Advertisement

Structural Disorder, Diffusion Pathway of Mobile Oxide Ions, and Crystal Structure in Perovskite-Type Oxides and Related Materials

  • Masatomo Yashima
Chapter
Part of the Fuel Cells and Hydrogen Energy book series (FCHY)

Solid oxides with high ionic conductivity have attracted considerable attention for reasons of their many possible applications, including solid oxide fuel cells (SOFCs), sensors, catalysts, and batteries. Oxide ion (O2−) conductors such as zirconia (ZrO2) solid solutions [1, 2], bismuth oxide (Bi2O3)-based materials [3–6], ceria (CeO2)-based solid solutions [7, 8], and lanthanum gallate-based compounds [9, 10] have been widely investigated. The development of improved electrolyte and electrode materials requires a better understanding of the mechanism of ionic conduction, and crucial to this is comprehension of the crystal structure at high temperatures at which these materials work most efficiently [5, 6, 8, 10–15]. The detailed structural analysis enables the observation of the structural disorders and diffusion paths of mobile ions in ionic and mixed conductors [5, 6, 8, 10–15].

Keywords

Diffusion Path Maximum Entropy Method Rietveld Analysis Neutron Diffraction Data Atomic Displacement Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author acknowledges all the authors and collaborators of the joint papers mentioned in the references. In particular, the author expresses special thanks to Dr. K. Nomura for useful discussion. We also thank Dr. K. Ohoyama and Mr. K. Nemoto for use of the HERMES diffractometer. Figures 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11, 6.14, and 6.15 were drawn using the VENUS [29] and VESTA [81] programs developed by Dr. R. Dilanian, Dr. K. Momma, and Dr. F. Izumi. This research was supported in part by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Monbu-Kagaku-sho).

References

  1. 1.
    E.C. Subbarao, Advances in Ceramics Vol. 3, Science and Technology of Zirconia I, Heuer A.H. and Hobbs L.W. (eds.), p. 1. American Ceramic Society, Columbus, OH (1981)Google Scholar
  2. 2.
    M. Yashima, M. Kakihana, M. Yoshimura, Solid State Ionics 86–88, 1131 (1996)CrossRefGoogle Scholar
  3. 3.
    T. Takahashi, H. Iwahara, J. Appl. Electrochem., 3, 65 (1972)CrossRefGoogle Scholar
  4. 4.
    N.M. Sammes, G.A. Tompsett, H. Näfe, F. Aldinger, J. Eur. Ceram. Soc. 19, 1801 (1999)CrossRefGoogle Scholar
  5. 5.
    M. Yashima, D. Ishimura, Chem. Phys. Lett. 378, 395 (2003)CrossRefGoogle Scholar
  6. 6.
    M. Yashima, D. Ishimura, Appl. Phys. Lett. 87, 221909 (2005)CrossRefGoogle Scholar
  7. 7.
    H. Inaba, H. Tagawa, Solid State Ionics 83, 1 (1996)CrossRefGoogle Scholar
  8. 8.
    M. Yashima, S. Kobayashi, T. Yasui, Faraday Discussions 134, 369 (2007)CrossRefGoogle Scholar
  9. 9.
    T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994)CrossRefGoogle Scholar
  10. 10.
    M. Yashima, K. Nomura, H. Kageyama, Y. Miyazaki, N. Chitose, K. Adachi, Chem. Phys. Lett. 380, 391 (2003)CrossRefGoogle Scholar
  11. 11.
    R. Ali, M. Yashima, F. Izumi, Chem. Mater. 19, 3260 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Yashima, T. Tsuji, J. Appl. Crystallogr. 40, 1166 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Yashima, T. Kamioika, Solid State Ionics 178, 1939 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Yashima, Solid State Ionics 179, 797 (2008)Google Scholar
  15. 15.
    M. Yashima, M. Enoki, T. Wakita, R. Ali, Y. Matsushita, F. Izumi, T. Ishihara, J. Am. Chem. Soc. 130, 2762 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Feng, J.B. Goodenough, K. Huang, C. Milliken, J. Power Sources, 63, 47 (1996)CrossRefGoogle Scholar
  17. 17.
    Y. Teraoka, H.M. Zhang, K. Okamoto, H. Yamazoe, Mater. Res. Bull. 23, 51 (1998)CrossRefGoogle Scholar
  18. 18.
    T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, E. Ivers-Tiffee, Solid State Ionics 138, 143 (2000)CrossRefGoogle Scholar
  19. 19.
    R. Ali, M. Yashima, M. Tanaka, H. Yoshioka, T. Mori, S. Sasaki, J. Solid State Chem. 164, 51 (2002)CrossRefGoogle Scholar
  20. 20.
    M. Yashima, M. Mori, T. Kamiyama, K.I. Oikawa, A. Hoshikawa, S. Torii, K. Saitoh, K. Tsuda, Chem. Phys. Lett. 375, 240 (2003)CrossRefGoogle Scholar
  21. 21.
    H. Yoshioka, J. Am. Ceram. Soc. 85, 1339 (2002)CrossRefGoogle Scholar
  22. 22.
    M.F. Hundley, R.S. Kwok, S.W. Cheong, J.D. Thompson, Z. Fisk, Physica C 172, 455 (1991)CrossRefGoogle Scholar
  23. 23.
    S. Miyoshi, T. Furuno, H. Matsumoto, T. Ishihara, Solid State Ionics 177, 2269 (2006)CrossRefGoogle Scholar
  24. 24.
    M. Yashima, J. Am. Ceram. Soc. 85, 2925 (2002)CrossRefGoogle Scholar
  25. 25.
    K. Ohoyama, T. Kanouchi, K. Nemoto, M. Ohashi, T. Kajitani, Y. Yamaguchi, Jpn. J. Appl. Phys. Part 1. 37, 3319 (1998)CrossRefGoogle Scholar
  26. 26.
    M. Yashima, In: Proceedings of an International Conference on Solid → Solid Phase Transformations in Inorganic Materials 2005, Vol. 2, Howe J.M., Laughlin D.E., Lee J.K., Dahmen U., Soffa W.A. (eds.), p. 493. TMS: The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (2005)Google Scholar
  27. 27.
    F. Izumi, T. Ikeda, Mater. Sci. Forum 321–324, 198 (2000)CrossRefGoogle Scholar
  28. 28.
    M. Sakata, T. Uno, M. Takata, C.H. Howard, J. Appl. Crystallogr. 26, 159 (1993)CrossRefGoogle Scholar
  29. 29.
    F. Izumi, R.A. Dilanian, In: Recent Research Developments in Physics, Vol. 3, Part II, p. 699. Transworld Research Network, Trivandrum (2002)Google Scholar
  30. 30.
    K. Nomura, S. Tanase, Solid State Ionics 98, 229 (1997)CrossRefGoogle Scholar
  31. 31.
    W. Marti, P. Fischer, F. Altorfer, H.J. Scheel, M.J. Tadin, J. Phys. Condens. Matter 6, 127 (1994)CrossRefGoogle Scholar
  32. 32.
    W. Marti, P. Fischer, J. Schefer, F. Kubel, Z. Kristallogr. 211, 891 (1996)Google Scholar
  33. 33.
    P.R. Slater, J.T.S. Irvine, T. Ishihara, Y. Takita, J. Solid State Chem. 139, 135 (1998)CrossRefGoogle Scholar
  34. 34.
    C.J. Howard, B.J. Kennedy, J. Phys. Condens. Matter 11, 3229 (1999)CrossRefGoogle Scholar
  35. 35.
    L. Vasylechko, D. Savytskiia, A. Matkovskia, M. Berkowskic, M. Knappd, U. Bismayer, J. Alloy Comp. 328, 264 (2001)CrossRefGoogle Scholar
  36. 36.
    M. Lerch, H. Boysen, T. Hansen, J. Phys. Chem. Solids 62, 445 (2001)CrossRefGoogle Scholar
  37. 37.
    N.P. Vyshatko, V. Kharton, A.L. Shaula, E.N. Naumovich, F.M.B. Marques, Mater. Res. Bull. 38, 185 (2003)CrossRefGoogle Scholar
  38. 38.
    M. Kajitani, M. Matsuda, A. Hoshikawa, K. Oikawa, S. Torii, T. Kamiyama, F. Izumi, M. Miyake, Chem. Mater. 15, 3468 (2005)CrossRefGoogle Scholar
  39. 39.
    M. Kajitani, M. Matsuda, A. Hoshikawa, S. Harjo, T. Kamiyama, T. Ishigaki, F. Izumi, M. Miyake, Chem. Mater. 17, 4235 (2007)CrossRefGoogle Scholar
  40. 40.
    M.S. Islam, J. Mater. Chem. 10, 1027 (2000)CrossRefGoogle Scholar
  41. 41.
    M.S. Khan, M.S. Islam, D.R. Bates, J. Phys. Chem. B 102, 3099 (1998)CrossRefGoogle Scholar
  42. 42.
    K. Nomura, M. Yashima, In: Proceedings of the Symposium on Powder Diffraction III, KEK Proceedings 2005-19, Ida T., Kamiyama T. (eds.), p. 45. High Energy Accelerator Research Organization, Tsukuba, Japan (2006)Google Scholar
  43. 43.
    T. Ishihara, T. Akbay, H. Furutani, Y. Takita, Solid State Ionics 113–115, 585 (1998)CrossRefGoogle Scholar
  44. 44.
    H. Yoshioka, S. Kikkawa, J. Mater. Chem. 8, 1821 (1998)CrossRefGoogle Scholar
  45. 45.
    D. Suvorov, M. Valant, S. Skapin, D. Dolar, J. Mater. Sci. 33, 85 (1998)CrossRefGoogle Scholar
  46. 46.
    M. Yashima, R. Ali, H. Yoshioka, Solid State Ionics 128, 105 (2000)CrossRefGoogle Scholar
  47. 47.
    R. Ali, M. Yashima, M. Yoshimura, H. Yoshioka, J. Am. Ceram. Soc. 84, 468 (2001)CrossRefGoogle Scholar
  48. 48.
    M. Yashima, R. Ali, M. Tanaka, T. Mori, Chem. Phys. Lett. 363, 129 (2002)CrossRefGoogle Scholar
  49. 49.
    M. Yashima, M. Mori, R. Ali, M. Tanaka, T. Mori, Chem. Phys. Lett. 371, 582 (2003)CrossRefGoogle Scholar
  50. 50.
    R. Ali, M. Yashima, J. Synchrotron Radiat. 10, 28 (2003)CrossRefGoogle Scholar
  51. 51.
    C.J. Howard, Z. Zhang, Acta Crystallogr. B 60, 249 (2004)CrossRefGoogle Scholar
  52. 52.
    R. Ali, F. Izumi, M. Yashima, J. Am. Ceram. Soc. 89, 3805 (2006)CrossRefGoogle Scholar
  53. 53.
    V. Vashook, L. Vasylechko, N. Trofimenko, M. Kuznecov, P. Otchik, J. Zosel, U. Guth, J. Alloys Compd. 419, 271 (2006)CrossRefGoogle Scholar
  54. 54.
    M. Cherry, M.S. Islam, C.R.A. Catlow, J. Solid State Chem. 118, 118 (1995)CrossRefGoogle Scholar
  55. 55.
    M. Yashima, M. Itoh, Y. Inaguma, Y. Morii, J. Am. Chem. Soc. 127, 3491 (2005)CrossRefGoogle Scholar
  56. 56.
    O. Yamamoto, Y. Takeda, R. Kanno, M. Noda, Solid State Ionics 22, 241 (1987)CrossRefGoogle Scholar
  57. 57.
    J. Mizusaki, Y. Mima, S. Yamauchi, K. Fukui, H. Tagawa, J. Solid State Chem. 80, 102 (1989)CrossRefGoogle Scholar
  58. 58.
    S.B. Adler, J.A. Lane, B.C.H. Steele, J. Electrochem. Soc. 143, 3554 (1996)CrossRefGoogle Scholar
  59. 59.
    J. Kirchnerova, D.B. Hibbert, J. Mater. Sci. 28, 5800 (1993)CrossRefGoogle Scholar
  60. 60.
    V.G. Sathe, A.V. Pimpale, V. Siriguri, S.K. Paranjpe, J. Phys. Condens. Matt. 8, 3889 (1996)CrossRefGoogle Scholar
  61. 61.
    N.L.N.P. Closset, R.H.E. van Doorn, H. Kruidhof, Powd. Diff. 11, 31 (1996)Google Scholar
  62. 62.
    R. Sonntag, S. Neov, V. Kozhukharov, D. Neov, J.E. ten Elshof, Physica B 241–243, 393 (1998)Google Scholar
  63. 63.
    R.H.E. Van Doorn, A.J. Burggraaf, Solid State Ionics 128, 65 (2000)CrossRefGoogle Scholar
  64. 64.
    V.V. Sikolenko, E.V. Pomjakushina, S.Y. Istomin, J. Mag. Mag. Mater. 258–259, 300 (2003)CrossRefGoogle Scholar
  65. 65.
    T. Hanashima, S. Azuhata, K. Yamawaki, N. Shimizu, T. Mori, M. Tanaka, S. Sasaki, Jpn. J. Appl. Phys. Part A 43, 4171 (2004)CrossRefGoogle Scholar
  66. 66.
    R.E. Brese, M. O’Keeffe, Acta Crystallogr. B 47, 192 (1991)CrossRefGoogle Scholar
  67. 67.
    S. Wang, M. Katsuki, M. Dokiya, T. Hashimoto, Solid State Ionics 159, 71 (2003)CrossRefGoogle Scholar
  68. 68.
    M. Yashima, M. Tanaka, J. Appl. Crystallogr. 37, 786 (2004)CrossRefGoogle Scholar
  69. 69.
    J. Hutton, R.J. Nelmes, J. Phys. C: Solid State Phys. 14, 1713 (1981)CrossRefGoogle Scholar
  70. 70.
    V.V. Kharton, A.P. Viskup, A.V. Kovalevsky, E.N. Naumovich, F.M.B. Marques, Solid State Ionics 143, 337 (2001)CrossRefGoogle Scholar
  71. 71.
    S. Kato, M. Ogasawara, M. Sugai, S. Nakata, Solid State Ionics 149, 53 (2002)CrossRefGoogle Scholar
  72. 72.
    A. Manthiram, F. Prado, T. Armstrong, Solid State Ionics 152–153, 647 (2002)CrossRefGoogle Scholar
  73. 73.
    C.T. Li, H. Hu, H. Zhang, Y. Chen, J. Jin, N.R. Yang, J. Membr. Sci. 226, 1 (2003)CrossRefGoogle Scholar
  74. 74.
    V.V. Kharton, E.V. Tsipis, A.A. Yaremchenko, J.R. Frade, Solid State Ionics 166, 327 (2004)CrossRefGoogle Scholar
  75. 75.
    S.J. Skinner, J.A. Kilner, Solid State Ionics 135, 709 (2000)CrossRefGoogle Scholar
  76. 76.
    L. Minervini, R.W. Grimes, J.A. Kilner, K.E. Sickafus, J. Mater. Chem. 10, 2349 (2000)CrossRefGoogle Scholar
  77. 77.
    J.M. Bassat, P. Odier, A. Villesuzanne, C. Marin, M. Pouchard, Solid State Ionics 167, 341 (2004)CrossRefGoogle Scholar
  78. 78.
    E. Boem, J.-M. Bassat, P. Dordor, F. Mauvy, J.-C. Grenier, P. Stevens, Solid State Ionics 176, 2717 (2005)CrossRefGoogle Scholar
  79. 79.
    S. Miyoshi, T. Furuno, O. Sangoanruang, H. Matsumoto, T. Ishihara, J. Electrochem. Soc. 154, B57 (2007)CrossRefGoogle Scholar
  80. 80.
    T. Ishihara, S. Miyoshi, T. Furuno, O. Sangoanruang, H. Matsumoto, Solid State Ionics 177, 3087 (2006)CrossRefGoogle Scholar
  81. 81.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)CrossRefGoogle Scholar
  82. 82.
    M. Yashima, Q. Xu, A. Yoshiasa, S. Wada, J. Mater. Chem. 16, 4393 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Tokyo Institute of TechnologyJapan

Personalised recommendations