Intermediate-Temperature Solid Oxide Fuel Cells Using LaGaO3

  • Taner Akbay
Part of the Fuel Cells and Hydrogen Energy book series (FCHY)

Among other types of fuel cells, deployment of solid oxide fuel cells (SOFCs) into the distributed energy sector of the consumer market is fast becoming a reality, predominantly because technological advancements are making them more reliable and relatively cost competitive. In addition, there has been a concerted effort in designing and manufacturing novel ceramic materials for high-performance cell components [1–4]. Over the decades, a large collection of materials have been systematically investigated for possible application of SOFC electrolyte and electrodes. In addition, reduced temperature operation of SOFCs has been attracting attention due to numerous advantages offered by this mode of operation. Some of these advantages can be listed as follows: (1) less expensive metallic materials can be used as interconnects, (2) less degradable components imply higher stability and durability, and (3) responses to start-up and shut-down procedures are faster. Even internal reforming of hydrocarbonaceous fuels remains possible at intermediate temperatures. Overall, the common denominator impetus is to achieve higher area (or volume)-specific power densities at lower temperatures.


Solid Oxide Fuel Cell High Heating Value Separator Plate Lanthanum Gallate Ceramic Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.C.H. Steele, J. Power Sources 49, 1 (1994)CrossRefGoogle Scholar
  2. 2.
    N.Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam (1995)Google Scholar
  3. 3.
    N.Q. Minh, Solid State Ionics 174, 271 (2004)CrossRefGoogle Scholar
  4. 4.
    S.C. Singhal, Solid State Ionics 152–153, 405 (2002)CrossRefGoogle Scholar
  5. 5.
    T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994)CrossRefGoogle Scholar
  6. 6.
    T. Ishihara, H. Matsuda, Y. Takita, Solid State Ionics 79, 147 (1995)CrossRefGoogle Scholar
  7. 7.
    M. Feng, J.B. Goodenough, Eur. J. Solid State Inorg. Chem. 31, 663 (1994)Google Scholar
  8. 8.
    K. Huang, R.S. Tichy, J.B. Goodenough, J. Am. Ceram. Soc. 81, 2565 (1998)CrossRefGoogle Scholar
  9. 9.
    P. Huang, A. Petric, J. Electrochem. Soc. 142, 1644 (1996)CrossRefGoogle Scholar
  10. 10.
    T. Ishihara, T. Akbay, H. Furutani, Y. Takita, Solid State Ionics 113–115, 585 (1998)CrossRefGoogle Scholar
  11. 11.
    T. Ishihara, S. Ishikawa, C. Yu, T. Akbay, K. Hosoi, H. Nishiguchi, Y. Takita, Phys. Chem. Chem. Phys. 5, 2257 (2003)CrossRefGoogle Scholar
  12. 12.
    T. Inagaki, H. Yoshida, K. Miura, S. Ohara, R. Maric, X. Zhang, K. Mukai, T. Fukui, Proc. Electrochem. Soc. Vol. 2001–16, 963 (2001)Google Scholar
  13. 13.
    X. Zhang, S. Ohara, R. Maric, KI. Mukai, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, K. Miura, J. Power Sources 83, 170 (1999)CrossRefGoogle Scholar
  14. 14.
    S. Ohara, R. Maric, X. Zhang, K. Mukai, T. Fukui, H. Yoshida, T. Inagaki, K. Miura, J. Power Sources 86, 455 (2000)CrossRefGoogle Scholar
  15. 15.
    S. Awatsu, H. Iwasaki, K. Isono, N. Chitose, G. Uozumi, T. Inagaki, T, Ishihara, ECS Trans. 7(1), 1583 (2007)CrossRefGoogle Scholar
  16. 16.
    T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, Y. Takita, J. Electrochem. Soc. 145, 3177 (1998)CrossRefGoogle Scholar
  17. 17.
    M. Kawasaki, N. Chitose, J. Akikusa, T. Akbay, H. Eto, T. Inagaki, T. Ishihara, ECS Trans. 7(1), 1229 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Akikusa, K. Adachi, K. Hoshino, T. Ishihara, Y. Takita, J. Electrochem. Soc. 148, 1275, (2001)CrossRefGoogle Scholar
  19. 19.
    F. Nishiwaki, T. Inagaki, J. Kano, J. Akikusa, N. Murakami, K. Hosoi, J. Power Sources 155, 809, (2006)CrossRefGoogle Scholar
  20. 20.
    M. Shibata, N. Murakami, T. Akbay, H. Eto, K. Hosoi, H. Nakajima, J. Kano, F. Nishiwaki, T. Inagaki, S. Yamasaki, ECS Trans. 7(1), 77 (2007)CrossRefGoogle Scholar
  21. 21.
    Fluent, 2006, FLUENT 6.3 User’s Guide, Fluent Incorporated, Canterra Resource Park, Cavendish Court, Lebanon, NH, USAGoogle Scholar
  22. 22.
    T. Akbay, N. Chitose, T. Miyazawa, N. Murakami, K. Hosoi, F. Nishiwaki, T. Inagaki, Proc. The Fourth Int. Conf. Fuel Cell Sci. Eng. Technol. June 19–21 (2006)Google Scholar
  23. 23.
    T. Akbay, N. Chitose, T. Miyazawa, M. Shibata, F. Nishiwaki, and T. Inagaki, Proc. of The Fifth Int. Conf. on Fuel Cell Sci. Eng. and Tech., June 18–20 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Mitsubishi Materials CorporationJapan

Personalised recommendations