Skip to main content

Structural Disorder, Diffusion Pathway of Mobile Oxide Ions, and Crystal Structure in Perovskite-Type Oxides and Related Materials

  • Chapter
  • First Online:
Book cover Perovskite Oxide for Solid Oxide Fuel Cells

Part of the book series: Fuel Cells and Hydrogen Energy ((FCHY))

Solid oxides with high ionic conductivity have attracted considerable attention for reasons of their many possible applications, including solid oxide fuel cells (SOFCs), sensors, catalysts, and batteries. Oxide ion (O2−) conductors such as zirconia (ZrO2) solid solutions [1, 2], bismuth oxide (Bi2O3)-based materials [3–6], ceria (CeO2)-based solid solutions [7, 8], and lanthanum gallate-based compounds [9, 10] have been widely investigated. The development of improved electrolyte and electrode materials requires a better understanding of the mechanism of ionic conduction, and crucial to this is comprehension of the crystal structure at high temperatures at which these materials work most efficiently [5, 6, 8, 10–15]. The detailed structural analysis enables the observation of the structural disorders and diffusion paths of mobile ions in ionic and mixed conductors [5, 6, 8, 10–15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.C. Subbarao, Advances in Ceramics Vol. 3, Science and Technology of Zirconia I, Heuer A.H. and Hobbs L.W. (eds.), p. 1. American Ceramic Society, Columbus, OH (1981)

    Google Scholar 

  2. M. Yashima, M. Kakihana, M. Yoshimura, Solid State Ionics 86–88, 1131 (1996)

    Article  Google Scholar 

  3. T. Takahashi, H. Iwahara, J. Appl. Electrochem., 3, 65 (1972)

    Article  Google Scholar 

  4. N.M. Sammes, G.A. Tompsett, H. Näfe, F. Aldinger, J. Eur. Ceram. Soc. 19, 1801 (1999)

    Article  Google Scholar 

  5. M. Yashima, D. Ishimura, Chem. Phys. Lett. 378, 395 (2003)

    Article  Google Scholar 

  6. M. Yashima, D. Ishimura, Appl. Phys. Lett. 87, 221909 (2005)

    Article  Google Scholar 

  7. H. Inaba, H. Tagawa, Solid State Ionics 83, 1 (1996)

    Article  Google Scholar 

  8. M. Yashima, S. Kobayashi, T. Yasui, Faraday Discussions 134, 369 (2007)

    Article  Google Scholar 

  9. T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994)

    Article  Google Scholar 

  10. M. Yashima, K. Nomura, H. Kageyama, Y. Miyazaki, N. Chitose, K. Adachi, Chem. Phys. Lett. 380, 391 (2003)

    Article  Google Scholar 

  11. R. Ali, M. Yashima, F. Izumi, Chem. Mater. 19, 3260 (2007)

    Article  Google Scholar 

  12. M. Yashima, T. Tsuji, J. Appl. Crystallogr. 40, 1166 (2007)

    Article  Google Scholar 

  13. M. Yashima, T. Kamioika, Solid State Ionics 178, 1939 (2008)

    Article  Google Scholar 

  14. M. Yashima, Solid State Ionics 179, 797 (2008)

    Google Scholar 

  15. M. Yashima, M. Enoki, T. Wakita, R. Ali, Y. Matsushita, F. Izumi, T. Ishihara, J. Am. Chem. Soc. 130, 2762 (2008)

    Article  Google Scholar 

  16. M. Feng, J.B. Goodenough, K. Huang, C. Milliken, J. Power Sources, 63, 47 (1996)

    Article  Google Scholar 

  17. Y. Teraoka, H.M. Zhang, K. Okamoto, H. Yamazoe, Mater. Res. Bull. 23, 51 (1998)

    Article  Google Scholar 

  18. T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, E. Ivers-Tiffee, Solid State Ionics 138, 143 (2000)

    Article  Google Scholar 

  19. R. Ali, M. Yashima, M. Tanaka, H. Yoshioka, T. Mori, S. Sasaki, J. Solid State Chem. 164, 51 (2002)

    Article  Google Scholar 

  20. M. Yashima, M. Mori, T. Kamiyama, K.I. Oikawa, A. Hoshikawa, S. Torii, K. Saitoh, K. Tsuda, Chem. Phys. Lett. 375, 240 (2003)

    Article  Google Scholar 

  21. H. Yoshioka, J. Am. Ceram. Soc. 85, 1339 (2002)

    Article  Google Scholar 

  22. M.F. Hundley, R.S. Kwok, S.W. Cheong, J.D. Thompson, Z. Fisk, Physica C 172, 455 (1991)

    Article  Google Scholar 

  23. S. Miyoshi, T. Furuno, H. Matsumoto, T. Ishihara, Solid State Ionics 177, 2269 (2006)

    Article  Google Scholar 

  24. M. Yashima, J. Am. Ceram. Soc. 85, 2925 (2002)

    Article  Google Scholar 

  25. K. Ohoyama, T. Kanouchi, K. Nemoto, M. Ohashi, T. Kajitani, Y. Yamaguchi, Jpn. J. Appl. Phys. Part 1. 37, 3319 (1998)

    Article  Google Scholar 

  26. M. Yashima, In: Proceedings of an International Conference on Solid → Solid Phase Transformations in Inorganic Materials 2005, Vol. 2, Howe J.M., Laughlin D.E., Lee J.K., Dahmen U., Soffa W.A. (eds.), p. 493. TMS: The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (2005)

    Google Scholar 

  27. F. Izumi, T. Ikeda, Mater. Sci. Forum 321–324, 198 (2000)

    Article  Google Scholar 

  28. M. Sakata, T. Uno, M. Takata, C.H. Howard, J. Appl. Crystallogr. 26, 159 (1993)

    Article  Google Scholar 

  29. F. Izumi, R.A. Dilanian, In: Recent Research Developments in Physics, Vol. 3, Part II, p. 699. Transworld Research Network, Trivandrum (2002)

    Google Scholar 

  30. K. Nomura, S. Tanase, Solid State Ionics 98, 229 (1997)

    Article  Google Scholar 

  31. W. Marti, P. Fischer, F. Altorfer, H.J. Scheel, M.J. Tadin, J. Phys. Condens. Matter 6, 127 (1994)

    Article  Google Scholar 

  32. W. Marti, P. Fischer, J. Schefer, F. Kubel, Z. Kristallogr. 211, 891 (1996)

    Google Scholar 

  33. P.R. Slater, J.T.S. Irvine, T. Ishihara, Y. Takita, J. Solid State Chem. 139, 135 (1998)

    Article  Google Scholar 

  34. C.J. Howard, B.J. Kennedy, J. Phys. Condens. Matter 11, 3229 (1999)

    Article  Google Scholar 

  35. L. Vasylechko, D. Savytskiia, A. Matkovskia, M. Berkowskic, M. Knappd, U. Bismayer, J. Alloy Comp. 328, 264 (2001)

    Article  Google Scholar 

  36. M. Lerch, H. Boysen, T. Hansen, J. Phys. Chem. Solids 62, 445 (2001)

    Article  Google Scholar 

  37. N.P. Vyshatko, V. Kharton, A.L. Shaula, E.N. Naumovich, F.M.B. Marques, Mater. Res. Bull. 38, 185 (2003)

    Article  Google Scholar 

  38. M. Kajitani, M. Matsuda, A. Hoshikawa, K. Oikawa, S. Torii, T. Kamiyama, F. Izumi, M. Miyake, Chem. Mater. 15, 3468 (2005)

    Article  Google Scholar 

  39. M. Kajitani, M. Matsuda, A. Hoshikawa, S. Harjo, T. Kamiyama, T. Ishigaki, F. Izumi, M. Miyake, Chem. Mater. 17, 4235 (2007)

    Article  Google Scholar 

  40. M.S. Islam, J. Mater. Chem. 10, 1027 (2000)

    Article  Google Scholar 

  41. M.S. Khan, M.S. Islam, D.R. Bates, J. Phys. Chem. B 102, 3099 (1998)

    Article  Google Scholar 

  42. K. Nomura, M. Yashima, In: Proceedings of the Symposium on Powder Diffraction III, KEK Proceedings 2005-19, Ida T., Kamiyama T. (eds.), p. 45. High Energy Accelerator Research Organization, Tsukuba, Japan (2006)

    Google Scholar 

  43. T. Ishihara, T. Akbay, H. Furutani, Y. Takita, Solid State Ionics 113–115, 585 (1998)

    Article  Google Scholar 

  44. H. Yoshioka, S. Kikkawa, J. Mater. Chem. 8, 1821 (1998)

    Article  Google Scholar 

  45. D. Suvorov, M. Valant, S. Skapin, D. Dolar, J. Mater. Sci. 33, 85 (1998)

    Article  Google Scholar 

  46. M. Yashima, R. Ali, H. Yoshioka, Solid State Ionics 128, 105 (2000)

    Article  Google Scholar 

  47. R. Ali, M. Yashima, M. Yoshimura, H. Yoshioka, J. Am. Ceram. Soc. 84, 468 (2001)

    Article  Google Scholar 

  48. M. Yashima, R. Ali, M. Tanaka, T. Mori, Chem. Phys. Lett. 363, 129 (2002)

    Article  Google Scholar 

  49. M. Yashima, M. Mori, R. Ali, M. Tanaka, T. Mori, Chem. Phys. Lett. 371, 582 (2003)

    Article  Google Scholar 

  50. R. Ali, M. Yashima, J. Synchrotron Radiat. 10, 28 (2003)

    Article  Google Scholar 

  51. C.J. Howard, Z. Zhang, Acta Crystallogr. B 60, 249 (2004)

    Article  Google Scholar 

  52. R. Ali, F. Izumi, M. Yashima, J. Am. Ceram. Soc. 89, 3805 (2006)

    Article  Google Scholar 

  53. V. Vashook, L. Vasylechko, N. Trofimenko, M. Kuznecov, P. Otchik, J. Zosel, U. Guth, J. Alloys Compd. 419, 271 (2006)

    Article  Google Scholar 

  54. M. Cherry, M.S. Islam, C.R.A. Catlow, J. Solid State Chem. 118, 118 (1995)

    Article  Google Scholar 

  55. M. Yashima, M. Itoh, Y. Inaguma, Y. Morii, J. Am. Chem. Soc. 127, 3491 (2005)

    Article  Google Scholar 

  56. O. Yamamoto, Y. Takeda, R. Kanno, M. Noda, Solid State Ionics 22, 241 (1987)

    Article  Google Scholar 

  57. J. Mizusaki, Y. Mima, S. Yamauchi, K. Fukui, H. Tagawa, J. Solid State Chem. 80, 102 (1989)

    Article  Google Scholar 

  58. S.B. Adler, J.A. Lane, B.C.H. Steele, J. Electrochem. Soc. 143, 3554 (1996)

    Article  Google Scholar 

  59. J. Kirchnerova, D.B. Hibbert, J. Mater. Sci. 28, 5800 (1993)

    Article  Google Scholar 

  60. V.G. Sathe, A.V. Pimpale, V. Siriguri, S.K. Paranjpe, J. Phys. Condens. Matt. 8, 3889 (1996)

    Article  Google Scholar 

  61. N.L.N.P. Closset, R.H.E. van Doorn, H. Kruidhof, Powd. Diff. 11, 31 (1996)

    Google Scholar 

  62. R. Sonntag, S. Neov, V. Kozhukharov, D. Neov, J.E. ten Elshof, Physica B 241–243, 393 (1998)

    Google Scholar 

  63. R.H.E. Van Doorn, A.J. Burggraaf, Solid State Ionics 128, 65 (2000)

    Article  Google Scholar 

  64. V.V. Sikolenko, E.V. Pomjakushina, S.Y. Istomin, J. Mag. Mag. Mater. 258–259, 300 (2003)

    Article  Google Scholar 

  65. T. Hanashima, S. Azuhata, K. Yamawaki, N. Shimizu, T. Mori, M. Tanaka, S. Sasaki, Jpn. J. Appl. Phys. Part A 43, 4171 (2004)

    Article  Google Scholar 

  66. R.E. Brese, M. O’Keeffe, Acta Crystallogr. B 47, 192 (1991)

    Article  Google Scholar 

  67. S. Wang, M. Katsuki, M. Dokiya, T. Hashimoto, Solid State Ionics 159, 71 (2003)

    Article  Google Scholar 

  68. M. Yashima, M. Tanaka, J. Appl. Crystallogr. 37, 786 (2004)

    Article  Google Scholar 

  69. J. Hutton, R.J. Nelmes, J. Phys. C: Solid State Phys. 14, 1713 (1981)

    Article  Google Scholar 

  70. V.V. Kharton, A.P. Viskup, A.V. Kovalevsky, E.N. Naumovich, F.M.B. Marques, Solid State Ionics 143, 337 (2001)

    Article  Google Scholar 

  71. S. Kato, M. Ogasawara, M. Sugai, S. Nakata, Solid State Ionics 149, 53 (2002)

    Article  Google Scholar 

  72. A. Manthiram, F. Prado, T. Armstrong, Solid State Ionics 152–153, 647 (2002)

    Article  Google Scholar 

  73. C.T. Li, H. Hu, H. Zhang, Y. Chen, J. Jin, N.R. Yang, J. Membr. Sci. 226, 1 (2003)

    Article  Google Scholar 

  74. V.V. Kharton, E.V. Tsipis, A.A. Yaremchenko, J.R. Frade, Solid State Ionics 166, 327 (2004)

    Article  Google Scholar 

  75. S.J. Skinner, J.A. Kilner, Solid State Ionics 135, 709 (2000)

    Article  Google Scholar 

  76. L. Minervini, R.W. Grimes, J.A. Kilner, K.E. Sickafus, J. Mater. Chem. 10, 2349 (2000)

    Article  Google Scholar 

  77. J.M. Bassat, P. Odier, A. Villesuzanne, C. Marin, M. Pouchard, Solid State Ionics 167, 341 (2004)

    Article  Google Scholar 

  78. E. Boem, J.-M. Bassat, P. Dordor, F. Mauvy, J.-C. Grenier, P. Stevens, Solid State Ionics 176, 2717 (2005)

    Article  Google Scholar 

  79. S. Miyoshi, T. Furuno, O. Sangoanruang, H. Matsumoto, T. Ishihara, J. Electrochem. Soc. 154, B57 (2007)

    Article  Google Scholar 

  80. T. Ishihara, S. Miyoshi, T. Furuno, O. Sangoanruang, H. Matsumoto, Solid State Ionics 177, 3087 (2006)

    Article  Google Scholar 

  81. K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)

    Article  Google Scholar 

  82. M. Yashima, Q. Xu, A. Yoshiasa, S. Wada, J. Mater. Chem. 16, 4393 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges all the authors and collaborators of the joint papers mentioned in the references. In particular, the author expresses special thanks to Dr. K. Nomura for useful discussion. We also thank Dr. K. Ohoyama and Mr. K. Nemoto for use of the HERMES diffractometer. Figures 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.14, and 6.15 were drawn using the VENUS [29] and VESTA [81] programs developed by Dr. R. Dilanian, Dr. K. Momma, and Dr. F. Izumi. This research was supported in part by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Monbu-Kagaku-sho).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatomo Yashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yashima, M. (2009). Structural Disorder, Diffusion Pathway of Mobile Oxide Ions, and Crystal Structure in Perovskite-Type Oxides and Related Materials. In: Ishihara, T. (eds) Perovskite Oxide for Solid Oxide Fuel Cells. Fuel Cells and Hydrogen Energy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77708-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77708-5_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77707-8

  • Online ISBN: 978-0-387-77708-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics