Diffusivity of the Oxide Ion in Perovskite Oxides

  • J. A. Kilner
  • A. Berenov
  • J. Rossiny
Part of the Fuel Cells and Hydrogen Energy book series (FCHY)

There are a large number of complex metal oxides, with the general formula ABO3, that form into the many and closely related perovskite-type structures. These materials show a very wide range of valuable physicochemical properties including ferromagnetism, catalytic activity, ferroelectricity, giant magneto-resistive effect, and ionic and mixed conductivity. As just mentioned, there are a number of structure types that fall under the collective name of perovskite, including the ideal cubic structure, rhombohedral, tetragonal, and orthorhombic distortions, and the hexagonal GdFeO3 types. In this chapter, we present a review of the literature on the subject of oxygen ion diffusion in these materials, as this is fundamental to an understanding of the other physical properties. This is a limited review, as the literature on this subject is extensive, and the aim here is to present the trends that will aid in understanding the changes in oxygen transport between different compositions and materials under different conditions. To this end, the structural differences in the materials will be ignored to a first approximation, and this must be remembered when the comparisons of data are being made. One of the fundamental difficulties in following the trends that occur in the diffusivity of oxygen is the inherent multidimensional nature of the data for the materials concerned. For example, the diffusivity is dependent upon temperature, oxygen partial pressure, identity of the A and B cations, the degree of substitution on either the A or B sites, and finally any deviations from the ideal A to B 1:1 occupancy ratio.


Vacancy Concentration Vacancy Formation Tracer Diffusion Oxygen Vacancy Concentration Perovskite Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Philibert, Atom Movements Diffusion and Mass Transport in Solids. Presses Universitaires de France, Paris (1966)Google Scholar
  2. 2.
    J.A. Kilner, “Fast Oxygen Transport in Acceptor Doped Oxides”. Solid State Ionics 129, 13–23 (2000)CrossRefGoogle Scholar
  3. 3.
    J.A. Kilner, “Ceramic Electrodes for SOFC’s”. Bol. De La Soc. Esp. De Ceram. Y Vidr. 37(2–3), 247–255 (1998)Google Scholar
  4. 4.
    F.A. Kröger, The Chemistry of Imperfect Crystals. North-Holland, Amsterdam (1964)Google Scholar
  5. 5.
    K. Vidyasagar, A. Reller, J. Gopalakrishnan, C.N.R. Rao, “Oxygen Vacancy Ordering in Superlatives of the Two Novel Oxides, La2Ni2O5 and La2Co2O5, Prepared by Low Temperature Reduction of the Parent Perovskites”. J. Chem. Soc. Chem. Commun. 1, 7–8 (1985)CrossRefGoogle Scholar
  6. 6.
    J. Mizusaki, I. Yasuda, J. Shimayoma, S. Yamauchi, K. Fueki, “Electrical Conductivity, Defect Equilibria and Oxygen Vacancy Diffusion Coefficient of La1–xCaxAlO3–δ Single Crystals”. J. Electrochem. Soc. 140, 467–471 (1993)CrossRefGoogle Scholar
  7. 7.
    S. Sunde, K. Nisancioglu, T. Gur, “Critical Analysis of Potentiostatic Step Data for Oxygen Transport in Electrically Conducting Perovskites”. J. Electrochem. Soc. 143, 3497–3504 (1996)CrossRefGoogle Scholar
  8. 8.
    J.A. Kilner, B.C.H. Steele, L. Ilkov, “Oxygen Self-Diffusion Studies Using Negative Secondary Ion Mass Spectrometry”. Solid State Ionics 12, 89–97 (1984)CrossRefGoogle Scholar
  9. 9.
    Kilner J.A., R.A. de Souza, Measurement of oxygen transport in ceramics by SIMS. In: Poulsen F.W., Bonanos N., Linderoth S., Mogensen M., Zachau-Christiansen B. (eds.) High Temperature Electrochemistry: Ceramics and Metals, Proceedings of the 17th Risø International Symposium on Materials Science, pp. 41–54. Risø National Laboratory, Roskilde (1996)Google Scholar
  10. 10.
    J.A. Kilner, Isotopic exchange in mixed and ionically conducting oxides. In: Ramanarayanan T., Worrell W.L., Tuller H.L. (eds.) Proceedings of 2nd International Symposium on Ionic and Mixed Conducting Ceramics, pp. 174–190, Electrochemical Society, Pennington (1994)Google Scholar
  11. 11.
    J.A. Kilner, R.A. De Souza, I.C. Fullarton, “Surface Exchange of Oxygen in Mixed Conducting Perovskite Oxides”. Solid State Ionics 86–88, 703–709 (1996)CrossRefGoogle Scholar
  12. 12.
    S.B. Adler, J.A. Lane, B.C.H. Steele, “Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes. J. Electrochem. Soc. 143, 3554–3564 (1996)CrossRefGoogle Scholar
  13. 13.
    B.C.H. Steele, “Behaviour of Porous Cathodes in High Temperature Fuel Cells”. Solid State Ionics 94, 239–248 (1997)CrossRefGoogle Scholar
  14. 14.
    J. Maier, “On the Correlation of Macroscopic and Microscopic Rate Constants in Solid State Chemistry”. Solid State Ionics 112, 197–228 (1998)CrossRefGoogle Scholar
  15. 15.
    R.A. De Souza, “A Universal Empirical Expression for the Isotope Surface Exchange Coefficients (k*) of Acceptor-Doped Perovskite and Fluorite Oxides”. Phys. Chem. Chem. Phys. 8, 890–897 (2006)CrossRefGoogle Scholar
  16. 16.
    R.A. De Souza, “Ionic Transport in Acceptor Doped Perovskites.” University of London, London (1996)Google Scholar
  17. 17.
    J.A.M. van Roosmalen, E.H.P. Cordfunke, R.B. Helmholdt, H.W. Zandberg, “The Defect Chemistry of LaMnO3±δ: 2. Structural Aspects of LaMnO3± δ”. J. Solid State Chem. 110, 100–105 (1994)CrossRefGoogle Scholar
  18. 18.
    J. Mizusaki, Y. Minima, S. Yamauchi, K. Fueki, H. Tagawa, “Non Stoichiometry of the Perovskite Type Oxides La1–xSrxCoO3–δ”. J. Solid State Chem. 80, 102–111 (1989)CrossRefGoogle Scholar
  19. 19.
    J.H. Kuo, H.U. Anderson, D.M. Sparlin, “Oxidation-Reduction Behaviour of Undoped and Sr-Doped LaMnO3, Nonstoichiometry and Defect Structure”. J. Solid State Chem. 83, 52–60 (1989)CrossRefGoogle Scholar
  20. 20.
    H. Tagawa, J. Mizusaki, H. Nambu, C. Nakao, H. Takai, H. Minamiue, Crystal structure, phase relations and oxygen nonstoichiometry in perovskite type oxide La1−xSrxMnO3. In: Steele B.C.H. (ed.) Ceramic Oxygen Ion Conductors and Their Technological Applications, Brit. Ceram. Proceedings 56, pp. 113–123. Institute of Materials, London (1996)Google Scholar
  21. 21.
    I.C. Fullarton, J.A. Kilner, B.C.H. Steele, P.H. Middleton, Characterization of oxygen ion transport in selected perovskite structured oxides by O18/O16 isotopic exchange and dynamic secondary ion mass spectrometry. In: Ramanarayanan T., Worrell W.L., Tuller H.L. (eds.) Proceedings of 2nd International Symposium on Ionic and Mixed Conducting Ceramics, pp. 9–26. Electrochemical Society, Pennington (1994)Google Scholar
  22. 22.
    T. Ishigaki, S. Yamauchi, J. Mizusaki, K. Fueki, H. Tamura, “Tracer Diffusion Coefficient of Oxide Ions in LaCoO3 Single Crystal”. J. Solid State Chem. 54, 100–107 (1984)CrossRefGoogle Scholar
  23. 23.
    R.A. De Souza, J.A. Kilner, “Oxygen Transport in La1−xSrxMn1−yCoyO3±δ Perovskites: Part I. Oxygen Tracer Diffusion”. Solid State Ionics 106, 175–187 (1998)CrossRefGoogle Scholar
  24. 24.
    R.E. van Doorn, I.C. Fullarton, R.A. de Souza, J.A. Kilner, H.J.M. Bouwmeester, A.J. Burggraaf, “Surface Oxygen Exchange of La0.3Sr0.7CoO3−δ”. Solid State Ionics 96, 1–7 (1997)CrossRefGoogle Scholar
  25. 25.
    I. Yasuda, K. Ogasawara, M. Hishinuma, “Oxygen Tracer Diffusion in Polycrystalline Calcium-Doped Lanthanum Chromates”. J. Am. Ceram. Soc. 80(12) 3009–3012 (1997)CrossRefGoogle Scholar
  26. 26.
    A.V. Berenov, J.L. MacManus-Driscoll, J.A. Kilner, “Oxygen Tracer Diffusion in Undoped Lanthanum Manganites”. Solid State Ionics 122, 41–49 (1999)CrossRefGoogle Scholar
  27. 27.
    M.C. Kim, S.J. Park, H. Haneda, J. Tanaka, T. Mitsunashi, S. Shirasaki, “Self-diffusion of Oxygen in La1−xSrxFeO3−δ.” J. Mater. Sci. Lett. 9, 102–104 (1990)CrossRefGoogle Scholar
  28. 28.
    J. Mizusaki, “Nonstoichiometry, Diffusion, and Electrical Properties of Perovskite-Type Oxide Electrode Materials”. Solid State Ionics 52, 79–91 (1992)CrossRefGoogle Scholar
  29. 29.
    M. Søgaard, P.V. Hendriksen, F.W. Poulsen, M. Mogensen, “A/B-Ratio and Transport Properties of (La0.85Sr0.15)sCoO3−δ Perovskites”. J. Electroceramics 13, 811–816 (2004)CrossRefGoogle Scholar
  30. 30.
    S.M. Woodley, D.J. Gale, P.D. Battle, C.R.A. Catlow, “Oxygen Ion Migration in Orthorhombic LaMnO3−δ.” J. Chem. Phys. 119, 9737–9744 (2003)CrossRefGoogle Scholar
  31. 31.
    S.M. Islam, ”Computer Modelling of Defects and Transport in Perovskite Oxides.” Solid State Ionics 154–155, 75–85 (2002)MathSciNetCrossRefGoogle Scholar
  32. 32.
    M.S. Islam, R.A. Davies, “Atomistic Study of Dopant Site-Selectivity and Defect Association in the Lanthanum Gallate Perovskite”. J. Mater. Res. 14, 86–93 (2004)Google Scholar
  33. 33.
    H. Tagawa, N. Mori, H. Takai, Y. Yonemura, H. Minamiue, H. Inaba, J. Mizusaki, T. Hashimoto, Oxygen non-stoichiometry in perovskite-type oxide, undoped and Sr doped LaMnO3. In: Stimming U., Singhal S.C., Tagawa H., Lehnert W. (eds.) Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), pp. 785–794. Electrochemical Society, Pennington (1997)Google Scholar
  34. 34.
    T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, K. Fueki, “Diffusion of Oxide Ion Vacancies in Perovskite-Type Oxides”. J. Solid State Chem. 73, 179–187 (1988)CrossRefGoogle Scholar
  35. 35.
    M.H.R. Lankhorst, H.J.M. Bouwmeester, “Determination of Oxygen Nonstoichiometry and Diffusivity in Mixed Conducting Oxides by Oxygen Coulometric Titration”. J. Electrochem. Soc. 144, 1268–1273 (1997)CrossRefGoogle Scholar
  36. 36.
    T. Ishigaki, S. Yamauchi, J. Mizusaki, K. Fueki, H. Naito, T. Adachi, “Diffusion of Oxide Ions in LaFeO3 Single Crystal”. J. Solid State Chem. 55, 50–53 (1984)CrossRefGoogle Scholar
  37. 37.
    S.J. Benson, “Oxygen Transport and Degradation Processes in Mixed Conducting Perovskites.” University of London, London (1999)Google Scholar
  38. 38.
    E. Ruiz-Trejo, J.A. Kilner, “Oxygen Diffusion and Proton Conduction in La1−xSrxYO3−δ.” Solid State Ionics 97, 529–534 (1997)CrossRefGoogle Scholar
  39. 39.
    D. Lybye, F.W. Poulsen, M. Mogensen, “Conductivity of A- and B-Site Doped LaAlO3, LaGaO3, LaScO3 and LaInO3 Perovskites”. Solid State Ionics 128, 91–103 (2000)CrossRefGoogle Scholar
  40. 40.
    T. Ishihara, J.A. Kilner, M. Honda, N. Sakai, H. Yokokawa, Y. Takita, “Oxygen Surface Exchange and Diffusion in LaGaO3 Based Perovskite Type Oxides”. Solid State Ionics 113–115, 593–600 (1998)CrossRefGoogle Scholar
  41. 41.
    A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, B. Raveau, “Structural and Magnetic Studies of Ordered Oxygen-Deficient Perovskites LnBaCo2O5+δ, Closely Related to the “122” Structure”. J. Solid State Chem. 142, 247–260 (1999)CrossRefGoogle Scholar
  42. 42.
    A. Tarancon, S.J. Skinner, R.J. Chater, F. Hernandez-Ramirez, J.A. Kilner, “Layered Perovskites as Promising Cathodes for Intermediate Temperature Solid Oxide Fuel Cells”. J. Mater. Chem. 17, 3175–3181 (2007)CrossRefGoogle Scholar
  43. 43.
    G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, C.A. Mims, “Rapid Oxygen Ion Diffusion and Surface Exchange Kinetics in PrBaCo2O5+x with a Perovskite Related Structure and Ordered A Cations”. J. Mater. Chem. 17, 2500–2505 (2007)CrossRefGoogle Scholar
  44. 44.
    H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, H. Tagawa, “Structural Consideration on the Ionic Conductivity of Perovskite-Type Oxides”. Solid State Ionics 122, 1–15 (1999)CrossRefGoogle Scholar
  45. 45.
    E. Ruiz-Trejo, M.S. Islam, J.A. Kilner, “Atomistic Simulation of Defects and Ion Migration in LaYO3.” Solid State Ionics 123, 121–129 (1999)CrossRefGoogle Scholar
  46. 46.
    M.S. Islam, “Ionic Transport in ABO3 Perovskite Oxides: A Computer Modelling Tour”. J. Mater. Chem. 10, 1027–1038 (2000)CrossRefGoogle Scholar
  47. 47.
    R.L. Cook, A.F. Sammells, “On the Systematic Selection of Perovskite Solid Electrolytes for Intermediate Temperature Fuel-Cells”. Solid State Ionics 45, 311 (1991)CrossRefGoogle Scholar
  48. 48.
    J.A. Kilner, R.J. Brook, “A Study of Oxygen Ion Conductivity in Doped Non-Stoichiometric Oxides”. Solid State Ionics 6, 237 (1982)CrossRefGoogle Scholar
  49. 49.
    A.V. Berenov, J.L. MacManus-Driscoll, J.A. Kilner, “Observation of the Compensation Law During Oxygen Diffusion in Perovskite Materials”. Int. J. Inorg. Mater. 3, 1109–1111 (2001)CrossRefGoogle Scholar
  50. 50.
    E. Peacock-López, H. Suhl, “Compensation Effect in Thermally Activated Processes”. Phys. Rev. B 26, 3774–3782 (1982)CrossRefGoogle Scholar
  51. 51.
    F. Béjina, O. Jaoul, “Silicon Diffusion in Silicate Minerals”. Earth Planet. Sci. Lett. 153, 229–238 (1997)CrossRefGoogle Scholar
  52. 52.
    K.D. Kreuer, “Aspects of the Formation and Mobility of Protonic Charge Carriers and the Stability of Perovskite-Type Oxides”. Solid State Ionics 125, 285–302 (1999)CrossRefGoogle Scholar
  53. 53.
    A. Steltennpohl, N. Memmel, “Self-Diffusion on Pd(111).” Surf. Sci. 454–456, 558–561 (2000)CrossRefGoogle Scholar
  54. 54.
    F.S. Galasso, “Perovskites and High TC Superconductors.” Gordon and Breach Science Publishers, New York (1990)Google Scholar
  55. 55.
    A. Yelon, B. Movaghar, H.M. Branz, “Origin and Consequences of the Compensation (Meyer-Neldel) Law”. Phys. Rev. B 46, 12244–12250 (1992)CrossRefGoogle Scholar
  56. 56.
    A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov, P. Kofstad, “Crystal Structure, Electrical and Magnetic Properties of La1−xSrxCoO3−y.” Solid State Ionics 80, 189−199 (1995)CrossRefGoogle Scholar
  57. 57.
    C. Zener, Theory of diffusion. In: Shockley W., Hollomon J.H., Maurer R., Seitz F. (eds.) Imperfections in Nearly Perfect Crystals, pp. 289–314. John Wiley & Sons, New York (1952)Google Scholar
  58. 58.
    D.P. Almond, A.R. West, “The Activation Entropy for Transport in Ionic Conductors”. Solid State Ionics 23, 27–35 (1987)CrossRefGoogle Scholar
  59. 59.
    H.U. Anderson, Defect chemistry of p-type perovskites. In: Poulsen F.W., Bentzen J.J., Jacobsen T., Skou E., Østergård M.J.L. (eds.) Proceedings of the 14th Risø International Symposium on Materials Science, pp. 1–18. Risø National Laboratory, Roskilde (1993)Google Scholar
  60. 60.
    I. Yasuda, K. Ogasawara, M. Hishinuma, T. Kawada, M. Dokiya, “Oxygen Tracer Diffusion Coefficient of (La,Sr)MnO3±δ.” Solid State Ionics 86–88, 1197–1201 (1996)CrossRefGoogle Scholar
  61. 61.
    J.L. Routbort, R. Doshi, M. Krumpelt, “Oxygen Tracer Diffusion in La1–xSrxCoO3.” Solid State Ionics 90, 21–27 (1996)CrossRefGoogle Scholar
  62. 62.
    N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada, M. Dokiya, “Oxygen Transport Properties of La1−xCaxCrO3−δ as an Interconnect Material of a Solid Oxide Fuel Cell.” J. Electrochem. Soc. 147, 3178–3182 (2000)CrossRefGoogle Scholar
  63. 63.
    P.S. Manning, J.D. Sirman, J.A. Kilner, “Oxygen Self-Diffusion and Surface Exchange Studies of Oxide Electrolytes Having the Fluorite Structure”. Solid State Ionics 93, 125–132 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MaterialsImperial CollegeLondonUK

Personalised recommendations