Advertisement

Simple Metal and Intermetallic Hydrides

Part of the Fuel Cells and Hydrogen Energy book series (FCHY)

2.1 Mg/MgH2

2.1.1 Crystallographic and Material Characteristics

Reaction of hydrogen with the elemental Mg is one of the most widely researched reactions in the field of solid-state hydrogen storage. The Mg–H system is quite simple as shown in the binary phase diagram in Fig. 2.1. At moderate hydrogen pressures the only hydride phase existing in equilibrium with Mg is magnesium dihydride, MgH 2, more commonly referred to as “magnesium hydride.”

Keywords

Differential Scanning Calorimeter Apparent Activation Energy Milled Powder Desorption Temperature Differential Scanning Calorimeter Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Okamoto, “H. 2000), p.Desk Handbook-Phase Diagrams for Binary Alloys,” ASM International, Materials Park, OH, 430.Google Scholar
  2. 2.
    Noritake, T. Towata, S. Aoki, M. Seno, Y. Hirose, Y. Nishibori, E. Takata, M. Sakata, M. (2003) “Charge density measurement in MgH2 by synchrotron X-ray diffraction,” J. Alloys Compd. 356–357 84–86.Google Scholar
  3. 3.
    David R. Lide (ed.), Physical constants of inorganic compounds, "CRC Handbook of Chemistry and Physics," 87th on line edition (2006-2007)Google Scholar
  4. 4.
    Noritake, T. Aoki, M. Towata, S. Seno, Y. Hirose, Y. Nishibori, E. Takata, M. Sakata, M. (2002) “Chemical bonding of hydrogen in MgH2,” Appl. Phys. Lett. 81 2008–2010.Google Scholar
  5. 5.
    Bastide, J.-P. Bonnetot, B. Létoffé, J.-M. Claudy, P. (1980) “Polymorphisme de l’hydrure de magnesium sous haute pression,” Mat. Res. Bull. 15 1779–1787.Google Scholar
  6. 6.
    Varin, R.A. Czujko, T. Wronski, Z. (2006) “Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling,” Nanotechnology 17 3856–3865.Google Scholar
  7. 7.
    Kumar, K.S. Van Swygenhoven, H. Suresh, S. (2003) “Mechanical behavior of nanocrystalline metals and alloys,” Acta Mater. 51 5743–5774.Google Scholar
  8. 8.
    Kojima, Y. Kawai, Y. Haga, T. (2006) “Magnesium-based nano-composite materials for hydrogen storage,” J. Alloys Compd. 424 294–298.Google Scholar
  9. 9.
    Stampfer, J.F. Jr.Holley, C.E. Jr.Suttle, J.F. (1960) “The magnesium-hydrogen system,” J. Am. Chem. Soc. 82 3504–3508.Google Scholar
  10. 10.
    Kennelley, J.A. Varwig, J.W. Myers, H.W. (1960) “Magnesium-hydrogen relationships,” J. Am. Chem. Soc. 64 703–704.Google Scholar
  11. 11.
    Vigeholm, B. Kjøller, J. Larsen, B. (1980) “Magnesium for hydrogen storage,” J. Less-Comm. Metals 74 341–350.Google Scholar
  12. 12.
    Vigeholm, B. Kjøller, J. Larsen, B. Pedersen, A.S. (1983) “Formation and decomposition of magnesium hydride,” J. Less-Comm. Metals 89 135–144.Google Scholar
  13. 13.
    Pedersen, A.S. Kjøller, J. Larsen, B. Vigeholm, B. (1983) “Magnesium for hydrogen storage,” Int. J. Hydrogen Ener. 8 205–211.Google Scholar
  14. 14.
    Vigeholm, B. Kjøller, J. Larsen, B. Pedersen, A.S. (1983) “Hydrogen sorption performance of pure magnesium during continued cycling,” Int. J. Hydrogen Ener. 8 809–817.Google Scholar
  15. 15.
    Pedersen, A.S. Kjøller, J. Larsen, B. Vigeholm, B. Jensen, J.A. (1984) “Long-term cycling of the magnesium hydrogen system,” Int. J. Hyd. Ener. 9 799–802.Google Scholar
  16. 16.
    Vigeholm, B. Jensen, K. Larsen, B. Pedersen, A.S. (1987) “Elements of hydride formation mechanisms in nearly spherical magnesium powder particles,” J. Less-Comm. Metals 131 133–141.Google Scholar
  17. 17.
    Bogdanović, B. Bohmhammel, K. Christ, B. Reiser, A. Schlichte, K. Vehlen, R. Wolf, U. (1999) “Thermodynamic investigation of the magnesium-hydrogen system,” J. Alloys Compd. 282 84–92.Google Scholar
  18. 18.
    Fernández, J.F. Sánchez, C.R. (2002) “Rate determining step in the absorption and desorption of hydrogen by magnesium,” J. Alloys Compd. 340 189–198.Google Scholar
  19. 19.
    Friedlmeier, G. Groll, M. (1997) “Experimental analysis and modelling of the hydriding kinetics of Ni-doped and pure Mg,” J. Alloys Compd. 253–254 550–555.Google Scholar
  20. 20.
    Töpler, J. Buchner, H. Säufferer, H. (1982) “Measurements of the diffusion of hydrogen atoms in magnesium and Mg2Ni by neutron scattering,” J. Less-Comm. Metals 88 397–404.Google Scholar
  21. 21.
    Karty, A. Grunzweig-Genossar, J. Rudman, P.S. (1979) “Hydriding and dehydriding kinetics of Mg/Mg2Cu eutectic alloy: Pressure sweep method,” J. Appl. Phys. 50 7200–7209.Google Scholar
  22. 22.
    Jensen, T.R. Andreasen, A. Vegge, T. Andreasen, J.W. Ståhl, K. Pedersen, A.S. Nielsen, M.M. Molenbroek, A.M. Besenbacher, F. (2006) “Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder X-ray diffraction,” Int. J. Hyd. Ener. 31 2052–2062.Google Scholar
  23. 23.
    Stander, C.M. (1977) “Kinetics of decomposition of magnesium hydride,” J. Inorg. Nucl. Chem. 39 221–223.Google Scholar
  24. 24.
    Huot, J. Liang, G. Boily, S. Van Neste, A. Schulz, R. (1999) “Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride,” J. Alloys Compd. 293–295 495–500.Google Scholar
  25. 25.
    Dal Toè, S. Lo Russo, S. Maddalena, A. Principi, G. Saber, A. Sartori, S. Spataru, T. (2004) “Hydrogen desorption from magnesium hydride-graphite nanocomposites produced by ball milling,” Mater. Sci. Eng. B 108 24–27.Google Scholar
  26. 26.
    Friedrichs, O. Sánchez-López, J.C. López-Cartés, C. Dornheim, M. Klassen, T. Bormann, R. Fernández, A. (2006) “Chemical and microstructural study of the oxygen passivation behaviour of nanocrystalline Mg and MgH2,” Appl. Surf. Sci. 252 2334–2345.Google Scholar
  27. 27.
    Varin, R.A. Li, S. Calka, A. (2004) “Environmental degradation by hydrolysis of nanostructured β-MgH2 hydride synthesized by controlled reactive mechanical milling,” J. Alloys Compd. 376 222–231.Google Scholar
  28. 28.
    Andreasen, A. Vegge, T. Pedersen, A.S. (2005) “Compensation effect in the hydrogenation/dehydrogenation kinetics of metal hydrides,” J. Phys. Chem. B 109 3340–3344.Google Scholar
  29. 29.
    Zaluski, L. Zaluska, A. Tessier, P. Ström-Olsen, J.O. Schulz R. (1995) ,“Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying,” J. Alloys Compd. 217 245–249.Google Scholar
  30. 30.
    Zaluski, L. Zaluska, A. Tessier, P. Ström-Olsen, J.O. Schulz, R. (1995) “Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi,” J. Alloys Compd. 217 295–300.Google Scholar
  31. 31.
    Zaluski, L. Zaluska, A. Ström-Olsen, J.O. (1997) “Nanocrystalline metal hydrides,” J. Alloys Compd. 253–254 70–79.Google Scholar
  32. 32.
    Zaluska, A. Zaluski, L. Ström-Olsen, J.O. (1999) “Nanocrystalline magnesium for hydrogen storage,” J. Alloys Compd. 288 217–225.Google Scholar
  33. 33.
    Zaluska, A. Zaluski, L. Ström-Olsen, J.O. (2001) “Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage,” Appl. Phys. A 72 157–165.Google Scholar
  34. 34.
    Singh, A.K. Singh, A.K. Srivastava, O.N. (1995) “On the synthesis of the Mg2Ni alloy by mechanical alloying,” J. Alloys Compd. 227 63–68.Google Scholar
  35. 35.
    Schulz, R. Huot, J. Liang, G. Boily, S. Van Neste, A. (1999) “Structure and hydrogen sorption properties of ball milled Mg dihydride,” Mater. Sci. Forum 312–314 615–622.Google Scholar
  36. 36.
    Schulz, R. Huot, J. Liang, G. Boily, S. Lalande, G. Denis, M.C. Dodelet, J.P. (1999) “Recent developments in the application of nanocrystalline materials to hydrogen technologies,” Mater. Sci. Eng. A 267 240–245.Google Scholar
  37. 37.
    Ares, J.R. Aguey-Zinsou, K.-F. Klassen, T. Bormann, R. (2007) “Influence of impurities on the milling process of MgH2,” J. Alloys Compd. 434–435 729–733.Google Scholar
  38. 38.
    Walton, A. Ruzalla, K. Al-Mamouri, M. Mann, V.S.J. Book, D. Speight, J.D. Harris, I.R. Prendergast, J.W. Johnson, S.R. Anderson, P.A. September (2004),“Microstructure and hydrogen sorption studies of high velocity ball milled MgH2,”International Symposium on Metal-Hydrogen Systems-MH 2004, Book of Abstracts, Academy of Mining and Metallurgy,CracowPoland5–10.p.94Google Scholar
  39. 39.
    Huhn, P.-A. Dornheim, M. Klassen, T. Bormann, R. (2005) “Thermal stability of nanocrystalline magnesium for hydrogen storage,” J. Alloys Compd. 404–406 499–502.Google Scholar
  40. 40.
    Fátay, D. Spassov, T. Delchev, P. Ribárik, G. Révész, Á. (2007) “Microstructural development in nanocrystalline MgH2 during H-absorption/desorption cycling,” Int. J. Hyd. Ener. 32 2914–2919.Google Scholar
  41. 41.
    Gennari, F.C. Castro, F.J. Urretavizcaya, G. (2001) “Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying,” J. Alloys Compd. 321 46–53.Google Scholar
  42. 42.
    Hanada, N. Ichikawa, T. Orimo, S.-I. FujiH. (2004) ,“Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2,” J. Alloys Compd. 366 269–273.Google Scholar
  43. 43.
    Wagemans, R.W.P. van Lenthe, J.H. de Jongh, P.E. Jos van Dillen, A. de Jongh, K.P. (2005) “Hydrogen storage in magnesium clusters: quantum chemical study,” J. Am. Chem. Soc. 127 16675–16680.Google Scholar
  44. 44.
    Shao, H. Wang, Y. Xu, H. Li, X. (2004) “Hydrogen storage properties of magnesium ultrafine particles prepared by hydrogen plasma-metal reaction,” Mater. Sci. Eng. B 110 221–226.Google Scholar
  45. 45.
    Friedrichs, O. Kolodziejczyk, L. Sánchez-López, J.C. López-Cartés, C. Fernández, A. (2007) “Synthesis of nanocrystalline MgH2 powder by gas-phase condensation and in situ hydridation: TEM, XPS and XRD study,” J. Alloys Compd. 434–435 721–724.Google Scholar
  46. 46.
    Fátay, D. Révész, Á. Spassov, T. (2005) “Particle size and catalytic effect on the dehydriding of MgH2,” J. Alloys Compd. 399 237–241.Google Scholar
  47. 47.
    Calka, A. (1991) “Formation of titanium and zirconium nitrides by mechanical alloying,” Appl.Phys.Lett. 59 1568–1569.Google Scholar
  48. 48.
    Sherif El-Eskandarany, M. Aoki, K. Suzuki, K. (1992) “Formation of amorphous aluminum tantalum nitride powders by mechanical alloying,” Appl.Phys.Lett. 60 1562–1563.Google Scholar
  49. 49.
    Aoki, K. Memezawa, A. Masumoto, T. (1992) “Nitrogen-induced amorphization of Ti-Zr powders during mechanical alloying,” Appl.Phys.Lett. 61 1037–1039.Google Scholar
  50. 50.
    Aoki, K. Memezawa, A. Masumoto, T. (1993) “Atmosphere effects on the amorphization reaction in NiZr by ball milling,” J. Mater. Res. 8 307–313.Google Scholar
  51. 51.
    Memezawa, A. Aoki, K. Masumoto, T. (1993) “Amorphization of Ti-Zr powders by the collaborated interaction of mechanical alloying and hydrogenation,” Scr. Metall. Mater. 28 361–365.Google Scholar
  52. 52.
    Orimo, S. Fujii, H. Yoshino, T. (1995) “Reactive mechanical grinding of ZrNi under various partial pressures of hydrogen,” J. Alloys Compd. 217 287–294.Google Scholar
  53. 53.
    Huot, J. Akiba, E. Takada, T. (1995) “Mechanical alloying of Mg-Ni compounds under hydrogen and inert atmosphere,” J. Alloys Compd. 231 815–819.Google Scholar
  54. 54.
    Chen, Y. Williams, J.S. (1995) “Formation of metal hydrides by mechanical alloying,” J. Alloys Compd. 217 181–184.Google Scholar
  55. 55.
    Orimo, S. Fujii, H. (1996) “Hydriding properties of the Mg2Ni-H system synthesized by reactive mechanical grinding,” J. Alloys Compd. 232 L16–L19.Google Scholar
  56. 56.
    Fujii, H. Orimo, S. Ikeda, K. (1997) “Cooperative hydriding properties in a nanostructured Mg2Ni-H system,” J. Alloys Compd. 253–254 80–83.Google Scholar
  57. 57.
    Orimo, S. Fujii, H. Ikeda, K. Fujikawa, Y. Kitano, Y. (1997) “Hydriding properties of a nano-/amorphous-structured Mg-Ni-H system,” J. Alloys Compd. 253–254 94–97.Google Scholar
  58. 58.
    Kitano, Y. Fujikawa, Y. Shimizu, N. Orimo, S. Fujii, H. Kamino, T. Yaguchi, T. (1997) “Electron microscopy of Mg2Ni-H alloy synthesized by reactive mechanical grinding,” Intermetallics 5 97–101.Google Scholar
  59. 59.
    Orimo, S. Fujii, H. Ikeda, K. (1997) “Notable hydriding properties of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding,” Acta mater. 45 331–341.Google Scholar
  60. 60.
    Orimo, S. Ikeda, K. Fujii, H. Fujikawa, Y. Kitano, Y. Yamamoto, K. (1997) “Structural and hydriding properties of the Mg-Ni-H system with nano-and/or amorphous structures,” Acta mater. 45 2271–2278.Google Scholar
  61. 61.
    Varin, R.A. Czujko, T. (2002) “Overview of processing of nanocrystalline hydrogen storage intermetallics by mechanical alloying/milling,” Mater. Manuf. Proc. 17 129–156.Google Scholar
  62. 62.
    Varin, R.A. Czujko, T. Chiu, Ch. Wronski, Z. (2006) “Particle size effects on the desorption properties of nanostructured magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM),” J. Alloys Compd. 424 356–364.Google Scholar
  63. 63.
    C. Chiu, R.A. Varin, unpublished results, 2007.Google Scholar
  64. 64.
    Ivanov, E. Konstanchuk, I. Stepanov, A. Boldyrev, V. (1987) “Magnesium mechanical alloys for hydrogen storage,” J. Less-Common Met. 131 25.unpublished resultsGoogle Scholar
  65. 65.
    Calka, A. Nikolov, J.I. Wantenaar, G.H.J. (1994) “Low temperature synthesis of Al-AlN composites from a nanostructure made by controlled magneto-ball milling of Al in ammonia,” J. Appl. Phys. 75 4953–4955.Google Scholar
  66. 66.
    Huot, J. Hayakawa, H. Akiba, E. (1997) “Preparation of the hydrides Mg2FeH6 and Mg2CoH5 by mechanical alloying followed by sintering,” J. Alloys Compd. 248 164–167.Google Scholar
  67. 67.
    Suryanarayana, C. (1995) “Nanocrystalline materials,” Int. Mater. Rev. 40 41–64.Google Scholar
  68. 68.
    Lü, L. Lai, M.O. (1998).“Mechanical Alloying,” Kluwer, BostonGoogle Scholar
  69. 69.
    Varin, R.A. Li, S. Chiu, Ch. Guo, L. Morozova, O. Khomenko, T. Wronski, Z. (2005) “Nanocrystalline and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg-X (X = Fe, Co, Mn, B) systems,” J. Alloys Compd. 404–406 494–498.Google Scholar
  70. 70.
    Qian, S. Northwood, D.O. (1988) “Hysteresis in metal-hydrogen systems: a critical review of the experimental observations and theoretical models,” Int. J. Hyd. Ener. 13 25–35.Google Scholar
  71. 71.
    Qian, S. Northwood, D.O. (1990) “Elastic and plastic accommodation effects on hysteresis during hydride formation and decomposition,” Int. J. Hyd. Ener. 15 649–654.Google Scholar
  72. 72.
    Esayed, A.Y. Northwood, D.O. (1992) “Metal hydrides: A review of group V transition metals-niobium, vanadium and tantalum,” Int. J. Hyd. Ener. 17 41–52.Google Scholar
  73. 73.
    Balasubramanian, R. (1993) “Accommodation effects during room temperature hydrogen transformations in the niobium-hydrogen system,” Acta metall. mater. 41 3341–3349.Google Scholar
  74. 74.
    Schwarz, R.B. Khachaturyan, A.G. (1995) “Thermodynamics of open two-phase systems with coherent interfaces,” Phys. Rev. Lett. 74 2523–2526.Google Scholar
  75. 75.
    Rabkin, E. Skripnyuk, V.M. (2003) “On pressure hysteresis during hydrogenation of metallic powders,” Scripta Mater. 49 477–483.Google Scholar
  76. 76.
    Granqvist, C.G. Buhrman, R.A. (1976) “Ultrafine metal particles,” J. Appl. Phys. 47 2200–2204.Google Scholar
  77. 77.
    Birringer, R. Gleiter, H. Klein, H.-P. Marquardt, P. (1984) “Nanocrystalline materials: An approach to a novel solid structure with gas-like disorder?” Physics Lett. A 102A 365–369.Google Scholar
  78. 78.
    H. Gleiter, "Nanocrystalline materials," 33 (1989) 223-315.Google Scholar
  79. 79.
    Zlotea, C. Lu, J. Andersson, Y. (2006) “Formation of one-dimensional MgH2 nano-structures by hydrogen induced disproportionation,” J. Alloys Compd. 426 357–362.Google Scholar
  80. 80.
    Saita, I. Toshima, T. Tanada, S. Akiyama, T. (2007) “Hydrogen storage property of MgH2 synthesized by hydriding chemical vapor deposition,” J. Alloys Compd. 446–447 80–83.Google Scholar
  81. 81.
    Li, W. Li, C. Ma, H. Chen, J. (2007) “Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption,” J. Am. Chem. Soc. 129 6710–6711.Google Scholar
  82. 82.
    Song, M.Y. Mumm, D.R. Kwon, S.N. Hong, S.H. Bae, J.S. (2006) “Hydrogen-storage properties of Mg-10wt.% (Fe2O3, Ni, MnO) alloy prepared by reactive mechanical grinding,” J. Alloys Compd. 416 239–244.Google Scholar
  83. 83.
    Song, M.Y. Kwon, S.N. Hong, S.H. Mumm, D.R. Bae, J.S. (2006) “Improvement of hydrogen-sorption characteristics of Mg by reactive mechanical grinding with Cr2O3 prepared by spray conversion,” Int. J. Hydrogen Ener. 31 2284–2291.Google Scholar
  84. 84.
    Li, Z. Liu, X. Jiang, L. Wang, S. (2007) “Characterization of Mg-20wt%Ni-Y hydrogen storage composite prepared by reactive mechanical alloying,” Int.J. Hyd. Ener. 32 1869–1874.Google Scholar
  85. 85.
    Liang, G. Huot, J. Boily, S. Van Neste, A. Schulz, R. (1999) “Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems,” J. Alloys Compd. 292 247–252Google Scholar
  86. 86.
    Liang, G. Huot, J. Boily, S. Van Neste, A. Schulz, R. (1999) “Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite,” J. Alloys Compd. 291 295–299.Google Scholar
  87. 87.
    Dehouche, Z. Djaozandry, R. Huot, J. Boily, S. Goyette, J. Bose, T.K. Schulz, R. (2000) “Influence of cycling on the thermodynamic and structure properties of nanocrystalline magnesium based hydride,” J. Alloys Compd. 305 264–271.Google Scholar
  88. 88.
    Bouaricha, S. Huot, J. Guay, D. Schulz, R. (2002) “Reactivity during cycling of nanocrystalline Mg-based hydrogen storage compounds,” Int.J.Hyd. Ener. 27 909–913.Google Scholar
  89. 89.
    Huot, J. Pelletier, J.F. Lurio, L.B. Sutton, M. Schulz, R. (2003) “Investigation of dehydrogenation mechanism of MgH2-Nb nanocomposites,” J. Alloys Compd. 348 319–324.Google Scholar
  90. 90.
    Shang, C.X. Bououdina, M. Song, Y. Guo, Z.X. (2004)“Mechanical alloying and electronic simulations of (MgH2– + M) systems (M= Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage,” Int. J. Hyd. Ener.2973–80.Google Scholar
  91. 91.
    Au, M. (2004) “Hydrogen storage properties of magnesium based nanostructured/amorphous composite materials,” Mater. Res. Soc. Symp. Proc. 801 5.1–1.5.14.BB1.Google Scholar
  92. 92.
    Bobet, J.-L. Chevalier, B. Song, M.Y. Darriet, B. Etourneau, J. (2002) “Hydrogen sorption of Mg-based mixtures elaborated by reactive mechanical grinding,” J. Alloys Compd. 336 292–296.Google Scholar
  93. 93.
    Hu, Y.Q. Zhang, H.F. Wang, A.M. Ding, B.Z. Hu, Z.Q. (2003) “Preparation and hydriding/dehydriding properties of mechanically milled Mg-30wt.%TiMn1.5 composite,” J. Alloys Compd. 354 296–302.Google Scholar
  94. 94.
    Hu, Y.Q. Yan, C. Zhang, H.F. Ye, L. Hu, Z.Q. (2004) “Preparation and hydrogenation characteristics of Mg-30wt.%Ti37.5V25Cr37.5 composite,” J. Alloys Compd. 375 265–269.Google Scholar
  95. 95.
    Tran, N.E. Lambrakos, S.G. Imam, M.A. (2006) “Analyses of hydrogen sorption kinetics and thermodynamics of magnesium-misch metal alloy,” J. Alloys Compd. 407 240–248.Google Scholar
  96. 96.
    Skripnyuk, V. Buchman, E. Rabkin, E. Estrin, Y. Popov, M. Jorgensen, S. (2007) “The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg-Ni alloy,” J. Alloys Compd. 436 99–106.Google Scholar
  97. 97.
    A. Yonkeu, I.P. Swainson, J. Dufour, J. Huot, “Kinetic investigation of the catalytic effect of a body centered cubic-alloy TiV1.1Mn0.9 (BCC) on hydriding/dehydriding properties of magnesium,” J. Alloys Compd. (2007) (in press-doi:10.1016/j.jallcom.2007.06.016).Google Scholar
  98. 98.
    Y. Fu, M. Groll, R. Mertz, R. Kulenovic, “Effect of LaNi5 and additional catalysts on hydrogen storage properties of Mg,” J. Alloys Compd. (2007) (in press-doi:10.1016/j.jallcom.2007.06.008).Google Scholar
  99. 99.
    Sai Raman, S.S. Srivastava, O.N. (1996) “Hydrogenation behavior of the new composite storage materials Mg-xwt.%CFMmNi5,” J. Alloys Compd. 241 167–174.Google Scholar
  100. 100.
    Liang, G. Huot, J. Boily, S. Van Neste, A. Schulz, R. (2000) “Hydrogen storage in mechanically milled Mg-LaNi5 and MgH2-LaNi5 composites,” J. Alloys Compd. 297 261–265.Google Scholar
  101. 101.
    Kojima, Y. Kawai, Y. Haga, T. (2006) “Magnesium-based nano-composite materials for hydrogen storage,” J. Alloys Compd. 424 294–298.Google Scholar
  102. 102.
    Yoo, Y. Tuck, M. Kondakindi, R. Seo, C.Y. Dehouche, Z. Belkacemi, K. (2007) “Enhanced hydrogen reaction kinetics of nanostructured Mg-based composites with nanoparticle metal catalysts dispersed on supports,” J. Alloys Compd. 446–447 84–89.Google Scholar
  103. 103.
    Dufour, J. Huot, J. (2007) “Rapid activation, enhanced hydrogen sorption kinetics and air resistance in laminated Mg-Pd 2.5at.%,” J. Alloys Compd. 439 L5–L9.Google Scholar
  104. 104.
    Dufour, J. Huot, J. (2007) “Study of Mg6Pd alloy synthesized by cold rolling,” J. Alloys Compd. 446–447 147–151.Google Scholar
  105. 105.
    Grigorova, E. Khristov, M. Khrussanova, M. Bobet, J.-L. Peshev, P. (2005) “Effect of additives on the hydrogen sorption properties of mechanically alloyed composites based on Mg and Mg2Ni,” Int.J.Hyd. Ener. 30 1099–1105.Google Scholar
  106. 106.
    Bobet, J.-L. Chevalier, B. Darriet, B. (2002) “Effect of reactive mechanical grinding on chemical and hydrogen sorption properties of the Mg + 10wt.%Co mixture,” J. Alloys Compd. 330–332 738–742.Google Scholar
  107. 107.
    Yu, Z. Liu, Z. Wang, E. (2002) “Hydrogen storage properties of nanocomposite Mg-Ni-Cu-CrCl3,” Mater. Sci. Eng. A 335 43–48.Google Scholar
  108. 108.
    F. Li, L. Jiang, J. Du, S. Wang, X. Liu, F. Zhang, “Investigations on synthesis and hydrogenation properties of Mg-20wt%Ni-1wt%TiO2 composite prepared by reactive mechanical alloying,” J. Alloys Compd. (2007) (in press-doi:10.1016/j.jallcom.2006.11.046).Google Scholar
  109. 109.
    Løken, S. Solberg, J.K. Maehlen, J.P. Denys, R.V. Lototsky, M.V. Tarasov, B.P. Yartys, V.A. (2007) “Nanostructured Mg-Mm-Ni hydrogen storage alloy: Structure-properties relationship,” J. Alloys Compd. 446–447 114–120.Google Scholar
  110. 110.
    Czujko, T. Varin, R.A. Chiu, Ch. Wronski, Z. (2006) “Investigation of the hydrogen desorption properties of Mg + 10wt.%X (X= V,Y,Zr),” J. Alloys Compd. 414 240–247.Google Scholar
  111. 111.
    Li, Z. Liu, X. Jiang, L. Wang, S. (2007) “Characterization of Mg-20wt%Ni-Y hydrogen storage composite prepared by reactive mechanical alloying,” Int. J. Hyd. Ener. 32 1869–1874.Google Scholar
  112. 112.
    Vijay, R. Sundaresan, R. Maiya, M.P. Srinivasa Murthy, S. Fu, Y. Klein, H.-P. Groll, M. (2004) “Characterisation of Mg-x wt.%FeTi (x= 5–30) and Mg-40wt.%FeTiMn hydrogen absorbing materials prepared by mechanical alloying,” J. Alloys Compd. 384 283–295.Google Scholar
  113. 113.
    Wang, X.L. Tu, J.P. Wang, C.H. Zhang, X.B. Chen, C.P. Zhao, X.B. (2006) “Hydrogen storage properties of nanocrystalline Mg-Ce/Ni composite,” J. Power Sourc. 159 163–166.Google Scholar
  114. 114.
    Wang, X.L. Tu, J.P. Zhang, X.B. Chen, C.P. Zhao, X.B. (2005) “Hydrogenation properties of Mg/Mg2Ni0.8Cr0.2 composites containing TiO2 particles,” J. Alloys Compd. 404–406 529–532.Google Scholar
  115. 115.
    J. Bystrzycki, M. Polanski, T. Plocinski, “Nano-engineering approach to destabilization of magnesium hydride (MgH2) by solid-state reaction with Si,” J. Nanosci. Nanotech. (2007) (in press).Google Scholar
  116. 116.
    Vajo, J.J. Mertens, F. Ahn, C.C. Bowman., R.C. JrFultz, B. (2004) “Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si,” J. Phys. Chem. 108 13977–13983.Google Scholar
  117. 117.
    Varin, R.A. Czujko, T. Wasmund, E.B. Wronski, Z. (2007) “Catalytic effects of various forms of nickel on the synthesis rate and hydrogen desorption properties of nanocrystalline magnesium hydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM),” J. Alloys Compd. 432 217–231.Google Scholar
  118. 118.
    Hanada, N. Ichikawa, T. Fujii, H. (2005) “Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties of MgH2 prepared by ball milling,” J. Alloys Compd. 404–406 716–719.Google Scholar
  119. 119.
    Varin, R.A. Czujko, T. Wasmund, E.B. Wronski, Z.S. (2007) “Hydrogen desorption properties of MgH2 nanocomposites with nano-oxides and Inco micrometric-and nanometric-Ni,” J. Alloys Compd. 446–447 63–66.Google Scholar
  120. 120.
    R.A. Varin, T. Czujko, E.B. Wasmund, S. Baksa, Z.S. Wronski, “The effect of milling time on the hydrogen desorption properties of MgH2 catalyzed with nano-and micrometric Inco Ni” (in preparation for publication).Google Scholar
  121. 121.
    R.A. Varin, T. Czujko, E.B. Wasmund, S. Baksa, Z.S. Wronski, “The effect of specific surface area and chemistry of Inco nano-Ni on the hydrogen storage properties of MgH2,” (in preparation for publication).Google Scholar
  122. 122.
    Oelerich, W. Klassen, T. Bormann, R. (2001) “Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg,” J. Alloys Compd. 322 L5–L9.Google Scholar
  123. 123.
    Oelerich, W. Klassen, T. Bormann, R. (2001) “Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials,” J. Alloys Compd. 315 237–242.Google Scholar
  124. 124.
    Jung, K.S. Lee, E.Y. Lee, K.S. (2006) “Catalytic effects of metal oxide on hydrogen absorption of magnesium metal hydride,” J. Alloys Compd. 421 179–184.Google Scholar
  125. 125.
    Dehouche, Z. Klassen, T. Oelerich, W. Goyette, J. Bose, T.K. Schulz, R. (2002) “Cycling and thermal stability of nanostructured MgH2-Cr2O3 composite for hydrogen storage,” J. Alloys Compd. 347 319–323.Google Scholar
  126. 126.
    Barkhordarian, G. Klassen, T. Bormann, R. (2003) “Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst,” Scripta Mater. 49 213–217.Google Scholar
  127. 127.
    Bobet, J.-L. Castro, F.J. Chevalier, B. (2005) “Effects of RMG conditions on the hydrogen sorption properties of Mg + Cr2O3 mixtures,” Scripta Mater. 52 33–37.Google Scholar
  128. 128.
    Aguey-Zinsou, K.-F. Nicolaisen, T. Ares Fernandez, J.R. Klassen, T. Bormann, R. (2007) “Effect of nanosized oxides on MgH2 (de)hydriding kinetics,” J. Alloys Compd. 434–435 738–742.Google Scholar
  129. 129.
    Friedrichs, O. Klassen, T. Sánchez-López, J.C. Bormann, R. Fernández, A. (2006) “Hydrogen sorption improvement of nanocrystalline MgH2 by Nb2O5 nanoparticles,” Scripta Mater. 54 1293–1297.Google Scholar
  130. 130.
    R. Gupta, F. Agresti, S. Lo Russo, A. Maddalena, P. Palade, G. Principi, “Structure and hydrogen storage properties of MgH2 catalysed with La2O3,” J. Alloys Compd. (in press-doi:10.1016/j.jallcom.2006.10.105).Google Scholar
  131. 131.
    Barkhordarian, G. Klassen, T. Bormann, R. (2006) “Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents,” J. Alloys Compd. 407 249–255.Google Scholar
  132. 132.
    Barkhordarian, G. Klassen, T. Bormann, R. (2004) “Effect of Nb2O5 content on hydrogen reaction kinetics of Mg,” J. Alloys Compd. 364 242–246.Google Scholar
  133. 133.
    Hanada, N. Ichikawa, T. Hino, S. Fujii, H. (2006) “Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5,” J. Alloys Compd. 420 46–49.Google Scholar
  134. 134.
    Hanada, N. Ichikawa, T. Hino, S. Fujii, H. (2007) “Hydrogen absorption kinetics of the catalyzed MgH2 by niobium oxide,” J. Alloys Compd. 446–447 67–71.Google Scholar
  135. 135.
    Aguey-Zinsou, K-F. Ares Fernandez, J.R. Klassen, T. Bormann, R. (2007) “Effect of Nb2O5 on MgH2 properties during mechanical milling,” Int.J.Hydrogen Ener. 32 2400–2407.Google Scholar
  136. 136.
    V.V. Bhat, A. Rougier, L. Aymard, G.A. Nazri, J.-M. Tarascon, “High surface area niobium oxides as catalysts for improved hydrogen sorption properties of ball milled MgH2,” J. Alloys Compd. (in press-doi:10.1016/j.jallcom.2007.05.084).Google Scholar
  137. 137.
    Imamura, H. Takesue, Y. Akimoto, T. Tabata, S. (1999) “Hydrogen-absorbing magnesium composites prepared by mechanical grinding with graphite: effects of additives on composite structures and hydriding properties,” J. Alloys Compd. 293–295 564–568.Google Scholar
  138. 138.
    Bouaricha, S. Dodelet, J.P. Guay, D. Huot, J. Schulz, R. (2001) “Activation characteristics of graphite modified hydrogen absorbing materials,” J. Alloys Compd. 325 245–251.Google Scholar
  139. 139.
    Huot, J. Tremblay, M.-L. Schulz, R. (2003) “Synthesis of nanocrystalline hydrogen storage materials,” J. Alloys Compd. 356–357 603–607.Google Scholar
  140. 140.
    Bobet, J.-L. Grigorova, E. Khrussanova, M. Khristov, M. Stefanov, P. Peshev, P. Radev, D. (2004) “Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling,” J. Alloys Compd. 366 298–302.Google Scholar
  141. 141.
    Wu, C.Z. Wang, P. Yao, X. Liu, C. Chen, D.M. Lu, G.Q. Cheng, H.M. (2006) “Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride,” J. Alloys Compd. 414 259–264.Google Scholar
  142. 142.
    Chen, D. Chen, L. Liu, S. Ma, C.X. Chen, D.M. Wang, L.B. (2004) “Microstructure and hydrogen storage property of Mg/MWNTs composites,” J. Alloys Compd. 372 231–237.Google Scholar
  143. 143.
    Wu, C.Z. Wang, P. Yao, X. Liu, C. Chen, D.M. Lu, G.Q. Cheng, H.M. (2006) “Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling,” J. Alloys Compd. 420 278–282.Google Scholar
  144. 144.
    Yao, X. Wu, C.Z. Wang, H. Cheng, H.M. Lu, G.Q. (2006) “Effects of carbon nanotubes and metal catalysts on hydrogen storage in magnesium nanocomposites,” J. Nanosci. Nanotech. 6 494–498.Google Scholar
  145. 145.
    Imamura, H. Tabata, S. Shigetomi, N. Takesue, Y. Sakata, Y. (2002) “Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium,” J. Alloys Compd. 330–332 579–583.Google Scholar
  146. 146.
    Imamura, H. Kusuhara, M. Minami, S. Matsumoto, M. Masanari, K. Sakata, Y. Itoh, K. Fukunaga, T. (2003) “Carbon nanocomposites synthesized by high-energy mechanical milling of graphite and magnesium for hydrogen storage,” Acta Materialia 51 6407–6414.Google Scholar
  147. 147.
    Huang, Z.G. Guo, Z.P. Calka, A. Wexler, D. Liu, H.K. (2007) “Effect of carbon black, graphite and carbon nanotubes additives on hydrogen storage properties of magnesium,” J. Alloys Compd. 427 94–100.Google Scholar
  148. 148.
    Pezat, M. Darriet, B. Hagenmuller, P. (1980) “A comparative study of magnesium-rich rare-earth-based alloys for hydrogen storage,” J. Less-Comm. Metals 74 427–434.Google Scholar
  149. 149.
    Khrussanova, M. Pezat, M. Darriet, B. Hagenmuller, P. (1982) “Le stockage de l’hydrogène par les alliages La2Mg17 et La2Mg16Ni,” J. Less-Comm. Metals 86 153–160.Google Scholar
  150. 150.
    Khrussanova, M. Terzieva, M. Peshev, P. Petrov, K. Pezat, M. Manaud, J.P. Darriet, B. (1985) “Calcium-substituted lanthanum-magnesium alloys for hydrogen storage,” Int. J. Hyd. Ener. 10 591–594.Google Scholar
  151. 151.
    Khrussanova, M. Peshev, P. (1987) “Calcium-and nickel-substituted lanthanum-magnesium alloys for hydrogen storage,” J. Less-Comm. Metals 131 379–383.Google Scholar
  152. 152.
    Sun, D. Gingl, F. Nakamura, Y. Enoki, H. Bououdina, M. Akiba, E. (2002) “In situ X-ray diffraction study of hydrogen-induced phase decomposition in LaMg12 and La2Mg17,” J. Alloys Compd. 333 103–108.Google Scholar
  153. 153.
    Wang, W. Chen, C. Chen, L. Wang, Q. (2002) “Change in structure and hydrogen storage properties of La2Mg16Ni alloy after modification by mechanical grinding in tetrahydrofuran,” J. Alloys Compd. 339 175–179.Google Scholar
  154. 154.
    Chi, H. Chen, C. Chen, L. Wang, Q. (2003) “Hydriding properties of La2Mg16Ni alloy prepared by mechanical milling in benzene,” J. Alloys Compd. 360 312–315.Google Scholar
  155. 155.
    Chi, H. Chen, C. An, Y. Ying, T. Wang, X. (2004) “Hydriding/dehydriding properties of La2Mg16Ni alloy prepared by ball milling in different milling environments,” J. Alloys Compd. 373 260–264.Google Scholar
  156. 156.
    Kamegawa, A. Goto, Y. Kakuta, H. Takamura, H. Okada, M. (2006) “High-pressure synthesis of novel hydrides in Mg-RE-H systems (RE = Y, La, Ce, Pr, Sm, Gd, Tb, Dy),” J. Alloys Compd. 408–412 284–287.Google Scholar
  157. 157.
    Quyang, L.Z. Qin, F.X. Zhu, M. (2006) “The hydrogen storage behavior of Mg3La and Mg3LaNi0.1,” Scripta Mater. 55 1075–1078.Google Scholar
  158. 158.
    Quyang, L.Z. Dong, H.W. Zhu, M. (2007) “Mg3Mm compound based hydrogen storage materials,” J. Alloys Compd. 446–447 124–128.Google Scholar
  159. 159.
    Zhang, Q.A. Liu, Y.J. Si, T.Z. (2006) “Crystal structures and hydrogen-induced decomposition of La(Mg1-xAlx)3 alloys,” J. Alloys Compd. 417 100–103.Google Scholar
  160. 160.
    Bouaricha, S. Dodelet, J.P. Guay, D. Huot, J. Boily, S. Schulz, R. (2000) “Hydriding behavior of Mg-Al and leached Mg-Al compounds prepared by high-energy ball-milling,” J. Alloys Compd. 297 282–293.Google Scholar
  161. 161.
    Yabe, H. Kuji, T. (2007) “Thermal stability and hydrogen absorption/desorption properties of Mg17Al12 produced by bulk mechanical alloying,” J. Alloys Compd. 433 241–245.Google Scholar
  162. 162.
    Crivello, J.-C. Nobuki, T. Kato, S. Abe, M. Kuji, T. (2007) “Hydrogen absorption properties of the γ- Mg17Al12 phase and its Al-richer domain,” J. Alloys Compd. 446–447 157–161.Google Scholar
  163. 163.
    Yvon, K. Bertheville, B. (2006) “Magnesium based ternary metal hydrides containing alkali and alkaline-earth elements,” J. Alloys Compd. 425 101–108.Google Scholar
  164. 164.
    Kuji, T. Nakayama, S. Hanzawa, N. Tabira, Y. (2003) “Synthesis of nano-structured b.c.c. Mg-Tm-V (Tm = Ni, Co, Cu) alloys and their hydrogen solubility,” J. Alloys Compd. 356–357 456–460.Google Scholar
  165. 165.
    Nabuki, T. Chiba, M. Kuji, T. (2007) “Synthesis of CaMg-based bcc alloys and their hydrogenation properties,” J. Alloys Compd. 446–447 152–156.Google Scholar
  166. 166.
    Zhang, Y. Tsushio, Y. Enoki, H. Akiba, E. (2005) “The study on binary Mg-Co hydrogen storage alloys with BCC phase,” J. Alloys Compd. 393 147–153.Google Scholar
  167. 167.
    Zhang, Y. Tsushio, Y. Enoki, H. Akiba, E. (2005) “The hydrogen absorption-desorption performances of Mg-Co-X ternary alloys with BCC structure,” J. Alloys Compd. 393 185–193.Google Scholar
  168. 168.
    Hanada, N. Orimo, S. Fujii, H. (2003) “Hydriding properties of ordered-/disordered-Mg-based ternary Laves phase structures,” J. Alloys Compd. 356–357 429–432.Google Scholar
  169. 169.
    Guénée, L. Favre-Nicolin, V. Yvon, K. (2003) “Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg,” J. Alloys Compd. 348 129–137.Google Scholar
  170. 170.
    Morozkin, A.V. Klyamkin, S.N. Verbetsky, V.N. Seropegin, Yu.D. Portnoy, V.K. (1999) “Hydrogen in Ce2Ni1-xSi1 + x and Ce6Ni2Si3 compounds,” Int. J. Hyd. Ener. 24 141–143.Google Scholar
  171. 171.
    Morozkin, A.V. Klyamkin, S.N. Sviridov, I.A. (2001) “New ternary Ce6Ni2Si3-type Sm6{Co,Ni}2Si3” compounds and their interaction with hydrogen,” J. Alloys Compd. 316 236–238.Google Scholar
  172. 172.
    Lushnikov, S.A. Klyamkin, S.N. Morozkin, A.V. Verbetsky, V.N. (1999) “Hydride formation in Ce(La)-Ni-Si ternary compounds,” J. Alloys Compd. 293–295 429–432.Google Scholar
  173. 173.
    Sahlberg, M. Andersson, Y. (2007) “Hydrogen absorption in Mg-Y-Zn ternary compounds,” J. Alloys Compd. 446–447 134–137.Google Scholar
  174. 174.
    Deledda, S. Hauback, B.C. Fjellvåg, H. (2007) “H-sorption behaviour of mechanically activated Mg-Zn powders,” J. Alloys Compd. 446–447 173–177.Google Scholar
  175. 175.
    Goo, N.H. Hirscher, M. (2005) “Synthesis of the nanocrystalline MgS and its interaction with hydrogen,” J. Alloys Compd. 404–406 503–506.Google Scholar
  176. 176.
    Lomness, J.K. Hampton, M.D. Giannuzzi, L.A. (2002) “Hydrogen uptake characteristics of mechanically alloyed mixtures of Ti-Mg-Ni,” Int. J. Hyd. Ener. 27 915–920.Google Scholar
  177. 177.
    Sheppard, D.A. Jiang, Z.-T. Buckley, C.E. (2007) “Investigations of hydrogen uptake in ball-milled TiMgNi,” Int. J. Hyd. Ener. 32 1928–1932.Google Scholar
  178. 178.
    Finholt, A.E. Bond, A.C. Jr.Schlesinger, H.I. (1949) “Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry,” J. Am. Chem. Soc. 69 1199–1203.Google Scholar
  179. 179.
    Chizinsky, G. Evans, G.G. Gibb, T.R.P. Jr.Rice, M.J. Jr.(1955) “Non-solvated aluminum hydride,” J. Am. Chem. Soc. 77 3164–3165Google Scholar
  180. 180.
    Brower, F.M. Matzek, N.E. Reigler, P.F. Rinn, H.W. Roberts, C.B. Schmidt, D.J. Snover, J.A. Terada, K. (1976) “Preparation and properties of aluminum hydride,” J. Am. Chem. Soc. 98 2450–2453.Google Scholar
  181. 181.
    Sinke, G.C. Walker, L.C. Oetting, F.L. Stull, D.R. (1967) “Thermodynamic properties of aluminum hydride,” J. Chem. Phys. 47 2759–2761.Google Scholar
  182. 182.
    Herley, P.J. Irwin, R.H. (1978) “A preliminary study of the thermal and photolytic decomposition of aluminum hydride powder,” J. Phys.Chem. Solids, 39 1013–1015.Google Scholar
  183. 183.
    Herley, P.J. Christofferson, O. Irwin, R.H. (1981) “Decomposition of α-aluminum hydride powder. 1. Thermal decomposition,” J. Phys. Chem. 85 1874–1881.Google Scholar
  184. 184.
    Herley, P.J. Christofferson, O. (1981) “Decomposition of α-aluminum hydride powder. 3. Simultaneous photolytic-thermal decomposition,” J. Phys. Chem. 85 1874–1881.Google Scholar
  185. 185.
    Sandrock, G. Reilly, J. Graetz, J. Zhou, W.-M. Johnson, J. Wegrzyn, J. (2005) “Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles,” Appl. Phys A 80 687–690.Google Scholar
  186. 186.
    Sandrock, G. Reilly, J. Graetz, J. Zhou, W.M. Johnson, J. Wegrzyn, J. (2006) “Alkali metal hydride doping of α-AlH3 for enhanced H2 desorption kinetics,” J. Alloys Compd. 421 185–189.Google Scholar
  187. 187.
    Konovalov, S.K. Bulychev, B.M. (1995) “The P,T-state diagram and solid state synthesis of aluminium hydride,” Inorg. Chem. 34 172–175.Google Scholar
  188. 188.
    Graetz, J. Reilly, J.J. (2005) “Decomposition kinetics of the AlH3 polymorphs,” J. Phys.Chem.B 109 22181–22185.Google Scholar
  189. 189.
    Graetz, J. Reilly, J.J. (2006) “Thermodynamics of the α, β and γ polymorphs of AlH3,” J. Alloys Compd. 424 262–265.Google Scholar
  190. 190.
    Graetz, J. Reilly, J.J. Kulleck, J.G. Bowman, R.C. (2007) “Kinetics and thermodynamics of the aluminum hydride polymorphs,” J. Alloys Compd. 446–447 271–275.Google Scholar
  191. 191.
    Hwang, S.J. Bowman, R.C. Jr.Graetz, J. Reilly, J.J. Langley, W. Jensen, C.M. (2007) “NMR studies of the aluminum hydride phases and their stabilities,” J. Alloys Compd. 446–447 290–295.Google Scholar
  192. 192.
    Maehlen, J.P. Yartys, V.A. Denys, R.V. Fichtner, M. Frommen, C. Bulychev, B.M. Pattison, P. Emerich, H. Filinchuk, Y.E. Chernyshov, D. (2007) “Thermal decomposition of AlH3 by in situ synchrotron X-ray diffraction and thermal desorption spectroscopy,” J. Alloys Compd. 446–447 280–289.Google Scholar
  193. 193.
    Orimo, S. Nakamori, Y. Kato, T. Brown, C. Jensen, C.M. (2006) “Intrinsic and mechanically modified thermal stabilities of α-, β-and γ-aluminum trihydrides AlH3,” Appl. Phys. A 83 5–8.Google Scholar
  194. 194.
    Mueller, W.M. Blackledge, J.P. Libowitz, G.G. 1968).“Metal hydrides,” Academic Press, (New YorkGoogle Scholar
  195. 195.
    Schlapbach, L. Meli, F. Züttel, A. 1995), pp. “Intermetallic hydrides and their applications,” In Westbrook, J.H. Fleischer (eds.), R.L. Intermetallic Compounds-Principles and Practice (Ch.21), Wiley, Chichester, England, (475–488.Google Scholar
  196. 196.
    Sandrock, G. (1999) “A panoramic overview of hydrogen storage alloys from a gas reaction point of view,” J. Alloys Compd. 293–295 877–888.Google Scholar
  197. 197.
    Grochala, W. Edwards, P.P. (2004) “Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen,” Chem. Rev. 104 1283–1315.Google Scholar
  198. 198.
    Ritter, J.A. Ebner, A.D. Wang, J. Zidan, R. (2003) “Implementing a hydrogen economy,” Mater. Today 6 (9)18–23.Google Scholar
  199. 199.
    Güther, V. Otto, A. (2003) “Recent developments in hydrogen storage applications based on metal hydrides,” J. Alloys Compd. 293–295 889–892.Google Scholar
  200. 200.
    Dehouche, Z. Savard, M. Laurencelle, F. Goyette, J. (2005) “Ti-V-Mn based alloys for hydrogen compression system,” J. Alloys Compd. 400 276–280.Google Scholar
  201. 201.
    Elansari, L. Antoine, L. Janot, R. Gachon, J.C. Kuntz, J.J. Guérard, D. (2001) “Preparation of alkali metal hydrides by mechanical alloying,” J. Alloys Compd. 329 L5–L8.Google Scholar
  202. 202.
    Yukawa, H. Takagi, M. Teshima, A. Morinaga, M. (2002) “Alloying effects on the stability of vanadium hydrides,” J. Alloys Compd. 330–332105–109.Google Scholar
  203. 203.
    Y. Yan, Y. Chen, H. Liang, X. Zhou, C. Wu, M. Tao, L. Pang, “Hydrogen storage properties of V-Ti-Cr-Fe alloys,” J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2006.12.093).Google Scholar
  204. 204.
    X.P. Song, P. Pei, P.L. Zhang, G.L. Chen, “The influence of alloy elements on the hydrogen storage properties in vanadium-based solid-solution alloys,” J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2007.01.145).Google Scholar
  205. 205.
    D. Chandra, A. Sharma, R. Chellapa, W.N. Cathey, F.E. Lynch, R.C. Bowman Jr., J.R. Wermer, S.N. Paglieri, “Hydriding and structural characteristics of thermally cycled and cold-worked V-0.5at.%C alloy,” J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2006.11.078).Google Scholar
  206. 206.
    Lynch, F.E. (1991) “Metal hydride practical applications,” J. Less-Common Met. 172–174 943–958.Google Scholar
  207. 207.
    Bowman., R.C. JrFreeman, B.D. Phillips, J.R. (1992) “Evaluation of metal hydride compressors for applications in Joule-Thomson cryocoolers,” Cryogenics 32 127–137.Google Scholar
  208. 208.
    Zhu, M. Gao, Y. Che, X.Z. Yang, Y.Q. Chung, C.Y. (2002) “Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5-x(CoAlMn)x,” J. Alloys Compd. 330–332 708–713.Google Scholar
  209. 209.
    Fujii, H. Munehiro, S. Fujii, K. Orimo, S. (2002) “Effect of mechanical grinding under Ar and H2 atmospheres on structural and hydriding properties in LaNi5,” J. Alloys Compd. 330–332 747–751.Google Scholar
  210. 210.
    Rozdzynska-Kielbik, B. Iwasieczko, W. Drulis, H. Pavlyuk, V.V. Bala, H. (2000) “Hydrogenation equilibria characteristics of LaNi5-xZnx intermetallics,” J. Alloys Compd. 298 237–243.Google Scholar
  211. 211.
    Laurencelle, F. Dehouche, Z. Goyette, J. (2006) “Hydrogen sorption cycling performance of LaNi4.8Sn0.2,” J. Alloys Compd. 424 266–271.Google Scholar
  212. 212.
    H.H. Cheng, H.G. Yang, S.L. Li, X.X. Deng, D.M. Chen, K. Yang, “Effect of hydrogen absorption/desorption cycling on hydrogen storage performance of LaNi4.25Al0.75,” J. Alloys Compd. (2007) (in press; doi:10.1016/j.jallcom.2006.11.112).Google Scholar
  213. 213.
    Hotta, H. Abe, M. Kuji, T. Uchida, H. (2007) “Synthesis of Ti-Fe alloys by mechanical alloying,” J. Alloys Compd. 439 221–226.Google Scholar
  214. 214.
    Abe, M. Kuji, T. (2007) “Hydrogen absorption of TiFe alloy synthesized by ball milling and post-annealing,” J. Alloys Compd . 446–447200–203.Google Scholar
  215. 215.
    Saita, I. Sato, M. Uesugi, H. Akiyama, T. (2007) “Hydriding combustion synthesis of TiFe,” J. Alloys Compd. 446–447 195–199.Google Scholar
  216. 216.
    J. Huot, H. Enoki, E. Akiba, “Synthesis, phase transformation, and hydrogen storage properties of ball-milled TiV0.9Mn1.1,” J. Alloys Compd. (in press; doi:10.1016/j.jallcom.2006.11.193).Google Scholar
  217. 217.
    Guénée, L. Yvon, K. (2003) “Synthesis, crystal structure and hydrogenation properties of the novel metal compound LaNi2Mn3,” J. Alloys Compd. 348 176–183.Google Scholar
  218. 218.
    Miyoshi, M. Kinoshita, K. Aoki, M. Ohba, N. Miwa, K. Noritake, T. Towata, S. (2007) “Hydriding and dehydriding properties of Ca-Si-X,” J. Alloys Compd. 446–447 15–18.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations