Advertisement

Oxide Ion Conductivity in Perovskite Oxide for SOFC Electrolyte

  • Tatsumi Ishihara
Chapter
Part of the Fuel Cells and Hydrogen Energy book series (FCHY)

The electrolyte used in a solid oxide fuel cell (SOFC) must be stable in both reducing and oxidizing environments and must have sufficiently high ionic conductivity but low electronic conductivity at the cell operation temperature. If a small amount of electronic conductivity appears, particularly under a reducing atmosphere, then the energy conversion efficiency will decrease because of the consumption of fuel by chemically leaked oxygen. SOFCs have commonly used the fluorite structure stabilized zirconia, especially yttria-stabilized zirconia, as the electrolyte. Other oxide ion conductors, such as doped ceria and perovskite oxides, have also been proposed as the electrolyte materials for SOFCs, especially for reduced-temperature operation (873–1073 K).

Keywords

Solid Oxide Fuel Cell Transport Number Maximum Power Density Perovskite Oxide LSGM Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Nernst, Z. Elektrochem 6, 41 (1899)CrossRefGoogle Scholar
  2. 2.
    Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, N. Imanishi, Solid State Ionics, 121, 133 (1999)CrossRefGoogle Scholar
  3. 3.
    J.A. Kilner, R.J. Brook, Solid State Ionics 6, 237 (1982)CrossRefGoogle Scholar
  4. 4.
    A. Navrotsky, P. Simoncic, H. Yokokawa, W. Chen, T. Lee, Faraday Discussions, 134, 171 (2007)CrossRefGoogle Scholar
  5. 5.
    T. Takahashi, H. Iwahara, Energy Conversion 11, 105–111 (1971)CrossRefGoogle Scholar
  6. 6.
    T. Ishihara, H. Matsuda, Y. Takita, J. Electrochem. Soc. 141, 3444 (1994)CrossRefGoogle Scholar
  7. 7.
    T. Ishihara, H. Matsuda, Y. Mizuhara, Y. Takita, Solid State Ionics 70/71, 234 (1994)CrossRefGoogle Scholar
  8. 8.
    K. Nomura, T. Takeuchi, S. Kamo, H. Kageyama, Y. Miyazaki, Solid State Ionics 175, 553 (2004)CrossRefGoogle Scholar
  9. 9.
    D. Lybye, F.W. Poulsen, M. Mogensen, Solid State Ionics 128, 91 (2000)CrossRefGoogle Scholar
  10. 10.
    K. Nomura, S. Tanase, Solid State Ionics 98, 229 (1997)CrossRefGoogle Scholar
  11. 11.
    M. Mogensen, D. Lybye, N. Bonanos, P.V. Hendriksen, F.W. Poulsen, Solid State Ionics 174, 279 (2004)CrossRefGoogle Scholar
  12. 12.
    T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994)CrossRefGoogle Scholar
  13. 13.
    P. Majewski, M. Rozumek, F. Aldinger, J. Alloys Compd. 329, 253–258 (2001)CrossRefGoogle Scholar
  14. 14.
    T. Ishihara, H. Matsuda, Y. Takita, Solid State Ionics 79, 147 (1995)CrossRefGoogle Scholar
  15. 15.
    M. Feng, J.B. Goodenough, Eur. J. Solid State Inorg. Chem., 31, 663 (1994)Google Scholar
  16. 16.
    P.N. Huang, P. Petric, J. Electrochem. Soc. 143, 1644 (1996)CrossRefGoogle Scholar
  17. 17.
    K. Huang, R. Tichy, J.B. Goodenough, J. Am. Ceram. Soc. 81, 2565 (1998)CrossRefGoogle Scholar
  18. 18.
    K. Huang, J.B. Goodenough, J. Alloys Compd. 303–304, 454 (2000)CrossRefGoogle Scholar
  19. 19.
    R.T. Baker, B. Gharbage, F.M.B. Marques, J. Electrochem. Soc. 144, 3130 (1997) T. Ishihara, H. Furutani, M. Honda, T. Yamada, T. Shibayama, T. Akbay, N. Sakai,CrossRefGoogle Scholar
  20. 20.
    H. Yokokawa, Y. Takita, Chem. Mater. 11, 2081–2088 (1999)CrossRefGoogle Scholar
  21. 21.
    R.T. Baker, B. Gharbage, F.M.B. Marques, J. Electrochem. Soc. 144, 3130 (1997)CrossRefGoogle Scholar
  22. 22.
    V.V. Kharton, A.A. Yaremchenko, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, P.E. Kerko, J. Membr. Sci. 163, 307 (1999)CrossRefGoogle Scholar
  23. 23.
    V. Thangadurai, A.K. Shukla, J. Gopalakrishnan, Chem. Commun. 2647 (1998)Google Scholar
  24. 24.
    T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, J. Electrochem. Soc. 147, 1322 (2000)CrossRefGoogle Scholar
  25. 25.
    P. Datta, P. Majewski, F. Aldinger, J. Alloys Compd. 438, 232 (2007)CrossRefGoogle Scholar
  26. 26.
    A. Matraszek, L. Singheiser, D. Kobertza, K. Hilpert, M. Miller, O. Schulz, M. Martin, Solid State Ionics 166, 343 (2004)CrossRefGoogle Scholar
  27. 27.
    K. Huang, M. Feng, J.B. Goodenough, M. Schmerling, J. Electrochem. Soc. 143, 3630 (1996)CrossRefGoogle Scholar
  28. 28.
    K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, Solid State Ionics 108, 415 (1998)CrossRefGoogle Scholar
  29. 29.
    K. Huang, R. Tichy, J.B. Goodenough, C. Milliken, J. Am. Ceram. Soc. 81, 2581 (1998)CrossRefGoogle Scholar
  30. 30.
    K. Huang, J.H. Wan, J.B. Goodenough, J. Electrochem. Soc. 148, A788 (2001)CrossRefGoogle Scholar
  31. 31.
    H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, J. Elecrochem. Soc. 138, 2719 (1991)CrossRefGoogle Scholar
  32. 32.
    T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, E. Ivers-Tiffée, Solid State Ionics 133, 143 (2000)CrossRefGoogle Scholar
  33. 33.
    H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, Fuel Cell 1, 117 (2001)CrossRefGoogle Scholar
  34. 34.
    T. Ishihara, S. Ishikawa, K. Hosoi, H. Nishiguchi, Y. Takita, Solid State Ionics, 175, 319 (2004)CrossRefGoogle Scholar
  35. 35.
    K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, M. Dokiya, SOFC V, Electrochem. Soc., Proc. 97–18, 1041 (1997)Google Scholar
  36. 36.
    J.H. Kim, H.I. Yoo, Solid State Ionics 140, 105 (2001)CrossRefGoogle Scholar
  37. 37.
    T. Ishihara, J.A. Kilner, M. Honda, Y. Takita, J. Am. Chem. Soc. 119, 2747 (1997)CrossRefGoogle Scholar
  38. 38.
    M.S. Islam, Solid State Ionics 154–155, 75–85 (2002)MathSciNetCrossRefGoogle Scholar
  39. 39.
    M.S. Khan, M.S. Islam, D.R. Bates, J. Phys. Chem. B. 102, 3099 (1998)CrossRefGoogle Scholar
  40. 40.
    T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Chem. Commun. 1227 (1999)Google Scholar
  41. 41.
    K. Huang, J.H. Wan, J.B. Goodenough, J. Electrochem. Soc. 148, A788 (2001)CrossRefGoogle Scholar
  42. 42.
    J. Akikusa, K. Adachi, K. Hoshino, T. Ishihara, Y. Takita, J. Electrochem. Soc. 148, A1275–1278 (2001)CrossRefGoogle Scholar
  43. 43.
    T. Yamada, N. Chitose, J. Akikusa, N. Murakami, T. Akbay, T. Miyazawa, K. Adachi, A. Hasegawa, M. Yamada, K. Hoshino, K. Hosoi, N. Komada, H. Yoshida, M. Kawano, T. Sasaki, T. Inagaki, K. Miura, T. Ishihara, Y. Takita, J. Electrochem. Soc. 148, A1712–A1714 (2004)CrossRefGoogle Scholar
  44. 44.
    M. Sahibzada, B.C.H. Steele, D. Barth, R.A. Rudkin, I.S. Metcalfe, Fuel 78, 639 (1999)CrossRefGoogle Scholar
  45. 45.
    J.W. Yan, Z.G. Lu, Y. Jiang, Y.L. Dong, Y.C. Yu, W.Z. Li, J. Electrochem. Soc. 149 (2002) A1132CrossRefGoogle Scholar
  46. 46.
    Z.H. Bi, B.L. Yi, Z.W. Wang, Y.L. Dong, H.J. Wu, Y.C. She, M.J. Cheng, Electrochem. Solid-State Lett. 7 (2004) A105CrossRefGoogle Scholar
  47. 47.
    J. Yan, H. Matsumoto, M. Enoki, T. Ishihara, Electrochem. Solid State Lett. 8, A389 (2005)CrossRefGoogle Scholar
  48. 48.
    J.B. Goodenough, J.E. Ruiz-Diaz, Y.S. Zhen, Solid State Ionics 44, 21 (2000)CrossRefGoogle Scholar
  49. 49.
    T. Yao, Y. Uchimoto, M. Kinuhata, T. Inagaki, H. Yoshida Solid State Ionics 132, 189 (2000)CrossRefGoogle Scholar
  50. 50.
    V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics 174, 135 (2004)CrossRefGoogle Scholar
  51. 51.
    K. Kakinuma, H. Yamamura, T. Atake. Defect Diffusion Forum 159, 242–244 (2005)Google Scholar
  52. 52.
    S. Nakayama, M. Sakamoto, J. Eur. Ceram. Soc. 18, 1413 (1998)CrossRefGoogle Scholar
  53. 53.
    T. Ishihara, H. Arikawa, T. Akbay, H. Nishiguchi, Y. Takita, J. Am. Chem. Soc. 123, 203 (2001)CrossRefGoogle Scholar
  54. 54.
    T. Ishihara, S. Ishikawa, M. Ando, H. Nishiguchi, Y. Takita, Solid State Ionics, 173, 9 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Applied ChemistryFaculty of Engineering, Kyushu University, Motooka 744Nishi-KuJapan

Personalised recommendations