Advertisement

1.1 Motivation: The Hydrogen Economy

The energy supply to the humankind in the last two centuries was solely based on fossil fuels such as coal in the nineteenth century and crude oil and natural gas in the twentieth century. Unfortunately, this fossil fuel-based economy has led to a number of new challenges facing all of us in the twenty-first century such as global warming and following climate changes due to the release of growing amounts of greenhouse gas CO2, poor urban air quality, and reduction in the world crude oil supply, which could reach so-called Hubbert’s Peak around year 2011–2020. It is also noted that no major oil field has been discovered since 1970 [1]. Since the mid-1970s a concept of ecologically clean Hydrogen Economy has been gaining momentum as essentially the only viable remedy for the growing world energy problems. The Hydrogen Economy offers a potential solution to satisfying the global energy requirements while reducing (and eventually eliminating) carbon...

Keywords

Ball Mill Metallic Glass Amorphous Alloy Hydrogen Storage Metal Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bockris, J.O.M. (2007) “Will lack of energy lead to the demise of high-technology countries in this century?” Int. J. Hydrogen Ener. 32 153–158.Google Scholar
  2. 2.
    Hashimoto, K. Habazaki, H. Yamasaki, M. Meguro, S. Sasaki, T. Katagiri, H. Matsui, T. Fujimura, K. Izumiya, K. Kumagai, N. Akiyama, E. (2001) “Advanced materials for global carbon dioxide recycling,” Mater. Sci. Eng. A 304–306 88–96.Google Scholar
  3. 3.
    Yildiz, B. Kazimi, M.S. (2006) “Efficiency of hydrogen production systems using alternative nuclear energy technologies,” Int. J. Hydrogen Ener. 31 77–92.Google Scholar
  4. 4.
    Turner, J.A. Williams, M.C. Rajeshwar, K. (2004) “Hydrogen economy based on renewable energy sources,” The Electrochem. Soc. Interface 13 (3)24–30.Google Scholar
  5. 5.
    Ramani, V. Kunz, H.R. Fenton, J.M. (2004) “The polymer electrolyte fuel cell,” The Electrochem. Soc. Interface 13 (3)17–45.Google Scholar
  6. 6.
    Lovins, A.B. 2005, available at: “Twenty hydrogen myths,” Rocky Mountain Institute, Snowmass, CO, www.rmi.org.Google Scholar
  7. 7.
    Scott, D.S. 2007.“Smelling land-the hydrogen defense against climate catastrophe,” Canadian Hydrogen Association, Westmount, QCGoogle Scholar
  8. 8.
    Ewan, B.C.R. Allen, R.W.K. (2007) “A figure of merit assessment of the routes to hydrogen,” Int. J. Hydrogen Ener. 30 809–819.Google Scholar
  9. 9.
    Züttel A, A. (2004) “Hydrogen storage methods,” Naturwissenschaften 91 157–172.Google Scholar
  10. 10.
    Sandi, G. (2004) “Hydrogen storage and its limitations,” The Electrochem. Soc. Interface 13 (3)40–44.Google Scholar
  11. 11.
    S. Satyapal, S. Petrovic, G. Thomas, C. Read, G. Ordaz, “The U.S. national hydrogen storage project,” Proceedings of the 16th World Hydrogen Energy Conference, 13–16 June, Lyon, France, (2006), pp. 1/10–9/10.Google Scholar
  12. 12.
    Basic research needs for the hydrogen economy, Second Printing, U.S. Department of Energy, Basic Research Challenges for Hydrogen Storage, Washington, DC, 2004, pp. 31–51.Google Scholar
  13. 13.
    Grochala, W. Edwards, P.P. (2004) “Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen,” Chem. Rev. 104 1283–1315.Google Scholar
  14. 14.
    Sandrock, G. (1999) “A panoramic overview of hydrogen storage alloys from a gas reaction point of view,” J. Alloys Compd. 293–295 877–888.Google Scholar
  15. 15.
    Schlapbach, L. Züttel, L.A. (2001) “Hydrogen-storage materials for mobile applications,” Nature 414 353–358.Google Scholar
  16. 16.
    D.K. Slattery, M.D. Hampton, “Complex hydrides for hydrogen storage,” In Proceedings of the 2002 U.S. D.O.E. Hydrogen Program Review NREL/CP-610–32405, Golden, CO.Google Scholar
  17. 17.
    Sandrock, G. Bowman R.C. Jr., (2003) “Gas-based hydride applications: recent progress and future needs,” J. Alloys Compd. 356–357 794–799.Google Scholar
  18. 18.
    Ritter, J.A. Ebner, A.D. Wang, J. Zidan, R. (2003) “Implementing a hydrogen economy,” Mater. Today 6 (9)18–23.Google Scholar
  19. 19.
    Züttel, A. (2003) “Materials for hydrogen storage,” Mater. Today 6 (9)24–33.Google Scholar
  20. 20.
    F. Schüth, B. Bogdanović, M. Felderhoff, “Light metal hydrides for hydrogen storage,” (2004) Chem. Commun. 2249–2258.Google Scholar
  21. 21.
    D. Chandra , J.J. Reilly , R. Chellappa , “Metal hydrides for vehicular applications: the state of the art,” JOM 58 (2006) 26–32.Google Scholar
  22. 22.
    R.A. Varin , S. Li , Z. Wronski , O. Morozova, T. Khomenko, “The effect and sequential and continuous high energy impact mode on the mechano-chemical synthesis of nanostructured complex hydride Mg2FeH6, ” J. Alloys Compd. 390 (2005) 282–296.Google Scholar
  23. 23.
    S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata, A. Züttel, “Dehydriding and rehydriding reactions of LiBH4, ” J. Alloys Compd. 404–406 (2005) 427–430.Google Scholar
  24. 24.
    E. Jeon, Y. Whan Cho, “Mechanochemical synthesis and thermal decomposition of zinc borohydride,” J. Alloys Compd. 422 (2006) 273–275.Google Scholar
  25. 25.
    S. Srinivasan, E. Stefanakos, Y. Goswami, “New transition metal assisted complex borohydrides for hydrogen storage,” Proceedings of the 16th World Hydrogen Energy Conference, 13–16 June, Lyon, France, (2006), pp. 1/6–6/6Google Scholar
  26. 26.
    Jensen, J.O. Li, Q. He, R. Pan, C. Bjerrum, N.J. (2005)“100–200 C polymer fuel cells for use with NaAlH4,” J. Alloys Compd.404–406653–656.Google Scholar
  27. 27.
    Maddalena, A. Petris, M. Palade, P. Sartori, S. Principi, G. Settimo, E. Molinas, B. Lo Russo, S. (2006) “Study of Mg-based materials to be used in a functional solid state hydrogen reservoir for vehicular applications,” Int. J. Hyd. Ener. 31 2097–2103.Google Scholar
  28. 28.
    Sandrock, G. Reilly, J. Graetz, J. Zhou, W.-M. Johnson, J. Wegrzyn, J. (2005) “Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles,” Appl. Phys. A 80 687–690.Google Scholar
  29. 29.
    Graham, T. (1866) “On the absorption and dialytic separation of gases by colloid septa,” Phil. Trans. Roy. Soc. (London), 156 399–439.Google Scholar
  30. 30.
    Sieverts, A. (1907) “Occlusion and diffusion of gases in metals,” Z. Phys. Chem. 60 129–201.Google Scholar
  31. 31.
    Sieverts, A. Zapf, G. Moritz, H. (1938) “Solubility of H2, D2, and N2 in Fe,” Z. Phys. Chem. 183 19–37.Google Scholar
  32. 32.
    Sieverts, A. Jurish, E. Metz, A. (1915) “Solubility of hydrogen in solid alloys of palladium with gold, silver, platinum,” Z. Anorg. Chem. 91 1–45.Google Scholar
  33. 33.
    Kirschfeld, L. Sieverts, A. (1929) “Titanium and hydrogen,” Z. Phys. Chem. 145 (3–4)227–240.Google Scholar
  34. 34.
    Avrami, M. (1940) “Kinetics of phase change. II: Transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8 212.Google Scholar
  35. 35.
    Avrami, M. (1939) “Kinetics of phase change. I. General theory,” J. Chem. Phys. 7 1103.Google Scholar
  36. 36.
    Avrami, M. (1941) “Kinetics of phase change. III: Granulation, phase change and microstructures,” J. Chem. Phys. 9 177.Google Scholar
  37. 37.
    Libowitz, G.G. Hayes, H.F. Gibb T.R.P. Jr., (1958) “The system zirconium-nickel and hydrogen,” J. Phys. Chem. 62 76.Google Scholar
  38. 38.
    Williamson, G.K. Hall, W.H. (1953) “X-ray line broadening from filed aluminum and wolfram,” Acta Metall. 1 22–31.Google Scholar
  39. 39.
    Klug, H.P. Alexander, L. (1974), “X-ray diffraction procedures for polycrystalline and amorphous materials,” 1st Ed. 2nd Ed. Wiley, New York.1954;Google Scholar
  40. 40.
    Rietveld, H.M. (1969) “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2 65–71.Google Scholar
  41. 41.
    Carpenter, G.J.C. (1973) “The dilational misfit of zirconium hydrides precipitated in zirconium,” J. Nucl. Mater. 48 264–266.Google Scholar
  42. 42.
    Baranowski, B. Smialowski, M. (1960) “Charging of nickel films with hydrogen evolved electrolytically in the presence of cathodic poisons,” J. Phys. Chem. Sol. 12 206–207.Google Scholar
  43. 43.
    B. Barnowski, “Metal-hydrogen systems at high hydrogen pressures, in hydrogen in metals II,” In G. Alefeld, J. Völkl, Editor. (1978), Springer, Berlin-Heidelberg. pp. 157–200.Google Scholar
  44. 44.
    Klement, J.W. Willens, R.H. Duwez, P. (1960) “Non-crystalline structure in solidified gold-silicon alloys,” Nature 187 869–870.Google Scholar
  45. 45.
    Cohen, M.H. Turnbull, D. (1961) “Composition requirements for glass formation in metallic and ionic systems,” Nature 189 131–132.Google Scholar
  46. 46.
    Chen, H.S. Polk, D.E. (1974), US Patent 3,856,513. Allied Chemical Corporation, U.S.A.Google Scholar
  47. 47.
    J.J. Gilman, “Metallic glass materials, in frontiers in materials technologies,” In M.A., O.T. Inal, Editor. (1985), Elsevier, Amsterdam. pp. 175–199.Google Scholar
  48. 48.
    N. Grant, “Rapid solidification technology, in frontiers in materials technologies,” In M.A. Meyers, O.T. Inal, Editor. (1985), Elsevier , Amsterdam. pp. 125–172.Google Scholar
  49. 49.
    Z.S. Wronski, “Rapid solidification of iron-neodymium-boron magnetic alloys, in rapid solidification technology-an engineering guide,” In T.S. Srivatsan, Editor. (1993), Technomic Publishing, Lancaster, Basel. pp. 257–298.Google Scholar
  50. 50.
    Harris, I.R. McGuiness, A. Jones, D.G.R. Abel, J.S. (1987) “Nd-Fe-B permanent magnets: Hydrogen absorption/desorption studies (HADS) on Nd16Fe76B8 and Nd2Fe14B,” Phys. Scr. T16B 435–440.Google Scholar
  51. 51.
    Kijek, M. Cantor, A.M. Cahn, R.W. (1980) “Diffusion in amorphous alloys,” Scripta Metall. 14 337–1340.Google Scholar
  52. 52.
    Kirchheim, R. Sommer, F. Schluckebier, G. (1982) “Hydrogen in amorphous metals-I,” Acta Metall. 30 (6)1059–1068.Google Scholar
  53. 53.
    Kirchheim, R. (1982) “Solubility, diffusivity and trapping of hydrogen in dilute alloys, deformed and amorphous metals-II,” Acta Metallurgica, 30 (6)1069–1078.Google Scholar
  54. 54.
    Bowman R.C. Jr., Maeland, A.J. (1981) “NMR studies of diffusion in metallic glass TiCuHx,” Phys. Rev. B 24 (5)2328–2333.Google Scholar
  55. 55.
    Wronski, Z.S. Morrish, A.H. Stewart, A.M. (1984) “Hydrogen induced magnetic transformation in Fe90Zr10 glass,” Phys. Lett. 101A (5,6)294–296.Google Scholar
  56. 56.
    Wronski, Z.S. Zhou, X.Z. Morrish, A.H. Stewart, A.M. (1986) “Magnetic microcrystals and surface layers in as-quenched and hydrogenated metallic glasses,” J. Appl. Phys. 57 3548–3550.Google Scholar
  57. 57.
    Yeh, X.L. Samwer, K. Johnson, W.L. (1983) “Formation of an amorphous metallic hydride by reaction of hydrogen with crystalline intermetallic compounds – a new method of synthesizing metallic glasses,” Appl. Phys. Lett. 42 242–244.Google Scholar
  58. 58.
    Aoki, K. Kamachi, M. Masumoto, T. (1984) “Thermodynamics of hydrogen absorption in amorphous Zr-Ni alloys,” J. Non-Crystalline Solids 61–62 679–684.Google Scholar
  59. 59.
    Bowman R.C. Jr., (1988) “Preparation and properties of amorphous hydrides,” Mater. Sci. Forum 31 197–227.Google Scholar
  60. 60.
    Binning, G. Rohrer, H. Gerber, C. Weibel, E. (1982) “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49 57–61.Google Scholar
  61. 61.
    Binnig, G. Quate, C.F. Gerber, C. (1986) “Atomic force microscope,” Phys. Rev. Lett. 56 930–933.Google Scholar
  62. 62.
    Gleiter, H. (1989) “Nanocrystalline materials,” Prog. Mater. Sci. 33 223–315.Google Scholar
  63. 63.
    Birringer, R. Gleiter, H. Klein, H.P. MarquardtP. (1984) , “Nanocrystalline materials- an approach to a novel solid structure with gas-like disorder?” Phys. Lett. A 102 (8)365–369.Google Scholar
  64. 64.
    Baetzold, R.C. (1973) “Molecular orbital description of catalysis by metal clusters,” J. Catal.29 129.Google Scholar
  65. 65.
    Siegel, R.W. (1991) “Cluster assembled nanophase materials,” Annu. Rev. Mater. Sci. 21 559.Google Scholar
  66. 66.
    Chawla, V. Prakash, S. Sidhu, B.S. (2007) “State of the art: Applications of mechanically alloyed nanomaterials – a review,” Mater. Manuf. Proc. 22 469–473.Google Scholar
  67. 67.
    Berube, V. Radtke, G. Dresselhaus, M. Chen, G. (2007) “Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review,” Int. J. Energy Res. 31 (6–7)637–663.Google Scholar
  68. 68.
    Willems, J.J.G. Buschow, K.H.J. (1987) “From permanent magnets to rechargeable hydride electrodes,” J. Less-Comm. Metals 129 13–30.Google Scholar
  69. 69.
    Zijlstra, H. Westendorp, F.F. (1969) “Influence of hydrogen on the magnetic properties of SmCo5,” Solid State Comm. 7 857–859.Google Scholar
  70. 70.
    van Vucht, J.H.N. Kuijpers, F.A. Bruning, H.C.A.M. (1970) “Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds,” Philips Res. Repts. 25 133–140.Google Scholar
  71. 71.
    Beltowska-Brzezinska, M. Czerwinski, A. Kleperis, J. Kopczyk, M. Skowronski, J. Wojcik, G. (2001) “Electrochemical behaviour of metal hydrides,” J. Solid State Electrochem. 5 229–249.Google Scholar
  72. 72.
    Wronski, Z.S. (2001) “Materials for rechargeable batteries and clean hydrogen energy storage,” Int. Mater.Rev. 46 (1)1–46.Google Scholar
  73. 73.
    Wronski, Z.S. (2004). “Electrochemical storage of hydrogen in nanostructured solid-state hydrides and nanocarbons,” Stallion Press, Singapore-London, 275–287.International Conference on Processing and Fabrication of Advanced Materials- PFAM XII, SingaporeGoogle Scholar
  74. 74.
    Reilly, J.J. Wiswall R.H. Jr., (1974). US Patent 3,825,418 “Alloys for the isolation of hydrogen,” Brookhaven National Laboratory, USA.Google Scholar
  75. 75.
    Sandrock, G.D. (1978), “Development of low cost nickel-rare Earth hydrides for hydrogen storage,” In Seifritz, W. Vezeroglu, Editor. T.N. Hydrogen Energy Systems, Pergamon Press, Oxford, U.K. 1625–1656.Google Scholar
  76. 76.
    Osumi, Y. Suzuki, H. Kato, A. Nakane, M. Miyake, Y. (1978) “Absorption-desorption characteristics of hydrogen for mischmetal based alloys,” J. Chem. Soc. Jpn. Chem. Industrial Chem. 111472–1477.(Nippon Kagaku Kaishhi)Google Scholar
  77. 77.
    van Mal, H.H. Buschow, K.H.J. Kuijpers, F.A. (1973) Hydrogen absorption and magnetic properties of LaCo5x.Ni5–5x compounds J. Less-Common Metals, 32 289–296.Google Scholar
  78. 78.
    Sandrock, G.D. 28 August–2 September 1977. “A new family of hydrogen storage alloys based on the system nickel -mischmetal-calcium,” American Nuclear Society, Washington, DC, 951–958.Proceedings of the 12th Intersociety Energy Conversion Engineering ConferenceGoogle Scholar
  79. 79.
    Lundin, C.E. Lynch, F.E. (1978) “Modification of hydriding properties of AB5 alloy type hexagonal alloys through manganese substitution,”University of Miami, United States, 3803–3820.5–7 December 1977. Proceedings of the Miami International Conference Alternate Energy SourcesGoogle Scholar
  80. 80.
    Reilly, J.J. Wiswall, R.H. (1974) “Formation and properties of FeTi hydride,” Inorg. Chem. 13 218.Google Scholar
  81. 81.
    Ovshinsky, S.R. Sapru, K. Dec, K. Hong,K. (1984).US Patent 4,431,561: Hydrogen storage materials and method of making same. Energy Conversion Devices, Troy, MIGoogle Scholar
  82. 82.
    Kuriyama, N. Chartouni, D. Tsukahara, M. Takahashi, K. Takeshita, H.T. Tanaka, H. Schlapbach, L. Sakai, T. Uehara, I. (1998) “Scanning tunneling microscopy in situ observation of phase-selective cathodic hydrogenation of a V-Ti-Ni-based multiphase alloy electrode,” Electrochem. Solid-State Lett. 1 37–38.Google Scholar
  83. 83.
    Benjamin, J.S. (1970) “Dispersion strengthened superalloys by mechanical alloying,” Metall. Trans. 1 2943–2951.Google Scholar
  84. 84.
    Benjamin, J.S. (1976) “Mechanical alloying,” Sci. Amer. 234 49–48.Google Scholar
  85. 85.
    Koch, C.C. Cavin, O.B. McKamey, C.G. Scarbrough, J.O. (1983) “Preparation of “amorphous” Ni60Nb40 by mechanical alloying,” Appl. Phys. Lett. 43 1017–1019.Google Scholar
  86. 86.
    Ye, A.Yermakov, Ye., Ye., Yurchikov, Barinov, V.A. (1981) “Magnetic properties of amorphous powders of Y-Co alloys prepared by mechanical alloying,” Fiz Metal. Metalloved. (Phys.Met. Metall. USSR), 52 (52–56)1184–1193.Google Scholar
  87. 87.
    Schwarz, R.B. Petrich, R.R. Saw, C.H. (1985) “The synthesis of amorphous Ni-Ti alloy by mechanical alloying,” J. Non-Cryst. Solids, 76 (2–3)281–301.Google Scholar
  88. 88.
    Bloch, J. (1962) “Effect of neutron irradiation of uranium-iron alloys dilute in iron,” J. Nuclear Mater. 6 203–212.Google Scholar
  89. 89.
    Luzzi, D.E. Meshii, M. (1987) “The crystalline to amorphous transition of intermetallic compounds under electron irradiation -a review,” Res. Mechanica 21 (3)207–247.Google Scholar
  90. 90.
    Schwarz, R.B. Johnson, W.L. (1983) “Formation of amorphous alloy by solid-state reaction of the pure polycrystalline metals,” Phys. Rev. Lett. 51 (5)415–418.Google Scholar
  91. 91.
    Carey-Lea, M. (1892) “Quicksilver from cinnabar: The first documented mechanochemical reaction,” J. Metals, 34 46; cited after: Takac Laszlo, Jan 2000, pp. 12–13. Phil. Mag.Google Scholar
  92. 92.
    Theophrastus, De Lapidibus, Translation and Commentary by D.E. Eichholz, Oxford University Press, New York (1965) p. 8.Google Scholar
  93. 93.
    S.A. Black, “Development of supercorroding alloys for use as timed releases for ocean engineering applications, Report US Navy Civil Engineering Laboratory,” (1979), Civil Engineering Laboratory (Navy), Port Hueneme, CA, p. 40.Google Scholar
  94. 94.
    E. Ivanov , I. Konstanchuk , A. Stepanov , V. Boldyrev , “Magnesium mechanical alloys for hydrogen storage,” J. Less-Comm. Metals, 131 (1987) 25–29.Google Scholar
  95. 95.
    C. Winkler, “Berichte der Deutwchen Chemischen Gasellschaft,” 24 (1891) 1966.Google Scholar
  96. 96.
    Ellinger, F.H. Holley C.E. Jr., McInteer, B.B. Pavone, D. Potter, R.M. Staritzky, E. Zachariasen, W.H. (1955) “Preparation and some properties of magnesium hydride,” J. Am. Chem. Soc. 77 2647.Google Scholar
  97. 97.
    E. Wiberg, H. Goeltzer, R. Bauer, Z. Naturforsch, B. Teil 6 (1951) 394; cited after B. Bogdanović, S-T. Liao, M. Schwickardi, P. Sikorsky, B. Spliethoff, “Catalytic synthesis of magnesium hydride under mild conditions,” Angew. Chem. Int. Ed. Engl. 19(10) (1980) 818–819.Google Scholar
  98. 98.
    N.T. Dymova, Z.K. Sterlyadkina, V.G. Safranov, Zh. Neorg. Khim. (J. Inorganic Chemistry), 6 (1961) 763; cited after B. Bogdanović, S-T. Liao, M. Schwickardi, P. Sikorsky, B. Spliethoff, “Catalytic synthesis of magnesium hydride under mild conditions,” Angew. Chem. Int. Ed. Engl. 19(10) (1980) 818–819.Google Scholar
  99. 99.
    Noreus, D.Z. (1989) “Properties of formal low-valence transition metal-hydrogen complexes in Mg2NiH4 and Na2PdH2,” Phys. Chem. NF 163 575–578.Google Scholar
  100. 100.
    Pebler, A. Gulbransen, E.A. (1966) “Thermochemical and structural aspects of the reaction of hydrogen with alloys and intermetallic compounds of zirconium,” Electrochem. Techn. 4 211–215.Google Scholar
  101. 101.
    Zaluski, L. Zaluska, A. Strom-Olsen, J.O. (1997) “Nanocrystalline metal hydrides,” J. Alloys Compd 253–254 70–79.Google Scholar
  102. 102.
    Didishiem, J.J. Zolliker, P. Yvon, K. Fischer, P. Schefer, J. Grubelmann, M. Williams, A.F. (1984) “Diamagnesium iron (II) hydride, Mg2FeH6, containing octahedral FeH6 4- anions,” Inorg. Chem. 23 1953–1957.Google Scholar
  103. 103.
    Selvam, P. Yvon, K. (1991) “Synthesis of Mg2FeH6, Mg2CoH5, and Mg2NiH4 by high-pressure sintering of the elements,” Int. J. Hyd. Ener. 9 615–617.Google Scholar
  104. 104.
    Stetson, N.T. Yvon, K. Fischer, P. (1994) “On the structure of BaReH9,” Inorg. Chem. 33 4598–4599.Google Scholar
  105. 105.
    Siegel, B. (1960) “The reaction between aluminum and atomic hydrogen,” J. Am. Chem. Soc. 82 7.Google Scholar
  106. 106.
    Dymova, T.N. Eliseeva, N.G. Bakum, S.I. Dergachev, Y.M. (1974) “Direct synthesis of alkalii metal aluminum hydrides in the melt,” Dokl. Akad. Nauk SSSR 215 1369–1372.Google Scholar
  107. 107.
    Bogdanović, B. Schwickardi, M. (1997) “Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials,” J. Alloys Compd 1–9 253–254.Google Scholar
  108. 108.
    Dymova, T.N. Dergachev, Y.M. Sokolov, V.A. Grechanaya, N.A. (1975) “Dissociation pressure of NaAlH4 and Na3AlH6,” Dokl. Nauk SSSR 225 591–592.Google Scholar
  109. 109.
    Ford Motor Co., Direct-hydrogen-fueled proton-exchange membrane fuel cell system for transportation applications: hydrogen vehicle safety report, D.T. Inc., ed., Arlington,VA (1997).Google Scholar
  110. 110.
    D. Goerrig, German Patent DE1077644. (1958) Germany.Google Scholar
  111. 111.
    Konoplev, V.N. Bakulina, V.M. (1971) “Some properties of magnesium borohydride,” Russian Chem. Bull. 20 (1)136–138.(Translated from Izviestiya Akad.Nauk SSSR, Ser. Khim.)Google Scholar
  112. 112.
    Züttel, A. Wenger, P. Rentsch, S. Sudan, P. (2003) “LiBH4 a new hydrogen storage material,” J. Power Sources 118 1–7.Google Scholar
  113. 113.
    Fichtner, M. Engel, G. Fuhr, O. Gloss, A. Rubner, O. Ahlrichs, R. (2003) “The structure of magnesium alanate,” Inorg. Chem. 42 7060–7066.Google Scholar
  114. 114.
    Radushkevich, L.V. Lukyanovich, V.M. (1952) “O structure ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zelaznom kontakte” Zurn. Fisic. Chim. 26 88–95.(in Russian)Google Scholar
  115. 115.
    Manthioux, M. Kuznetsov, V.L. (2006) Guest editorial: “Who should be given credit for the discovery of carbon nanotubes?” Carbon 44 1621–1624.Google Scholar
  116. 116.
    Oberlin, A. Endo, M. Koyama, T. (1976) “Filamentous growth of carbon through benzene decomposition,” J. Cryst. Growth 32 335–349.Google Scholar
  117. 117.
    Iijima, S. (1991) “Helical microtubules of graphitic carbon,” Nature, 354 56.Google Scholar
  118. 118.
    Kroto, H.W. Heath, J.R. Obrien, S.C. Curl, R.F. Smalley, R.E. (1985) “C-60- Buckminsterfullerene,” Nature 318 (6042)167.Google Scholar
  119. 119.
    Kratschmer, W. Lamb, W. Fostiropoulos, L. Huffman, D. Donald, R. (1990) “C60: a new form of carbon,” Nature 347 354–358.Google Scholar
  120. 120.
    Ebessen, T.W. Ajayan, P.M. (1992) “Large-scale synthesis of carbon nanotubes,” Nature 358 (6383)220–222.Google Scholar
  121. 121.
    Bethune, D.S. Kiang, C.H. Devries, M.S. Gorman, G. Savoy, R. Vazques, J. Beyers, R. (1993) “Cobalt-catalyzed growth of carbon nanotubes with single-atomic layers,” Nature 363 (6430)605–607.Google Scholar
  122. 122.
    Journet, C. Maser, D.K. Bernier, P. Loiseau, A. Lamy de la Chapelle, M. Lefrant, S. Deniard, P. Lee, R. Fischer, J.E. (1997) “Large-scale production of single-walled carbon nanotubes by electric-arc technique,” Nature 388 756–758.Google Scholar
  123. 123.
    Iijima, S. Ichihashi, T. (1993) “Single-shell carbon nanotubes of 1 nm diameter,” Nature 363 (6430)603–605.Google Scholar
  124. 124.
    Novoselov, K.S. Geim, A.K. Morozov, S.V. Jing, D. Zhang, S. Dubonos, V. Grigorieva, I.V. Firsov, A.A. (2004) “Electric field effect in atomically thin carbon films,” Science 306 (5696)666–669.Google Scholar
  125. 125.
    Dillon, A. Jones, K. Bekkedahl, T. Kiang, C. Bethune, D. Heben, M. (1997) “Storage of hydrogen in single-walled carbon nanotubes,” Nature 386 (6623)377–379.Google Scholar
  126. 126.
    Baker, R. Chambers, A. Park, C. Rodriguez, N. Terry, R. (1998) “Hydrogen storage in graphite nanofibers,” J. Phys. Chem. B 103 277–281.Google Scholar
  127. 127.
    Bose, T. Chahine, R. Poirier, E. (2001) “Hydrogen adsorption in carbon nanostructures,” Int. J. Hydrogen Energy 26 831–835.Google Scholar
  128. 128.
    Robertson, J. (2002) “Diamond-like amorphous carbon,” J. Mater. Sci. Eng. R Rep. 37 (4)129–281.Google Scholar
  129. 129.
    Wronski, Z.S. Carpenter, G.J.C. (2006) “Carbon nanoshells obtained from leaching carbonyl nickel metal powders,” Carbon 44 1779–1789.Google Scholar
  130. 130.
    Bénard, P. Chahine, R. (2007) “Storage of hydrogen by physisorption on carbon and nanostructured materials,” Scripta Materialia 56 803–808.Google Scholar
  131. 131.
    Chen, P. Xiong, Z. Luo, J. Lin, J. Tan, K.L. (2002) “Interaction of hydrogen with metal nitrides and imides,” Nature 420 (6913)302–304.Google Scholar
  132. 132.
    Rossi, N.L. Eckert, J. Eddoaudi, M. Vodak, D.T. Kim, J. O’Keeffe, M. Yaghi, O.M. (2003) “Hydrogen storage in microporous metal-organic frameworks,” Science 300 (5622)1127–1129.Google Scholar
  133. 133.
    Eddaoudi, M. Li, H. Chen, B. Reineke, T. Fehr, M. Kelly, D. Groy, T.L. Yaghi, O.M. (1999) “Design and synthesis of metal-carboxylate frameworks with permanent microporosity,” Topics Catal. 9 105–111.Google Scholar
  134. 134.
    Varin, R.A. Li, S. Wronski, Z. Morozova, O. Khomenko, T. (2005) “The effect of sequential and continuous high-energy impact mode on the mechano-chemical synthesis of nanostructured complex hydride Mg2FeH6,” J. Alloys Compd.390 282–296.Google Scholar
  135. 135.
    Y. Gogotsi, ed., “Nanomaterials handbook,” (2006), CRC Press, pp. Taylor & Francis, 800.Google Scholar
  136. 136.
    R.H. Perry, D.W. Green, J.O. Maloney, eds., “Perry’s chemical engineers handbook,” 50 Ed. ( 1984), McGraw-Hill, New York, pp. 8–32.Google Scholar
  137. 137.
    R.W. Rydin, D. Maurice, T.H. Courtney, “ Milling dynamics. Part 1: attritor dynamics: Results of cinematographic study”, Met. Trans. A 24A (1993) 175–185.Google Scholar
  138. 138.
    D.R. Maurice, T.H. Courtney, “The physics of mechanical alloying: A first report,” Met. Trans. A 21 (1990) 289–303.Google Scholar
  139. 139.
    C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci. 46 (2001) 1–184.Google Scholar
  140. 140.
    D.R. Maurice, T.H. Courtney, “Modeling of mechanical alloying: Part 1. Deformation, coalescence, and fragmentation mechanisms,” Metall. Met. Trans. A 25(1)(1994) 147–148.Google Scholar
  141. 141.
    G. Roy, “Orientation of principal stress components,” Exp. Tech. (1994). 37–40.Google Scholar
  142. 142.
    Roy, G. Neima, J. Wronski, Z.S. Varin, R.A. (2007) “X-ray diffraction study of stress in a magnesium-hydrogen system produced by high-energy milling of powders,” Mater. Sci. Forum 539–543 2713–2718.Google Scholar
  143. 143.
    Zhurov, S.N. (1965) “Mechanochemistry: The mechanical activation of covalent bonds,” Inter. J. Fracture Mech. 1 311.Google Scholar
  144. 144.
    Stelly, C.G. Dormeval, C.C. (1998), “Adiabatic shear band phenomena, In Murr, L.E. Meyers, Editors., M.A. Metallurgical applications of shock-wave and high-rate phenomena,” Marcel Dekker, New York-Basel. 607–632.Google Scholar
  145. 145.
    Eckert, J. Schlutz, L. Hellstern, E. Urban, K. (1988) “Glass forming range in mechanically alloyed NiZr and the influence of the milling intensity,” J. Appl. Physics 64 3224.Google Scholar
  146. 146.
    Varin, R.A. Czujko, T. Wronski, Z.S. (2006)“Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processes by controlled mechanical milling,” Nanotechnology173856–3865.Google Scholar
  147. 147.
    Bernard, F. Gaffet, E. Champion, Y. Boudarina, N. Ustinov, A. (2002) “Correlation between ball milling conditions and planar effects on Cu-nanostructured powders,” J. Physics IV France 12 6.Google Scholar
  148. 148.
    Z.S. Wronski, G.J.C. Carpenter, P. Kalal, “An integrated characterization approach for ranking nickel hydroxides designed for high-performance positive electrodes in batteries for electric vehicles,” Electrochem. Soc. Proc. 96-14 (1996) 177–188 (Exploratory R&D of Batteries for Electric and Hybrid Vehicles, A.R. Langrebe and B. Serosati, eds.)Google Scholar
  149. 149.
    Delmas, C. Tessier, C. (1997) “Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity,” J. Mater. Chem. 7 (8)1439–1443.Google Scholar
  150. 150.
    Lou, Y.Y.C. Zhang, X. Ma, L. Xia, B. (2006) “Comparative study on microstructure of b-Ni(OH)2 cathode material for Ni-MH battery,” Sci. China Ser. E: Technol. Sci. 49 (3) 297–312.Google Scholar
  151. 151.
    Carpenter, G.J.C. Wronski, Z.S. (1999) “Nanocrystalline NiO and NiO-Ni(OH)2 composite powders prepared by thermal and mechanical dehydroxylation of nickel hydroxide,” Nanostructured Mater. 11 (1)67–80.Google Scholar
  152. 152.
    Wronski, Z.S. (1999). “Mechano-chemical activation of powders used in electrochemical power sources,” In 50th ISE Mtg and Symposium on Electrochemical Power Sources after 200 years, Pavia, Italy. International Electrochemistry Society, Geneva, Switzerland.Google Scholar
  153. 153.
    Bakker, H. Zhou, G.F. Yang, H. (1995) “Mechanically driven disorder and phase transformations in alloys,” Prog. Mater. Sci. 39 159–241.Google Scholar
  154. 154.
    Hellstern, E. Fecht, H.J. Fu, Z. Johnson, W.L. (1989) “Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu,” J. Appl.Phys. 65 305–310.Google Scholar
  155. 155.
    Zaluski, L. Tessier, P. Ryan, D.H. Donner, C.B. Zaluska, A. Strom-Olsen, J.O. (1993) ”Amorphous and nanocrystalline Fe-Ti prepared by ball milling,” J. Mater. Res. 8 3059–3068.Google Scholar
  156. 156.
    Eliaz, N. Eliezer, D. (1999) “An overview of hydrogen interaction with amorphous alloys,” Adv. Perform. Mater. 6 5–31.Google Scholar
  157. 157.
    Varin, R.A. Czujko, T. (2002) “Overview of processing of nanocrystalline hydrogen storage intermetallics by mechanical alloying/milling,” Mater. Manuf. Proc. 17 129–156.Google Scholar
  158. 158.
    Varin, R.A. Chiu, Ch. Czujko, T. Wronski, Z. (2005) “Feasibilty study of the direct mechano-chemical synthesis of nanostructured magnesium tetrahydroaluminate (alanate) [Mg(AlH4)2] complex hydride,” Nanotechnology 16 2261–2274.Google Scholar
  159. 159.
    J.M. Bellosta, van Colbe, M. Felderhoff, B. Bogdanović, F. Schüth, C. Weidenthaler, Chem. Commun. (2005) 4732.Google Scholar
  160. 160.
    Wronski, Z. Varin, R.A. Chiu, Ch. Czujko, T. Calka, A. (2007) “Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills,” J. Alloys Compd 434–435 743–746.Google Scholar
  161. 161.
    Wronski, Z.S. Varin, R.A. Chiu, Ch. Czujko, T. (2006) “Mechanosynthesis of nanocrystalline MgB2 ceramic powders in hydrogen alloying mills via amorphous hydride intermediate,” Adv. Sci. Technol. 45 309–314.Google Scholar
  162. 162.
    A. Andreasen, PhD thesis (2005) Risø National Laboratory, Roskilde, Denmark.Google Scholar
  163. 163.
    Schwarz, R.B. (1999) “Hydrogen storage in magnesium-based alloys,” MRS Bull. 24 (11)40–44.Google Scholar
  164. 164.
    Porter, D.A. Easterling, “K.E. (1992).Phase Transformations in Metals and Alloys,” 2nd ed., CRC Press, Boca RatonGoogle Scholar
  165. 165.
    Kissinger,H.(1957)“Reaction kinetics in differential thermal analysis,” Analytical Chem.291702–1706.Google Scholar
  166. 166.
    Bazzanella, N. Checchetto, R. Miotello, A. (2004) “Catalytic effect on hydrogen desorption in Nb-doped microcrystalline MgH2,” Appl.Phys. Lett. 85 5212–5214.Google Scholar
  167. 167.
    Kelton, K.F. (1997) “Analysis of crystallization kinetics,” Mater. Sci. Eng. A 226–228 142–150.Google Scholar
  168. 168.
    Mintz, M.H. Zeiri, Y. (1994) “Hydriding kinetics of powders,” J. Alloys Compd. 216 159–175.Google Scholar
  169. 169.
    Jensen, T.R. Andreasen, A. Vegge, T. Andreasen, J.W. Ståhl, K. Pedersen, A.S. Nielsen, M.M. Molenbroek, A.M. Besebbacher, F. (2006) “Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time – resolved powder X-ray diffraction,” Int. J. Hyd. Ener. 31 2052–2062.Google Scholar
  170. 170.
    Barkhordarian, G. Klassen, T. Bormann, R. (2004) “Effect of Nb2O5 content on hydrogen reaction kinetics of Mg,” J. Alloys Compd. 364 242–246.Google Scholar
  171. 171.
    Barkhordarian, G. Klassen, T. Bormann, R. (2006) “Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents,” J. Alloys Compd. 407 249–255.Google Scholar
  172. 172.
    Liang, G. Huot, J. Boily, S. Van Neste, A. Schulz, R. (1999) “Hydrogen storage properties of the mechanically milled MgH2 –V nanocomposite,” J. Alloys Compd. 291 295–299.Google Scholar
  173. 173.
    Huot, J. Liang, G. Boily, S. Van Neste, A. Schulz, R. (1999) “Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride,” J. Alloys Compd. 293–295 495–500.Google Scholar
  174. 174.
    Bouaricha, S. Dodelet, J.P. Guay, D. Huot, J. Boily, S. Schulz, R. (2000) “Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high-energy ball-milling,” J. Alloys Compd. 297 282–293.Google Scholar
  175. 175.
    Kennelley, J.A. Varwig, J.W. Myers, H.W. (1960) “Magnesium-hydrogen relationships,” J. Am. Chem. Soc. 64 703–704.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations