Advertisement

Carbons and Nanocarbons

Part of the Fuel Cells and Hydrogen Energy book series (FCHY)
Carbon atoms can bond to one another in chains, rings, and branching networks to form a variety of structures, including minerals, solid carbon materials, fossil fuels, organic compounds and the large molecules essential to life. In solid carbon materials, atoms form single C–C bonds with each others, like in diamond, or bonds with the bond rate higher than one, like in graphite. In respect to crystalline structure there are three carbon polymorphs:
  • Diamond, with sp3 hybridized bonding

  • Graphite, with sp2 bonding

  • Amorphous carbon, with a mixture of bonding.

There are other two ordered allotropes, which constitute the backbone of new carbon chemistry and nanotechnology:
  • Fullerenes, with perturbed sp2 bonding

  • Carbon nanotubes (CNTs), with sp2 bonding.

To complete the list of forms in which elemental carbon was found, we must also list two other forms of carbon:
  • Graphene, exfoliated single sheets of atoms with sp2 bonds

  • Carbyne, with sp hybridized triple bonds.

4.1 Diamond and Nanodiamonds

Keywords

Graphene Sheet Graphene Plane Hydrogen Storage Hydrogen Storage Capacity Hydrogen Storage Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dahl, J.E. Liu, S.G. Carlson, R.M.K. (2003) “Isolation and structure of higher diamendoids, nanometer-sized diamond molecules.” Science, 299 (5603)96–99.CrossRefGoogle Scholar
  2. 2.
    Enoki, T. Yu, V. Osipov, K. Takai, K. Takahara, M. Endo, T. Hayashi, Y. Hishiyama, Y. Kaburagi, A. Ya, V. (2006) “Magnetic and high resolution TEM studies of nanographite derived from nanodiamond.” Carbon, 44 (7)1225–1234.CrossRefGoogle Scholar
  3. 3.
    Novoselov, K.S. Geim, A.K. Morozov, S.V. Jing, D. Zhang, Y. Dubonos, S.V. Grigorieva, I.V. Firsov, A.A. (2004) “Electric field effect in atomically thin carbon films.” Science, 306 666.CrossRefGoogle Scholar
  4. 4.
    Becher, M. Haluska, M. Hircher, M. Quintel, A. Skakalova, V. Detlaff-Weglikowska, U. Chen, X. Hulman, M. Choi, Y. Roth, S. Meregalli V. et al. (2003) “Hydrogen storage in carbon nanotubes.” C.R. Physique, 4 1055–1062.CrossRefGoogle Scholar
  5. 5.
    Richardson, D.D. (1977) “A calculation of Van der Walls interactions in and between layers of atoms: application to graphite.” J.Phys. C Solid State Phys., 10 3235–3242.CrossRefGoogle Scholar
  6. 6.
    Heine, T. Zhechkov, L. Seifert, G. (2004) “Hydrogen storage by physisorption of nanostructured graphite platelets.” Phys.Chem.Chem.Phys., 6 980–984.CrossRefGoogle Scholar
  7. 7.
    Lee, S.M. An, K.H. Lee, Y.H. Seifert, G. Frauenheim, T. (2001) “A hydrogen storage mechanism in single-walled carbon nanotubes.” J.Am.Chem.Soc., 123 5059–5063.CrossRefGoogle Scholar
  8. 8.
    Toshiharu, F. (2004) “Invention of hydrogen absorbed nano-graphite and its structure.” J. Crystallogr. Soc. Japan, 46 (1)32–37.Google Scholar
  9. 9.
    Fukunaga, T. Itoh, K. Orimo, S. Aoki, M. Fujii, H. (2001) “Location of deuterium atoms absorbed in nanocrystalline graphite prepared by mechanical alloying.” J. Alloys Compd., 327 224–229.CrossRefGoogle Scholar
  10. 10.
    Majer, G. Stanik, E. Orimo, S. (2003) “NMR studies of hydrogen motion in nanostructured hydrogen-graphite systems.” J. Alloys Compd., 356–357 617–621.CrossRefGoogle Scholar
  11. 11.
    Kimura, T. Muto, S. Tatsumi, K. Tanabe, T. Kiyobayashi, T. (2006) “Intercalated hydrogen in nanostructured graphite studied by electron energy-loss spectroscopy and molecular orbital calculations.” J. Alloys Compd., 413 150–154.CrossRefGoogle Scholar
  12. 12.
    Chambers, A. Park, C. Baker, R.T.K. Rodriguez, N.M. (1998) “Hydrogen storage in graphite nanofibers.” J. Phys. Chem. B, 102 (22)4253–4256.CrossRefGoogle Scholar
  13. 13.
    Lueking, A.D. Yang, R.T. Rodriguez, N.M. Baker, R.T.K. (2004) “Hydrogen storage in graphite nanofibers: effect of synthesis catalyst and pretreatment conditions.” Langmuir, 20 (3)714–721.CrossRefGoogle Scholar
  14. 14.
    R. Chahine, P. Benard, “Assesment of hydrogen storage on different carbons.” In Report IEA Task 12 Metal Hydrides and Carbon for Hydrogen Storage 2001: Project No. C-3, (2001) pp. 104–107.Google Scholar
  15. 15.
    Benard, P. Chahine, R. (2007) “Storage of hydrogen by physisorption on carbon and nanostructured materials.” Scripta Mat., 56 803–808.CrossRefGoogle Scholar
  16. 16.
    Fukunaga, T. Nagano, K. Mizutani, U. Wakayama, H. Fukushima, Y. (1998) “Structural change of graphite subjected to mechanical milling.” J. Non-Cryst. Solids, 232–234 416–420.CrossRefGoogle Scholar
  17. 17.
    Nijkamp, M.G. Raaymakers, J.E.M.J. van Dillen, A.J. de Jong, K.P. (2001) “Hydrogen storage using physisorption- materials demands.” Appl. Phys. A, 72 619–623.CrossRefGoogle Scholar
  18. 18.
    Strobel, R. Garche, J. Moseley, P.T. Jorissen, L. Wolf, W. (2006) “Hydrogen storage by carbon materials.” J. Power Sources, 159 781–801.CrossRefGoogle Scholar
  19. 19.
    Azuma, H. (1998) “A new structural model for nongraphitic carbons.” J. Appl. Cryst., 31 910–916.CrossRefGoogle Scholar
  20. 20.
    Z.S. Wronski, G.J.C. Carpenter, P.J. Kalal, “An integrated characterization approach for ranking nickel hydroxides designed for high-performance positive electrodes in batteries for electric vehicles.” In W.A. Ladgrabe, B. Serosati, Editor, Exploratory Research & Development of Batteries for Electric & Hybrid Vehicles, (1996), Pennington, N.J. pp. 177–188.Google Scholar
  21. 21.
    Nakayama, A. Suzuki, K. Enoki, T. Koga, K. Endo, M. Shindo, N. (1996) “Electronic and magnetic properties of activated carbon fibers.” Bull. Chem. Soc. Jpn., 69 (2)333–339.CrossRefGoogle Scholar
  22. 22.
    Wronski, Z.S. (2001) “Materials for rechargeable batteries and clean hydrogen energy sources.” Int. Mater. Rev., 46 (1)1–49.CrossRefGoogle Scholar
  23. 23.
    Z.S. Wronski, “On the possibility of mechano-chemical activation of powders used in electrochemical power sources.” In 200 Years of Electrochemical Energy Conversion – Bicentenary of Volta’s Invention of the Energy Pile, International Society of Electrochemistry (ISE) Symposium, ISE, Geneva, 5–10 September (1999). University of Pavia, Pavia, Italy (CD ROM), pp.830.Google Scholar
  24. 24.
    Z.S. Wronski, D. Martineau, G.J.C. Carpenter, “Layered nanocrystals for electrochemical power sources.” In Proceedings of the 203rd Meeting of The Electrochemical Society, Paris, France, April 27–May2, (2003). The Electrochem. Society, Pennington, NJ. (CD ROM), p. 1674.Google Scholar
  25. 25.
    Hentsche, M. Hermann, H. Lindackers, D. Seifert, G. (2007) “Microstructure and low temperature hydrogen capacity of ball milled graphite.” J. Hydrogen Energy, 32 1530–1536.CrossRefGoogle Scholar
  26. 26.
    Orimo, S. Zuttel, A. Schlapbach, L. Majer, G. Fukunaga, T. Fujii, H. (2003) “Hydrogen interaction with carbon nanostructures: current situation and future prospects.” J. Alloys Compd., 356–357 716–719.CrossRefGoogle Scholar
  27. 27.
    Smolira, A. Szymanska, M. Jartych, E. Calka, A. Michalak, L. (2005) “Structural transformations in graphite induced by magneto-mechanical-milling in hydrogen atmosphere.” J. Alloys Compd., 402 256–262.CrossRefGoogle Scholar
  28. 28.
    A. Zuttel, S. Orimo, “Hydrogen in nanostructured, carbon-related, and metastable materials.” MRS Bull. (Special Issue on Hydrogen Storage), (2002) 705.Google Scholar
  29. 29.
    Kojima, Y. Kawai, Y. Koiwai, A. Suzuki, N. Haga, T. Hioki, T. Tange, K. (2006) “Hydrogen adsorption and desorption by carbon materials.” J. Alloys Compd., 421 204–208.CrossRefGoogle Scholar
  30. 30.
    Hirscher, M. Becher, M. Haluska, M. von Zeppelin, F. Chen, X. Detlaff-Weglikowska, U. Roth, S. (2003) “Are carbon nanostructures an efficient hydrogen storage medium?” J. Alloys Compd., 356–357 433–437.CrossRefGoogle Scholar
  31. 31.
    Hwang, J.Y. Lee, S.H. Sim, K.S. Kim, J.W. (2002) “Synthesis and hydrogen storage of carbon nanofibres.” Synth. Met., 126 (1)81–85.CrossRefGoogle Scholar
  32. 32.
    Fan, Y.Y. Liao, B. Liu, M. Wei, Y.L. Lu, M.Q. Cheng, H.M. (1999) “Hydrogen uptake in vapor-grown carbon nanofibers.” Carbon, 37 1649–1651.CrossRefGoogle Scholar
  33. 33.
    Cheng, H.M. Liu, C. Fan, Y.Y. Li, F. Su, G. He, L.L. Liu, M. (2000) “Synthesis and hydrogen storage of carbon nanofibers and single-wall carbon nanotubes.” Z. Metallkd., 91 (4)306–310.Google Scholar
  34. 34.
    Strobel, R. Jorissen, L. Schliermann, T. Trapp, V. Schutz, W. Bohnhammel, K. Wolf, G. Garche, J. (1999) “Hydrogen adsorption on carbon materials.” J. Power Sources, 84 (2)221–224.CrossRefGoogle Scholar
  35. 35.
    Hirscher, M. Becher, M. Haluska, M. Quintel, A. Skakalova, V. Coi, Y.M. Detlaff-Weglikowska, U. Roth, S. Stepanek, I. Bernier, P. Leonhardt, A. Fink, J. (2002) “Hydrogen storage in carbon nanostructures.” J. Alloys Compd. 330–332 654–658.CrossRefGoogle Scholar
  36. 36.
    Hirscher, M. Becher, M. (2003) “Hydrogen storage in carbon nanotubes.” J. Nanosci. Nanotechnol., 3 (1–2)3–17.CrossRefGoogle Scholar
  37. 37.
    Nijkamp, M.G. Raaymakers, J.E.M.J. van Dillen, A.J. de Jong, K.P. (2001) “Hydrogen storage using physisorption-materials demands.” Appl. Phys. A, 72 619–623.CrossRefGoogle Scholar
  38. 38.
    Casiraghi, C. Robertson, J. Ferrari, C. (2007) “Diamond-like carbon for data and beer storage.” Mater. Today, 10 (1–2)44–53.CrossRefGoogle Scholar
  39. 39.
    Kapitonov, I.N. Konkov, O.I. Terukov, E.I. Trapeznikova, I.N. (2000) “Amorphous carbon: how much of free hydrogen?” Diamond Relat. Mater., 9 707–710.CrossRefGoogle Scholar
  40. 40.
    Sui, Y. Qian, J. Zhang, J. Zhou, X. Gu, Z. Wu, Y. Fu, H. Wang, J. (1996) “Direct and catalytic hydrogenation of buckminsterfullerene C60.” Fullerenes, Nanotubes Carbon Nanostruct., 4 (5)813.CrossRefGoogle Scholar
  41. 41.
    Taylor, R. (1999), “Lecture notes on fullerene chemistry: A handbook for chemists,” Imperial College Press, London, UKpp. 248.Google Scholar
  42. 42.
    Y. Zhao, Y.-K. Kim, A.C. Dillon, M.J. Heben, S.B. Zhang, “Hydrogen storage in novel organometallic buckyballs.” Phys. Rev. Lett., 94(15) (2005) 155504/1–155504/4.Google Scholar
  43. 43.
    Yildrim, T. Iniguez, J. Ciraci, S. (2005) “Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C60.” Phys. Rev. B, 72 153403–1530407.CrossRefGoogle Scholar
  44. 44.
    Miyamato, J. Hattori, Y. Noguchi, D. Tanaka, H. Ohba, T. Utsumi, S. Kanoh, H. Kim, Y.A. Muramatsu, H. Hayashi, T. Endo, M. Kaneko, K. (2006) “Efficient H2 adsorption by nanopores of high-purity double-walled carbon nanotubes.” J. Am. Chem. Soc., 128 12636–12637.CrossRefGoogle Scholar
  45. 45.
    Ren, Y. Price, D.L. (2001) “Neuton scattering study of H2 adsorption in single-walled carbon nanotubes.” Appl. Phys. Lett., 79 (22)3684–3487.CrossRefGoogle Scholar
  46. 46.
    Rzepka, M. Lamp, P. de la Casa-Lillo, M.A. (1998) “Physisorption of hydrogen on microporous carbon and carbon nanotubes.” J. Chem. Phys. B, 102 10894.CrossRefGoogle Scholar
  47. 47.
    Fisher, J.E. Dai, H. Thess, A. Lee, R. Hanjani, N.M. Dehaas, D.I. Smalley, R.E. (1997) “Metallic resistivity in crystalline ropes of single-wall nanotubes.” Phys. Rev. B, 55 (8)R4921–R4924.CrossRefGoogle Scholar
  48. 48.
    Chan, S.P. Chen, G. Gong, X.G. Liu, Z.F. (2001) “Chemisorption of hydrogen molecules on carbon nanotubes under high pressure.” Phys. Rev. Lett. 87 20.Google Scholar
  49. 49.
    Wang, Q. Johnson, J.K. (1999) “Optimization of carbon nanotube arrays for hydrogen adsorption.” J. Phys. Chem. B, 103 4809–4813.CrossRefGoogle Scholar
  50. 50.
    Park, S. Srivastava, D. Cho, K. (2003) “Generalized chemical reactivity of curved surfaces: Carbon nanotubes.” Nano Lett., 3 (9)1273–1277.CrossRefGoogle Scholar
  51. 51.
    Han, S.S. Kang, J.K. Lee, H.M. van Duin, A.C.T. Goddard W.A. III, (2005) “Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles.” Appl. Phys. Lett., 86 203108–203111.CrossRefGoogle Scholar
  52. 52.
    Liu, C. Fan, Y.Y. Liu, M. Cong, H.T. Cheng, H.M. Dresselhaus, M.S. (1999) “Hydrogen storage in single-walled carbon nanotubes at room temperature.” Sci. Mag., 285 1127.Google Scholar
  53. 53.
    Chen, P. Wu, X. Lin, J. Tan, K.L. (1999) “High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures.” Science, 285 91–93.CrossRefGoogle Scholar
  54. 54.
    Pinkerton, F.E. Wicke, B.G. Olk, C.H. Tibbetts, G.G. Meisner, G.P. Meyer M.S. et al. (2000) “Thermogravimetric measurement of hydrogen absorption in alkali-modified carbon materials.” J. Phys. Chem. B, 104 9460–9467.CrossRefGoogle Scholar
  55. 55.
    Wang, H. Chhowalla, M. Sano, N. Jia, S. Amaratunga, G.A.J. (2004) “Large-scale synthesis of single-walled carbon nanohorns by submerged arc.” Nanotechnology, 15 546–550.CrossRefGoogle Scholar
  56. 56.
    Tanaka, H. Kanoh, H. El-Merraoui, M. Steele, W.A. Yudasaka, M. Ijiima, S. Kaneko, K. (2004) “Quantum effects on hydrogen adsorption in internal nanospaces of single-wall carbon nanohorns.” J. Chem. Phys. B, 108 (45)17457–17465.CrossRefGoogle Scholar
  57. 57.
    Fernandez-Alonso, F. Bermejo, F.J. Cabrillo, C. Loufty, R.O. Leon, V. Saboungi, M.L. (2007) “Nature of the bound states of molecular hydrogen in carbon nanohorns.” Phys. Rev. Lett., 98 215503.CrossRefGoogle Scholar
  58. 58.
    Imai, H. Babu, P.K. Oldfield, E. Wieckowski, A. Kasuya, D. Azami, T. Shimakawa, Y. Yudasaka, M. Kubo, Y. Ijima, S. (2006) “13 C NMR spectroscopy of carbon nanotubes.” Phys. Rev. B, 73 (12)125405–125407.CrossRefGoogle Scholar
  59. 59.
    Banhart, F. Fuller, T. Redlich, P.H. Ajayan, P.M. (1997) “The formation and self-compression of carbon onions.” Chem. Phys. Lett., 269 349–355.CrossRefGoogle Scholar
  60. 60.
    Wronski, Z.S. Carpenter, G.J.C. (2006) “Carbon nanoshells obtained from leaching carbonyl nickel metal powders.” Carbon, 44 1799–1789.CrossRefGoogle Scholar
  61. 61.
    Ugarte, D. (1992) “Curling and closure of graphitic networks under electron-beam irradiation.” Nature, 359 700–709.CrossRefGoogle Scholar
  62. 62.
    Abe, H. (2001) “Nucleation of carbon onions and nanocapsules under ion implantation at high temperature.” Diamond Relat. Mater., 10 1201.CrossRefGoogle Scholar
  63. 63.
    Hirata, A. Igarashi, M. Kaito, T. (2004) “Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters and particles.” Tribology Int., 37 (11–12)899–905.CrossRefGoogle Scholar
  64. 64.
    Sano, N. Wang, H. Alexandrou, I. Chhowalla, M. Teo, K.B.K. Amaratunga, G.A. (2002) “Properties of carbon onions produced by arc discharge in water.” J. Appl. Phys., 92 (5)2783–2788.CrossRefGoogle Scholar
  65. 65.
    Tomita, S. Fujii, M. Hayashi, S. Yamamoto, K. (1999) “Electron energy-loss spectroscopy of carbon onions.” Chem. Phys. Lett., 305 (3–4)225–229.CrossRefGoogle Scholar
  66. 66.
    Tarasow, B.P. Maehlen, J.P. Lototsky, M.V. Maradyan, V.E. Yartys, V.A. (2003) “Hydrogen sorption properties of arc generated single-wall carbon nanotubes.” J. Alloys Compd., 356–357 510–514.CrossRefGoogle Scholar
  67. 67.
    Badzian, A. Badzian, T. Brevel, E. Piotrowski, A. (2001) “Nanostructured nitrogen -doped carbon materials for hydrogen storage.” Thin Solid Films, 398–399 170–174.CrossRefGoogle Scholar
  68. 68.
    Chen, C-H. Huang, C-C. (2007) “Hydrogen storage by KOH-modified multi-walled carbon nanotubes.” Int. J. Hydrogen Energy, 32 237–246.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations