Advertisement

Perovskite Oxide Anodes for SOFCs

  • J. T. S. Irvine
Chapter
Part of the Fuel Cells and Hydrogen Energy book series (FCHY)

The solid oxide fuel cell (SOFC) is one of the most exciting systems for future power generation because of its fuel flexibility and very high potential efficiency. Up to now, most SOFC development has been based upon the yttria-stabilized zirconia (YSZ) electrolyte due to its high oxygen ion conductivity, good stability under SOFC operating conditions, and high mechanical strength; however, as its ionic conductivity is not very high at lower temperatures, it has limited applicability below 750°C. Alternative electrolyte materials, such as Ce0.9Gd0.1O2–δ (CGO) [1] and La0.85Sr0.15Ga0.9Mg0.1O3–δ (LSGM) [2], have been proposed, although there are also some limitations for these materials. For example, CGO exhibits significant n-type electronic conduction at low PO2 above 600°C, which limits its application temperature range. The limitations and advantages of LSGM are discussed in detail elsewhere in this volume; however, the most important limitation with respect to anode chemistry is its reactivity with NiO [3, 4], which means that Ni-based anodes are quite difficult to manufacture. One possible solution is to develop perovskite-based anodes, which leads to the attractive concept of the all-perovskite solid oxide fuel cell [5–7].

Keywords

Solid Oxide Fuel Cell Strontium Titanate Tungsten Bronze Double Perovskite Lanthanum Chromite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author thanks his colleagues, especially S.W. Tao and T.D. McColm, for their assistance in developing this manuscript, and thanks ESF, EPSRC, and NEDO (Japan) for financial support for research on perovskite anodes.

References

  1. 1.
    B.C.H. Steele, Solid State Ionics 129, 95 (2000)CrossRefGoogle Scholar
  2. 2.
    K. Kuroda, I. Hashimoto, K. Adachi, J. Akikusa, Y. Tamou, N. Komada, T. Ishihara, Y. Takita, Solid State Ionics 132, 199 (2000)CrossRefGoogle Scholar
  3. 3.
    J.H. Lee, K.N. Kim, J.W.S.J. Kim, B.K. Kim, H.W. Lee, J. Moon, J. Mater. Sci. 42, 1866 (2007)CrossRefGoogle Scholar
  4. 4.
    X.G. Zhang, S. Ohara, H. Okawa, R. Maric, T. Fukui, Solid State Ionics 2001, 139,145.CrossRefGoogle Scholar
  5. 5.
    S.W. Tao, J.T.S. Irvine, J.A. Kilner, Adv. Mater. 17, 1734–1737 (2005)CrossRefGoogle Scholar
  6. 6.
    J.A. Kilner, S.J. Skinner, T. Ishihara, K. Otsuka, J.T.S. Irvine, T. McColm, Y. Jiang, Electrochem. Soc. Proc.VII, 2001–16, 224–233 (2001)Google Scholar
  7. 7.
    M.F. Hsu, L.J. Wu, J.M. Wu, Y.H. Shiu, K.F. Lin, Electrochem. Solid State Lett. 9, A193 (2006)CrossRefGoogle Scholar
  8. 8.
    N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993)CrossRefGoogle Scholar
  9. 9.
    E.P. Murray, M.J. Sever, S.A. Barnett, Solid State Ionics 148, 27 (2002)CrossRefGoogle Scholar
  10. 10.
    Y. Matsuzaki, I. Yasuda, Solid State Ionics 132, 261 (2000)CrossRefGoogle Scholar
  11. 11.
    B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Solid State Ionics, 28–30, 1547 (1988)CrossRefGoogle Scholar
  12. 12.
    P.R. Slater, D.P. Fagg, J.T.S. Irvine, J. Mater. Chem. 7, 2495 (1997)CrossRefGoogle Scholar
  13. 13.
    T.D. McColm, J.T.S. Irvine, Ionics, 7, 116 (2001)CrossRefGoogle Scholar
  14. 14.
    N. Peng, J.T.S. Irvine, A.G. Fitzgerald, J. Mater. Chem. 8, 1033 (1998)CrossRefGoogle Scholar
  15. 15.
    S. Hui, A. Petric, SOFC VI, Elec. Soc. Proc. 19, 632 (1999)Google Scholar
  16. 16.
    P.R. Slater, J.T.S. Irvine, T. Ishihara, Y. Takita, J. Solid State Chem. 139, 135 (1998)CrossRefGoogle Scholar
  17. 17.
    T. Ishihara, H. Matsuda, Y. Takita, Solid State Ionics 79, 147 (1995)CrossRefGoogle Scholar
  18. 18.
    T. Ishihara, H. Matsuda, Y. Takita, J. Amer. Chem. Soc. 116, 3801 (1994)CrossRefGoogle Scholar
  19. 19.
    H.U. Anderson, Solid State Ionics 52, 33 (1992)CrossRefGoogle Scholar
  20. 20.
    H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics 117, 277 (1999)CrossRefGoogle Scholar
  21. 21.
    S. Primdahl, J.R. Hansen, L. Grahl-Madsen, P.H. Larsen, J. Electrochem. Soc. 148, A74 (2001)CrossRefGoogle Scholar
  22. 22.
    G. Pudmich, B.A. Boukamp, M. Gonzalez-Cuenca, W. Jungen, W. Zipprich, F. Tietz, Solid State Ionics 135, 433 (2000)CrossRefGoogle Scholar
  23. 23.
    O.A. Marina, N.L. Canfield, J.W. Stevenson, Solid State Ionics 149, 21 (2002)CrossRefGoogle Scholar
  24. 24.
    O.A. Marina, L.R. Pederson, Proc. 5th European Solid Oxide Fuel Cell Forum (ed. Huijsmans J.) pp. 481 (European SOFC Forum, Switzerland, 2002)Google Scholar
  25. 25.
    S.Q. Hui, A. Petric, J. Euro. Ceram. Soc. 22, 1673 (2002)CrossRefGoogle Scholar
  26. 26.
    S.Q. Hui, A. Petric, Mater. Res. Bull. 37, 1215 (2002)CrossRefGoogle Scholar
  27. 27.
    S.Q. Hui, A. Petric, J. Electrochem. Soc. 149, J1 (2002)CrossRefGoogle Scholar
  28. 28.
    S.W. Tao, J.T.S. Irvine, unpublished results.Google Scholar
  29. 29.
    J.T.S. Irvine, P.R. Slater, P.A. Wright, Ionics 2, 213 (1996)CrossRefGoogle Scholar
  30. 30.
    J. Canales-Vazquez, M.J. Smith, J.T.S. Irvine, W.Z. Zhou, Adv. Func. Mater. 15, 1000–1008 (2005)CrossRefGoogle Scholar
  31. 31.
    J.C. Ruiz-Morales1, J. Canales-Vasquez, C. Savaniu, D. Marrero-Lopez, W. Zhou, J.T.S. Irvine, Nature 439, 568–571 (2006)Google Scholar
  32. 32.
    J. Canales-Vazquez, S.W. Tao, J.T.S. Irvine, Solid State Ionics 159, 159 (2003)CrossRefGoogle Scholar
  33. 33.
    P. Holtappels, J. Bradley, J.T.S. Irvine, A. Kaiser, M. Mogensen, Electrochemical characterization of ceramic SOFC anodes. J. Electrochem. Soc. A 148, 923–929 (2001)CrossRefGoogle Scholar
  34. 34.
    K.R. Poeppelmeier, M.E. Leonowicz, J.M. Longo, CaMnO2.5 and Ca2MnO3.5 – new oxygen-defect perovskite-type oxides. J. Solid State Chem. 44, 89–98 (1982)CrossRefGoogle Scholar
  35. 35.
    J.C. Ruiz-Morales, J. Canales-Vazquez, C. Savaniu, D. Marrero-Lopez, P. Nunez, W. Zhou, J.T.S. Irvine, Phys. Chem. Chem. Phys. 9, 1821–1830 (2007)CrossRefGoogle Scholar
  36. 36.
    S.Q. Hui, A. Petric, Solid State Ionics 143, 275 (2001)CrossRefGoogle Scholar
  37. 37.
    A. Hartley, M. Sahibzada, M. Weston, I.S. Metcafe, D. Mantzavinos, Catalysis Today 55, 197 (2000)CrossRefGoogle Scholar
  38. 38.
    U. Balachandran, B. Ma, P.S. Maiya, R.L. Mieville, J.T. Dusek, J.J. Picciolo, J. Guan, S.E. Dorris, M. Liu, Solid State Ionics 108, 363 (1998)CrossRefGoogle Scholar
  39. 39.
    J.C. Grenier, G. Schiffmacher, P. Caro, M. Pouchard, P. Hagenmuller, J. Solid State Chem. 20, 365 (1977)CrossRefGoogle Scholar
  40. 40.
    B. Ma, U. Balachandran, Mater. Res. Bull. 33, 223 (1998)CrossRefGoogle Scholar
  41. 41.
    H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Solid State Ionics 52, 43 (1992)CrossRefGoogle Scholar
  42. 42.
    T. Nakamura, G. Petzow, L.J. Gauckler, Mater. Res. Bull. 14, 649 (1979)CrossRefGoogle Scholar
  43. 43.
    P. Vernoux, M. Guillodo, J. Fouletier, A. Hammou, Solid State Ionics 135, 425 (2000)CrossRefGoogle Scholar
  44. 44.
    Y. Matsuzaki, I. Yasuda, Solid State Ionics 132, 261 (2000)CrossRefGoogle Scholar
  45. 45.
    J. Sfeir, P.A. Buffat, P. Möckli, N. Xanthopoulos, R. Vasquez, H.J. Mathieu, J.V. Herle, K.R. Thampi, J. Catal. 202, 229 (2001)CrossRefGoogle Scholar
  46. 46.
    J. Sfeir, J.V. Herle, R. Vasquez, Proc. 5th European Solid Oxide Fuel Cell Forum (ed. Huijsmans J.) pp. 570 (European SOFC Forum, Switzerland, 2002)Google Scholar
  47. 47.
    A.-L. Sauvet, J.T.S. Irvine, Proc. 5th European Solid Oxide Fuel Cell Forum (ed. Huijsmans J.) pp. 490 (European SOFC Forum, Switzerland, 2002)Google Scholar
  48. 48.
    J. Liu, B.D. Madsen, Z.Q. Ji, S.A. Barnett, Electrochem. Solid State Lett. 5, A122 (2002)CrossRefGoogle Scholar
  49. 49.
    G. Pudmich, B.A. Boukamp, M. Gonzalez-Cuenca, W. Jungen, W. Zipprich, F. Tietz, Solid State Ionics 135, 433 (2000)CrossRefGoogle Scholar
  50. 50.
    V. Vashook, L. Vasylechko, H. Ullmann, U. Guth, Solid State Ionics 158, 317 (2003)CrossRefGoogle Scholar
  51. 51.
    S.W. Tao, J.T.S. Irvine, J. Mater. Chem. 12, 2356 (2002)CrossRefGoogle Scholar
  52. 52.
    S.W. Tao, J.T.S. Irvine, Solid State Ionics 154–155, 659 (2002)CrossRefGoogle Scholar
  53. 53.
    T.C. McColm, J.T.S. Irvine, Solid State Ionics 152–153, 615 (2002)CrossRefGoogle Scholar
  54. 54.
    S.W. Tao, J.T.S. Irvine, Nature Mat. 2, 320 (2003)CrossRefGoogle Scholar
  55. 55.
    S. Tao, J.T.S. Irvine, S.M. Plint, J. Phys. Chem. 110, 21771–21776 (2005)Google Scholar
  56. 56.
    S.M. Plint, P.A. Connor, S. Tao, J.T.S. Irvine, Solid State Ionics, 177, 2005–2008 (2006)CrossRefGoogle Scholar
  57. 57.
    E.S. Raj, J.A. Kilner, J.T.S. Irvine, Solid State Ionics, 177, 1747–1752 (2006)CrossRefGoogle Scholar
  58. 58.
    Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Science, 2006, 312, 254–257CrossRefGoogle Scholar
  59. 59.
    Y.H. Huang, R.I. Dass, J.C. Denyszyn, J.B. Goodenough, J. Electrochem. Soc. 153, A1266–A1272 (2006)CrossRefGoogle Scholar
  60. 60.
    P.R. Slater, J.T.S. Irvine, Solid State Ionics 120, 125 (1999)CrossRefGoogle Scholar
  61. 61.
    A. Kaiser, J.L. Bradley, P.R. Slater, J.T.S. Irvine, Solid State Ionics 135, 519 (2000)CrossRefGoogle Scholar
  62. 62.
    J.T.S. Irvine, P.R. Slater, A. Kaiser, J.L. Bradley, P. Holtappels, M. Mogensen, Proceedings 4th European SOFC Forum, 2000, Volume 2, p. 471.Google Scholar
  63. 63.
    P. Holtappels, J. Bradley, J.T.S. Irvine, A. Kaiser, M. Mogensen, J. Electrochem. Soc. 148, A923 (2001)CrossRefGoogle Scholar
  64. 64.
    S. Tao, J.T.S. Irvine, J.A. Kilner, Adv. Mater. 17, 1734–1737 (2005)CrossRefGoogle Scholar
  65. 65.
    J. Pena-Martinez, D. Marrero-Lopez, J.C. Ruiz-Morales, C. Savaniu, P. Nunez, J.T.S. Irvine, Chem. Mater. B18B, 1001–1006. (2006)CrossRefGoogle Scholar
  66. 66.
    M.F. Hsu, L.J. Wu, J.M. Wu, Y.H. Shiu, K.F. Lin, Electrochem Solid State Lett. 97, 789 (2006)Google Scholar
  67. 67.
    S.W. Tao, J.T.S. Irvine, The Chemical Record, 4, 83–95 (2004)CrossRefGoogle Scholar
  68. 68.
    A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Nature Mater. 3, 17–27 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of ChemistryUniversity of St-AndrewsFifeUK

Personalised recommendations