Skip to main content

Carbons and Nanocarbons

  • Chapter
  • 1685 Accesses

Part of the book series: Fuel Cells and Hydrogen Energy ((FCHY))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dahl, J.E. Liu, S.G. Carlson, R.M.K. (2003) “Isolation and structure of higher diamendoids, nanometer-sized diamond molecules.” Science, 299 (5603)96–99.

    Article  Google Scholar 

  2. Enoki, T. Yu, V. Osipov, K. Takai, K. Takahara, M. Endo, T. Hayashi, Y. Hishiyama, Y. Kaburagi, A. Ya, V. (2006) “Magnetic and high resolution TEM studies of nanographite derived from nanodiamond.” Carbon, 44 (7)1225–1234.

    Article  Google Scholar 

  3. Novoselov, K.S. Geim, A.K. Morozov, S.V. Jing, D. Zhang, Y. Dubonos, S.V. Grigorieva, I.V. Firsov, A.A. (2004) “Electric field effect in atomically thin carbon films.” Science, 306 666.

    Article  Google Scholar 

  4. Becher, M. Haluska, M. Hircher, M. Quintel, A. Skakalova, V. Detlaff-Weglikowska, U. Chen, X. Hulman, M. Choi, Y. Roth, S. Meregalli V. et al. (2003) “Hydrogen storage in carbon nanotubes.” C.R. Physique, 4 1055–1062.

    Article  Google Scholar 

  5. Richardson, D.D. (1977) “A calculation of Van der Walls interactions in and between layers of atoms: application to graphite.” J.Phys. C Solid State Phys., 10 3235–3242.

    Article  Google Scholar 

  6. Heine, T. Zhechkov, L. Seifert, G. (2004) “Hydrogen storage by physisorption of nanostructured graphite platelets.” Phys.Chem.Chem.Phys., 6 980–984.

    Article  Google Scholar 

  7. Lee, S.M. An, K.H. Lee, Y.H. Seifert, G. Frauenheim, T. (2001) “A hydrogen storage mechanism in single-walled carbon nanotubes.” J.Am.Chem.Soc., 123 5059–5063.

    Article  Google Scholar 

  8. Toshiharu, F. (2004) “Invention of hydrogen absorbed nano-graphite and its structure.” J. Crystallogr. Soc. Japan, 46 (1)32–37.

    Google Scholar 

  9. Fukunaga, T. Itoh, K. Orimo, S. Aoki, M. Fujii, H. (2001) “Location of deuterium atoms absorbed in nanocrystalline graphite prepared by mechanical alloying.” J. Alloys Compd., 327 224–229.

    Article  Google Scholar 

  10. Majer, G. Stanik, E. Orimo, S. (2003) “NMR studies of hydrogen motion in nanostructured hydrogen-graphite systems.” J. Alloys Compd., 356–357 617–621.

    Article  Google Scholar 

  11. Kimura, T. Muto, S. Tatsumi, K. Tanabe, T. Kiyobayashi, T. (2006) “Intercalated hydrogen in nanostructured graphite studied by electron energy-loss spectroscopy and molecular orbital calculations.” J. Alloys Compd., 413 150–154.

    Article  Google Scholar 

  12. Chambers, A. Park, C. Baker, R.T.K. Rodriguez, N.M. (1998) “Hydrogen storage in graphite nanofibers.” J. Phys. Chem. B, 102 (22)4253–4256.

    Article  Google Scholar 

  13. Lueking, A.D. Yang, R.T. Rodriguez, N.M. Baker, R.T.K. (2004) “Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions.” Langmuir, 20 (3)714–721.

    Article  Google Scholar 

  14. R. Chahine, P. Benard, “Assesment of hydrogen storage on different carbons.” In Report IEA Task 12 Metal Hydrides and Carbon for Hydrogen Storage 2001: Project No. C-3, (2001) pp. 104–107.

    Google Scholar 

  15. Benard, P. Chahine, R. (2007) “Storage of hydrogen by physisorption on carbon and nanostructured materials.” Scripta Mat., 56 803–808.

    Article  Google Scholar 

  16. Fukunaga, T. Nagano, K. Mizutani, U. Wakayama, H. Fukushima, Y. (1998) “Structural change of graphite subjected to mechanical milling.” J. Non-Cryst. Solids, 232–234 416–420.

    Article  Google Scholar 

  17. Nijkamp, M.G. Raaymakers, J.E.M.J. van Dillen, A.J. de Jong, K.P. (2001) “Hydrogen storage using physisorption- materials demands.” Appl. Phys. A, 72 619–623.

    Article  Google Scholar 

  18. Strobel, R. Garche, J. Moseley, P.T. Jorissen, L. Wolf, W. (2006) “Hydrogen storage by carbon materials.” J. Power Sources, 159 781–801.

    Article  Google Scholar 

  19. Azuma, H. (1998) “A new structural model for nongraphitic carbons.” J. Appl. Cryst., 31 910–916.

    Article  Google Scholar 

  20. Z.S. Wronski, G.J.C. Carpenter, P.J. Kalal, “An integrated characterization approach for ranking nickel hydroxides designed for high-performance positive electrodes in batteries for electric vehicles.” In W.A. Ladgrabe, B. Serosati, Editor, Exploratory Research & Development of Batteries for Electric & Hybrid Vehicles, (1996), Pennington, N.J. pp. 177–188.

    Google Scholar 

  21. Nakayama, A. Suzuki, K. Enoki, T. Koga, K. Endo, M. Shindo, N. (1996) “Electronic and magnetic properties of activated carbon fibers.” Bull. Chem. Soc. Jpn., 69 (2)333–339.

    Article  Google Scholar 

  22. Wronski, Z.S. (2001) “Materials for rechargeable batteries and clean hydrogen energy sources.” Int. Mater. Rev., 46 (1)1–49.

    Article  Google Scholar 

  23. Z.S. Wronski, “On the possibility of mechano-chemical activation of powders used in electrochemical power sources.” In 200 Years of Electrochemical Energy Conversion – Bicentenary of Volta’s Invention of the Energy Pile, International Society of Electrochemistry (ISE) Symposium, ISE, Geneva, 5–10 September (1999). University of Pavia, Pavia, Italy (CD ROM), pp.830.

    Google Scholar 

  24. Z.S. Wronski, D. Martineau, G.J.C. Carpenter, “Layered nanocrystals for electrochemical power sources.” In Proceedings of the 203rd Meeting of The Electrochemical Society, Paris, France, April 27–May2, (2003). The Electrochem. Society, Pennington, NJ. (CD ROM), p. 1674.

    Google Scholar 

  25. Hentsche, M. Hermann, H. Lindackers, D. Seifert, G. (2007) “Microstructure and low temperature hydrogen capacity of ball milled graphite.” J. Hydrogen Energy, 32 1530–1536.

    Article  Google Scholar 

  26. Orimo, S. Zuttel, A. Schlapbach, L. Majer, G. Fukunaga, T. Fujii, H. (2003) “Hydrogen interaction with carbon nanostructures: current situation and future prospects.” J. Alloys Compd., 356–357 716–719.

    Article  Google Scholar 

  27. Smolira, A. Szymanska, M. Jartych, E. Calka, A. Michalak, L. (2005) “Structural transformations in graphite induced by magneto-mechanical-milling in hydrogen atmosphere.” J. Alloys Compd., 402 256–262.

    Article  Google Scholar 

  28. A. Zuttel, S. Orimo, “Hydrogen in nanostructured, carbon-related, and metastable materials.” MRS Bull. (Special Issue on Hydrogen Storage), (2002) 705.

    Google Scholar 

  29. Kojima, Y. Kawai, Y. Koiwai, A. Suzuki, N. Haga, T. Hioki, T. Tange, K. (2006) “Hydrogen adsorption and desorption by carbon materials.” J. Alloys Compd., 421 204–208.

    Article  Google Scholar 

  30. Hirscher, M. Becher, M. Haluska, M. von Zeppelin, F. Chen, X. Detlaff-Weglikowska, U. Roth, S. (2003) “Are carbon nanostructures an efficient hydrogen storage medium?” J. Alloys Compd., 356–357 433–437.

    Article  Google Scholar 

  31. Hwang, J.Y. Lee, S.H. Sim, K.S. Kim, J.W. (2002) “Synthesis and hydrogen storage of carbon nanofibres.” Synth. Met., 126 (1)81–85.

    Article  Google Scholar 

  32. Fan, Y.Y. Liao, B. Liu, M. Wei, Y.L. Lu, M.Q. Cheng, H.M. (1999) “Hydrogen uptake in vapor-grown carbon nanofibers.” Carbon, 37 1649–1651.

    Article  Google Scholar 

  33. Cheng, H.M. Liu, C. Fan, Y.Y. Li, F. Su, G. He, L.L. Liu, M. (2000) “Synthesis and hydrogen storage of carbon nanofibers and single-wall carbon nanotubes.” Z. Metallkd., 91 (4)306–310.

    Google Scholar 

  34. Strobel, R. Jorissen, L. Schliermann, T. Trapp, V. Schutz, W. Bohnhammel, K. Wolf, G. Garche, J. (1999) “Hydrogen adsorption on carbon materials.” J. Power Sources, 84 (2)221–224.

    Article  Google Scholar 

  35. Hirscher, M. Becher, M. Haluska, M. Quintel, A. Skakalova, V. Coi, Y.M. Detlaff-Weglikowska, U. Roth, S. Stepanek, I. Bernier, P. Leonhardt, A. Fink, J. (2002) “Hydrogen storage in carbon nanostructures.” J. Alloys Compd. 330–332 654–658.

    Article  Google Scholar 

  36. Hirscher, M. Becher, M. (2003) “Hydrogen storage in carbon nanotubes.” J. Nanosci. Nanotechnol., 3 (1–2)3–17.

    Article  Google Scholar 

  37. Nijkamp, M.G. Raaymakers, J.E.M.J. van Dillen, A.J. de Jong, K.P. (2001) “Hydrogen storage using physisorption-materials demands.” Appl. Phys. A, 72 619–623.

    Article  Google Scholar 

  38. Casiraghi, C. Robertson, J. Ferrari, C. (2007) “Diamond-like carbon for data and beer storage.” Mater. Today, 10 (1–2)44–53.

    Article  Google Scholar 

  39. Kapitonov, I.N. Konkov, O.I. Terukov, E.I. Trapeznikova, I.N. (2000) “Amorphous carbon: how much of free hydrogen?” Diamond Relat. Mater., 9 707–710.

    Article  Google Scholar 

  40. Sui, Y. Qian, J. Zhang, J. Zhou, X. Gu, Z. Wu, Y. Fu, H. Wang, J. (1996) “Direct and catalytic hydrogenation of buckminsterfullerene C60.” Fullerenes, Nanotubes Carbon Nanostruct., 4 (5)813.

    Article  Google Scholar 

  41. Taylor, R. (1999), “Lecture notes on fullerene chemistry: A handbook for chemists,” Imperial College Press, London, UKpp. 248.

    Google Scholar 

  42. Y. Zhao, Y.-K. Kim, A.C. Dillon, M.J. Heben, S.B. Zhang, “Hydrogen storage in novel organometallic buckyballs.” Phys. Rev. Lett., 94(15) (2005) 155504/1–155504/4.

    Google Scholar 

  43. Yildrim, T. Iniguez, J. Ciraci, S. (2005) “Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C60.” Phys. Rev. B, 72 153403–1530407.

    Article  Google Scholar 

  44. Miyamato, J. Hattori, Y. Noguchi, D. Tanaka, H. Ohba, T. Utsumi, S. Kanoh, H. Kim, Y.A. Muramatsu, H. Hayashi, T. Endo, M. Kaneko, K. (2006) “Efficient H2 adsorption by nanopores of high-purity double-walled carbon nanotubes.” J. Am. Chem. Soc., 128 12636–12637.

    Article  Google Scholar 

  45. Ren, Y. Price, D.L. (2001) “Neuton scattering study of H2 adsorption in single-walled carbon nanotubes.” Appl. Phys. Lett., 79 (22)3684–3487.

    Article  Google Scholar 

  46. Rzepka, M. Lamp, P. de la Casa-Lillo, M.A. (1998) “Physisorption of hydrogen on microporous carbon and carbon nanotubes.” J. Chem. Phys. B, 102 10894.

    Article  Google Scholar 

  47. Fisher, J.E. Dai, H. Thess, A. Lee, R. Hanjani, N.M. Dehaas, D.I. Smalley, R.E. (1997) “Metallic resistivity in crystalline ropes of single-wall nanotubes.” Phys. Rev. B, 55 (8)R4921–R4924.

    Article  Google Scholar 

  48. Chan, S.P. Chen, G. Gong, X.G. Liu, Z.F. (2001) “Chemisorption of hydrogen molecules on carbon nanotubes under high pressure.” Phys. Rev. Lett. 87 20.

    Google Scholar 

  49. Wang, Q. Johnson, J.K. (1999) “Optimization of carbon nanotube arrays for hydrogen adsorption.” J. Phys. Chem. B, 103 4809–4813.

    Article  Google Scholar 

  50. Park, S. Srivastava, D. Cho, K. (2003) “Generalized chemical reactivity of curved surfaces: Carbon nanotubes.” Nano Lett., 3 (9)1273–1277.

    Article  Google Scholar 

  51. Han, S.S. Kang, J.K. Lee, H.M. van Duin, A.C.T. Goddard W.A. III, (2005) “Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles.” Appl. Phys. Lett., 86 203108–203111.

    Article  Google Scholar 

  52. Liu, C. Fan, Y.Y. Liu, M. Cong, H.T. Cheng, H.M. Dresselhaus, M.S. (1999) “Hydrogen storage in single-walled carbon nanotubes at room temperature.” Sci. Mag., 285 1127.

    Google Scholar 

  53. Chen, P. Wu, X. Lin, J. Tan, K.L. (1999) “High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures.” Science, 285 91–93.

    Article  Google Scholar 

  54. Pinkerton, F.E. Wicke, B.G. Olk, C.H. Tibbetts, G.G. Meisner, G.P. Meyer M.S. et al. (2000) “Thermogravimetric measurement of hydrogen absorption in alkali-modified carbon materials.” J. Phys. Chem. B, 104 9460–9467.

    Article  Google Scholar 

  55. Wang, H. Chhowalla, M. Sano, N. Jia, S. Amaratunga, G.A.J. (2004) “Large-scale synthesis of single-walled carbon nanohorns by submerged arc.” Nanotechnology, 15 546–550.

    Article  Google Scholar 

  56. Tanaka, H. Kanoh, H. El-Merraoui, M. Steele, W.A. Yudasaka, M. Ijiima, S. Kaneko, K. (2004) “Quantum effects on hydrogen adsorption in internal nanospaces of single-wall carbon nanohorns.” J. Chem. Phys. B, 108 (45)17457–17465.

    Article  Google Scholar 

  57. Fernandez-Alonso, F. Bermejo, F.J. Cabrillo, C. Loufty, R.O. Leon, V. Saboungi, M.L. (2007) “Nature of the bound states of molecular hydrogen in carbon nanohorns.” Phys. Rev. Lett., 98 215503.

    Article  Google Scholar 

  58. Imai, H. Babu, P.K. Oldfield, E. Wieckowski, A. Kasuya, D. Azami, T. Shimakawa, Y. Yudasaka, M. Kubo, Y. Ijima, S. (2006) “13 C NMR spectroscopy of carbon nanotubes.” Phys. Rev. B, 73 (12)125405–125407.

    Article  Google Scholar 

  59. Banhart, F. Fuller, T. Redlich, P.H. Ajayan, P.M. (1997) “The formation and self-compression of carbon onions.” Chem. Phys. Lett., 269 349–355.

    Article  Google Scholar 

  60. Wronski, Z.S. Carpenter, G.J.C. (2006) “Carbon nanoshells obtained from leaching carbonyl nickel metal powders.” Carbon, 44 1799–1789.

    Article  Google Scholar 

  61. Ugarte, D. (1992) “Curling and closure of graphitic networks under electron-beam irradiation.” Nature, 359 700–709.

    Article  Google Scholar 

  62. Abe, H. (2001) “Nucleation of carbon onions and nanocapsules under ion implantation at high temperature.” Diamond Relat. Mater., 10 1201.

    Article  Google Scholar 

  63. Hirata, A. Igarashi, M. Kaito, T. (2004) “Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters and particles.” Tribology Int., 37 (11–12)899–905.

    Article  Google Scholar 

  64. Sano, N. Wang, H. Alexandrou, I. Chhowalla, M. Teo, K.B.K. Amaratunga, G.A. (2002) “Properties of carbon onions produced by arc discharge in water.” J. Appl. Phys., 92 (5)2783–2788.

    Article  Google Scholar 

  65. Tomita, S. Fujii, M. Hayashi, S. Yamamoto, K. (1999) “Electron energy-loss spectroscopy of carbon onions.” Chem. Phys. Lett., 305 (3–4)225–229.

    Article  Google Scholar 

  66. Tarasow, B.P. Maehlen, J.P. Lototsky, M.V. Maradyan, V.E. Yartys, V.A. (2003) “Hydrogen sorption properties of arc generated single-wall carbon nanotubes.” J. Alloys Compd., 356–357 510–514.

    Article  Google Scholar 

  67. Badzian, A. Badzian, T. Brevel, E. Piotrowski, A. (2001) “Nanostructured nitrogen -doped carbon materials for hydrogen storage.” Thin Solid Films, 398–399 170–174.

    Article  Google Scholar 

  68. Chen, C-H. Huang, C-C. (2007) “Hydrogen storage by KOH-modified multi-walled carbon nanotubes.” Int. J. Hydrogen Energy, 32 237–246.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2009). Carbons and Nanocarbons. In: Nanomaterials for Solid State Hydrogen Storage. Fuel Cells and Hydrogen Energy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77712-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77712-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77711-5

  • Online ISBN: 978-0-387-77712-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics