2008) Vacuum 83, 645.Google Scholar
  136. 136.
    Valentin E, Bernas H, Ricolleau C, Creuzet F (2001) Phys. Rev. Lett. 86, 99.Google Scholar
  137. 137.
    van Huis MA, van Veen A, Schut H, Kooi BJ, De Hosson JThM, Du XS, Hibma T, Fromknecht R (2004) Nucl. Instrum. Methods B 216, 390.Google Scholar
  138. 138.
    White CW, Meldrum A, Sonder E, Budai JD, Zuhr RA, Withrow SP, Henderson DO (1999) Mat. Res. Soc. Symp. Proc. 540, 219.Google Scholar
  139. 139.
    White CW, Withrow SP, Budai JD, Boatner LA, Sorge KD, Thompson JR, Beaty KS, Meldrum A (2002) Nucl. Instrum. Methods B 191, 437.Google Scholar
  140. 140.
    Williams EL (1965) J. Am Cer. Soc. 48, 190.Google Scholar
  141. 141.
    Wu H, Wang W, Zhu W (2006) J. Phys. Chem. B 110, 13829.Google Scholar
  142. 142.
    Xiang X, Zu XT, Bao JW, Zhu S, Wang LM (2005) J. Appl. Phys. 98, 073524.Google Scholar
  143. 143.
    Xiang X, Zu XT, Zhu S, Wang LM (2005) Physica B369, 88.Google Scholar
  144. 144.
    Xiang X, Zu XT, Zhu S, Wei QM, Zhang CF, Sun K, Wang LM (2006) Nanotechnology 17, 2636.Google Scholar
  145. 145.
    Yang H, Ouyang J, Tang A, Xiao Y, Li X, Dong X, Yu Y (2006) Mater. Res. Bull. 41, 1310.Google Scholar
  146. 146.
    Yao W-T, Yu S-H, Zhou Y, Jiang J, Wu Q-S, Zhang L, Jiang J (2005) J. Phys. Chem. 109, 14011.Google Scholar
  147. 147.
    Yarovaya RG, Shklyarevskii IN, El-Shazly AFA (1974) Sov. Phys. - JETP 38, 331.Google Scholar
  148. 148.
    Zhao J, Chen X, Wang G (1994) Phys. Rev. B 50, 15424.Google Scholar
  149. 149.
    Ziegler JF, Biersack JP, Littmark U (1985) The Stopping and Range of Ions in Solids, Pergamon, New York, Chap. 8. http://www.srim.org/
  150. 150.
    Zou JM, Kim M, O’Keeffe M, Spence JCH (1999) Nature 401, 49.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.National Institute for Materials Science (NIMS)Japan
  2. 2.Quantum Beam Center, National Institute for Materials Science (NIMS)Japan

Personalised recommendations